KR0136146B1 - Coating method for tin layer on the surface of satellite - Google Patents
Coating method for tin layer on the surface of satelliteInfo
- Publication number
- KR0136146B1 KR0136146B1 KR1019940036809A KR19940036809A KR0136146B1 KR 0136146 B1 KR0136146 B1 KR 0136146B1 KR 1019940036809 A KR1019940036809 A KR 1019940036809A KR 19940036809 A KR19940036809 A KR 19940036809A KR 0136146 B1 KR0136146 B1 KR 0136146B1
- Authority
- KR
- South Korea
- Prior art keywords
- film
- stellite
- vapor deposition
- chemical vapor
- plasma chemical
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/52—Controlling or regulating the coating process
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
- Physical Vapour Deposition (AREA)
Abstract
본 발명은 정비및 공작용 기어, 부싱, 슬리브재료로 사용되는 스텔라이트 재표면에 내 마모성이 우수한 TiN피막을 형성하는 방법에 관한 것으로써, 플라즈마 화학증착법에 있어 기판온도, 인가전압 및 증착시간을 적절히 설정하므로서, 내마모성이 우수한 TiN피막을 플라즈마 화학증착법에 의해 스텔라이트재 표면에 형성시킬수 있는 방법을 제공하고자 하는데, 그 목적이 있다.The present invention relates to a method of forming a TiN film having excellent abrasion resistance on a back surface of stellite used as a maintenance, a working gear, a bushing, and a sleeve material. It is an object of the present invention to provide a method in which a TiN film having excellent wear resistance can be formed on the surface of a stellite material by plasma chemical vapor deposition with appropriate setting.
본 발명은 플라즈마 화학증착법에 의해 소재의 표면에 피막을 형성시키는 방법에 있어서, 소재로서 스텔라이트 재를 사용하고; 그리고 증착처리조건을 Ti공급원 : TiCl4용액, N공급원 : N2가스, 플라즈마 발생원 : H2및 Ar 질소가스, 기판온도 : 550-800℃, 인가전압 : 550-650V, 및 증착시간 : l-2시간으로 하여 플라즈마 화학증착처리하여 상기 스텔라이트재의 표면에 4-10 μ m두께 TiN피막을 형성시키는 방법을 그 요지로 한다.The present invention provides a method for forming a film on the surface of a material by plasma chemical vapor deposition, comprising: using a stellite material as the material; The deposition process conditions are Ti source: TiCl 4 solution, N source: N 2 gas, plasma source: H 2 and Ar nitrogen gas, substrate temperature: 550-800 ℃, applied voltage: 550-650V, and deposition time: l- The method is to form a 4-10 μm-thick TiN film on the surface of the stellite material by performing plasma chemical vapor deposition for 2 hours.
Description
제 1 도는 통상적인 플라즈마 화학중착 처리장치의 개락도1 is a schematic view of a conventional plasma chemical deposition treatment apparatus.
제 2 도는 기존 스텔라이트재와 본 발명에 따라 플라즈마 화학 증착처리된 스텔라이트 재에 대한 마모시간에 따른 무게감량 변화를 나타내는 그래프Figure 2 is a graph showing the weight loss change according to the wear time for the existing stellite material and the plasma chemical vapor deposition stellite material according to the present invention
* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings
4 : 버블러 장치5 : 가스 조성 조절장치4: bubbler device 5: gas composition adjusting device
6 : 인가전압 및 펄스공급장치7 : 기판온도 조절장치6: applied voltage and pulse supply device 7: substrate temperature control device
본 발명은 정비 및 공작용기어,부싱,솔리브재료로 사용되는 스텔라이트 재표면에 내마모성이 우수한 TiN피막을 형성하는 방법에 관한 것이다.The present invention relates to a method of forming a TiN film having excellent wear resistance on a surface of stellite used as maintenance and a work gear, a bushing, and a solid material.
기존의 스텔라이트는 Co-Cr합금으로서 표면경도는 650HK 0.01 정도이고, 내마모성이 우수한 재질로 알려져 있으며, 정비 및 공작용 기어, 부싱, 슬리브등의 재질로 사용되고 있다.Existing stellite is Co-Cr alloy and its surface hardness is about 650HK 0.01, and it is known as a material with excellent wear resistance, and it is used as a material for maintenance and working gear, bushing and sleeve.
상기 스텔라이트의 용도의 일례로는 제철소의 용융아연도금 공장의 아연포트내의 회전률 부싱 및 슬리브 재질등을 둘 수 있다.Examples of the use of the stellite may include a turnover bushing and a sleeve material in a zinc port of a hot dip galvanizing plant in a steel mill.
상기한 부품들은 사용도중 마모에 의해 자주교체되어야 하는데, 이 교체시기가 빠를수록 생산성은 저하되게 된다.Such parts should be frequently replaced by wear during use, and the earlier the replacement time, the lower the productivity.
따라서, 부품들의 마모연상을 최소화하므로써 생산성을 향상시키기 위한 방법으로는 부품전체를 내마모성이 우수한 재질로 형성하거나 또는 표면에만 내마모성이 우수한 재질을 코팅하는 방안을 고려할 수 있다.Therefore, as a method for improving productivity by minimizing the wear association of the parts, it is possible to consider a method of forming the whole part of a material having excellent wear resistance or coating a material having excellent wear resistance only on the surface.
한편, 내마모성이 우수한 재질로는 티타늄합금을 들 수 있다.On the other hand, titanium alloy is mentioned as a material excellent in abrasion resistance.
상기 티타늄 합금은 고가이므로 부품전체를 티타늄합금으로 대체시키는 것은 경제적인 부담이 크므로, 통상, 범용성 재료에 화학증착법(CVD), 물리증착법(PVD)등으로 이용하여 5-10 μm두께로 티타늄 합금(Tin,Tic)을 코팅하여 표면 경도를 향상시키는 기술이 행해지고 있다.Since the titanium alloy is expensive, replacing the entire part with titanium alloy is an economical burden. Therefore, a titanium alloy having a thickness of 5 to 10 μm is usually used for general purpose materials by chemical vapor deposition (CVD) or physical vapor deposition (PVD). The technique which improves surface hardness by coating (Tin, Tic) is performed.
그러나,상기한 방법으로 티타늄 합금을 표면에 코팅 하는 경우에는 피막균일도가 낮아 복잡한 구조의 부품에 적용하는 경우에는 사용수명이 짧은 단점이 있다.However, when the titanium alloy is coated on the surface by the method described above, the coating uniformity is low, and thus, when the titanium alloy is applied to a component having a complex structure, the service life is short.
한편, 상기 화학증착법 및 물리증착법보다 피막균일도가 우수한 플라즈마 화학증착법에 의해 고속도강에 티타늄합금을 코팅하는 방법이 알려져 있다.On the other hand, a method of coating a titanium alloy on high-speed steel by the plasma chemical vapor deposition method excellent in film uniformity than the chemical vapor deposition and physical vapor deposition method is known.
그러나, 내마모성이 우수한 스텔라이트재에 플라즈마 화학증착법에 의해 티타늄합금(TiN)을 증착시키는 방법은 아직 제안된 바 없다.However, a method of depositing titanium alloy (TiN) by a plasma chemical vapor deposition on a stellite material having excellent abrasion resistance has not been proposed yet.
따라서, 본 발명자들은 폴라즈마 화학증착법에 의해 TiN피막을 형성시키는 방법에 대하여 연구와 실험을 행하고, 그 결과에 의해 본 발명을 완성하게 된 것으로써, 본 발명은 플라즈마 화학증착법에 있어 기판온도, 인가전압및 증착시간을 적절히 설정하므로서, 내마모성이 우수한 TiN피막을 플라즈마 화학증착법에 의해 스텔라이트재 표면에 형성시킬 수 있는 방법을 제공하고자 하는데, 그 목적이 있다.Therefore, the present inventors have conducted research and experiment on the method of forming a TiN film by the plasma chemical vapor deposition method, and completed the present invention based on the results. It is an object of the present invention to provide a method for forming a TiN film having excellent wear resistance on the surface of a stellite material by plasma chemical vapor deposition by appropriately setting voltage and deposition time.
이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.
본 발명은 플라즈마 화학증착법에 의해 소재의 표면에 피막을 형성시키는 방법에있어서, 소재로서 스텔라이트재를 사용하고; 그리고 증착처리조건을 Ti공급원 : TiCl4용액, N공급원 : N2가스, 플라즈마 발생원, H2및 Ar가스, 기판온도 : 550-800℃, 인가전압 : 550-650V, 및 증착시간 : l-2시간으로 하여 플라즈마 화학증착처리하므로써 상기 스텔라이트재의 표면에 4-l0 μm두께의 TiN피막을 형성시키는 방법에 관한 것이다.The present invention relates to a method of forming a film on the surface of a material by plasma chemical vapor deposition, wherein a stellite material is used as the material; The deposition process conditions were Ti source: TiCl 4 solution, N source: N 2 gas, plasma source, H 2 and Ar gas, substrate temperature: 550-800 ° C, applied voltage: 550-650V, and deposition time: l-2 The present invention relates to a method of forming a 4-10 μm thick TiN film on the surface of the stellite material by plasma chemical vapor deposition.
이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.
본 발명을 구현하기 위한 통상적인 플라즈마 화학 증착처리장치의 일례가 제 l 도에 나타나 있다.An example of a conventional plasma chemical vapor deposition apparatus for implementing the present invention is shown in FIG.
제 1 도에 나타난 바와같이, 플라즈마 화학증착 처리장치는 수소공급장치(1), 질소공급장치(2), 아르곤공급장치(3),버블러 장치(4), 가스 조성조절장치(5), 인가전압및 펄스공급장치(6)및 기판 온도조절장치(7)등으로 구성되어 있다.As shown in FIG. 1, the plasma chemical vapor deposition apparatus includes a hydrogen supply device 1, a nitrogen supply device 2, an argon supply device 3, a bubbler device 4, a gas composition control device 5, And an applied voltage and pulse supply device 6 and a substrate temperature control device 7.
상기 가스 조성 조절장치(5)는 플라즈마 상태의 질소, 아르곤, 수소의 비율을 조절하는 역할을 하며 바블러 장치(4)는 액체 타이타늄 클로라이드를 공급함으로써 가스조절 장치에서 공급된 질소와 결합하여 TiN피막을 형성시키는 역할을 한다. 인가 전압 및 펄스공급장치 (6)및 기판온도 조절 장치(7)는 플라즈마를 형성 시키고 TiN피막 형성을 위한 에너지원을 제공해주는 역할을 한다.The gas composition control device 5 serves to control the ratio of nitrogen, argon and hydrogen in the plasma state, and the bubbler device 4 is combined with nitrogen supplied from the gas control device by supplying liquid titanium chloride to form a TiN film. Serves to form. The applied voltage and pulse supply device 6 and the substrate temperature control device 7 serve to form plasma and provide an energy source for forming the TiN film.
플라즈마 화학 증착법의 처리 조건증 가장 중요한 변수로는 인가전압, 기판온도, 가스 조성등을 들수 있으며 특히 기판 온도와 인가전압은 피막특성에 밀접한 관계를 나타낸다. 일반적으로 기판온도, 인가전압 및 처리시간이 증가할수록 피막 성장 속도와 경도는 향상되는 것으로 보고되고 있으나 적정 처리조건을 넘어설 경우 피막형성은 불가능하다. 즉, 재질과 증착에 의해 형성될 TiN피막과의 접착력, 증착속도, 피막의 잔류응력들이 각 처리조건과 밀접한 상관관계가 있으며, 기판온도가 저온일 경우 피막형성은 불가능하며 고온이되면 재질과 접착계면에서 형성된 화합물에 의해 접착력 저하로 피막 박리가 발생할 수 있다. 한펀,인가전압이 증가할수록 증착속도도 증가하나 과전압이 걸리게되면 형성된 피막이 스퍼터링 효과에 의해 박리된다.The most important parameters include the applied voltage, substrate temperature, and gas composition. In particular, the substrate temperature and applied voltage have a close relationship with the film properties. In general, it is reported that the film growth rate and hardness improve as the substrate temperature, the applied voltage, and the treatment time increase. That is, the adhesion between the material and the TiN film to be formed by deposition, the deposition rate, and the residual stress of the film are closely correlated with the processing conditions. Due to the compound formed at the interface, peeling of the film may occur due to a decrease in adhesive strength. The deposition rate increases as the Hanfun and applied voltage increase, but when overvoltage is applied, the formed film is peeled off by the sputtering effect.
또한, 처리시간이 길어지면 피막의 두께는 증가하나 피막내부의 잔류응력 역시 증가하여 피막의 들뜸 현상이 일어나기도 한다.In addition, as the treatment time increases, the thickness of the film increases, but the residual stress inside the film also increases, causing the film to rise.
이상과 같은 사실을 종합해보면, 스텔 라이트재질에 플라즈마 화학증착 방법으로 TiN을 형성하기 위해서는 적정 기판처리 온도, 인가전압, 및 처리시간이 존재하는 것을 알수 있으며 본 발명은 이러한 스텔라이트 재질의 TiN코팅에 관한 적정 처리 조건을 설정하는데, 그 특징이 있다.In summary, it can be seen that an appropriate substrate treatment temperature, an applied voltage, and a treatment time exist to form TiN on a stellite material by plasma chemical vapor deposition. There is a characteristic of setting an appropriate processing condition.
본 발명이 적용되는 스텔라이트재의 화학성분은 하기표 l과 같다.Chemical composition of the stellite material to which the present invention is applied is shown in Table l.
본 발명에 있어 기판 온도가 550℃이하인 경우에는 TiN피막 형성이 불가능하고, 800℃이상인 경우에는 재질과 피막계면사이에 형성되는 CoN화합물층에 의한 도막박리로 인하여 피막형성이 불가능하기 때문에 상기 기판온도는 550-800℃로 제한하는 것이 바람직하다.In the present invention, when the substrate temperature is 550 ° C. or lower, the TiN film may not be formed. When the substrate temperature is 800 ° C. or higher, the film temperature may not be formed due to the peeling of the coating layer by the CoN compound layer formed between the material and the film interface. It is desirable to limit to 550-800 ° C.
본 발명에 있어 인가전압이 550V이하인 경우에는 계면접착력 부족으로 인하여 TiN피막 형성이 불가능하고, 650V이상인 경우에는 형성된 피막이 스퍼터링 효과에 의해 박리되므로,상기 인가전압은 550-650V로 제한하는 것이 바람직하다In the present invention, when the applied voltage is less than 550V, TiN film formation is impossible due to lack of interfacial adhesion, and when the applied voltage is 650V or more, the formed film is peeled off due to the sputtering effect, so that the applied voltage is preferably limited to 550-650V.
또한, 본 발명에 있어 처리시간이 l시간이하인 경우에는 피막의 두께가 너무 얇아 표면경도가 낮고, 2시간 이상인 경우에는 형성된 피막내에 존재하는 잔류응력의 증대로 인하여 피막의 불안정성을 유발시킴으로써 피막들뜸(spoiling)현상이 일어나므로, 상기 처리시간은 l-2시간으로 제한하는 것이 바람직하다.In addition, in the present invention, when the treatment time is less than l hours, the thickness of the coating is too thin, so that the surface hardness is low. Since spoiling occurs, the treatment time is preferably limited to l-2 hours.
상기 중착조건이외의 조건은 통상적 플라즈마 화학증착 처리방법에서와 동일하게 행한다.Conditions other than the above deposition conditions are performed in the same manner as in the conventional plasma chemical vapor deposition treatment method.
바람직하게는 증착시 상기 N2, H2 및 Ar조성은 N: H: Ar가스의 비가 5-40vol% : 10-50vol% : 5-30%vol 가 되도록 하는 것이고, 진공조내의 압력은 100-500pa로 하는 것이다.Preferably, the N2, H2, and Ar compositions during deposition are such that the ratio of N: H: Ar gas is 5-40vol%: 10-50vol%: 5-30% vol, and the pressure in the vacuum chamber is 100-500pa. It is.
상기와 같은 조건으로 플라즈마 화학 증착시킴으로써 스텔라이트재의 표면에 4-l0 μm두께의 TiN피막이 형성된다.By plasma chemical vapor deposition under the conditions described above, a TiN film having a thickness of 4-10 μm is formed on the surface of the stellite material.
TiN피막의 두께가 4 μm이하인 경우에는 피막효과가 적고, 10 μm이상인 경우에는 박리될 우려가 크므로, TiN피막의 두께는 4-10um로 제한하는 것이 바람직하다.When the thickness of the TiN film is 4 μm or less, the coating effect is small, and when the TiN film is 10 μm or more, there is a high possibility of peeling. Therefore, the thickness of the TiN film is preferably limited to 4-10 μm.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.
[실시예 1]Example 1
하기표 2의 기준처리조건하에서 하기표 3과같이 기판온도, 인가전압 및 처리시간을 변화시켜 플라즈마 화학증착처리하여 스텔라이트재에 피막을 형성시키고, 피막에 대한 XRD분석, 피막두께측정 및 표면 미세경도측정을 행하여 그 결과를 하기표 3에 나타내었다.Under the standard processing conditions of Table 2, as shown in Table 3, the substrate temperature, applied voltage, and processing time were varied to form a film on the stellite material by plasma chemical vapor deposition, and XRD analysis, film thickness measurement, and surface fineness of the film. Hardness measurements were made and the results are shown in Table 3 below.
표 2에서, Pd : 펄스 주기당 전력 공급시간In Table 2, Pd: Power supply time per pulse period
Pp : 펄스 주기당 전력 중단시간Pp: Power down time per pulse period
상기 표 3에 나타난 바와 같이, 비교예 1은 플라즈마 화학처리하지 않은 스텔라이트 재질로서 XRD 분석 결과에 의하면 Co가 관찰되고 미세경도는 650Hk0.0l로 나타남을 알 수 있다.As shown in Table 3, Comparative Example 1 is a stellite material which is not plasma chemically treated, and according to the XRD analysis results, Co is observed and the microhardness is 650Hk0.0l.
기판온도가 500℃이하인 비교예(2)의 경우에는 TiN 피막형성없이 스텔라이트 재질의 Co가 관찰되고, 미세경도도 650Hk0.0l인 반면 에, 기판온도가 550-750℃인 발명예(1)의 경우에는 TiN피막이 형성되고, 표면 미세경도는 3000-3l00Hk0.0l로 비교예(1)에 비하여 약 4-5배정도 상승되며, 피막두께와 표면경도는 온도증가에 큰 영향을 받지 않음을 알 수 있다.In Comparative Example (2) having a substrate temperature of 500 ° C. or less, Stellite Co was observed without forming a TiN film, and the microhardness was 650 Hk0.0l, whereas the substrate temperature was 550-750 ° C. In the case of TiN film is formed, the surface microhardness is 3000-3l00Hk0.0l, about 4-5 times higher than that of Comparative Example (1), and the film thickness and surface hardness are not significantly affected by the temperature increase. have.
기판온도가 800℃이상인 비교예(3)의 경우에는 TiN피막과 CoN의 형성이 관찰되고 있는데, 이 CoN은 고온에 의한 스텔라이트내의 Co성분과 증착에 의한 N 성분이 계면에서 화합물층(compound layer)을 형성함으로써 형성된 것이며, 이 CoN으로 인하여 계면접착력을 저하시켜 표면미세 경도가 급격히 저하함을 알 수 있다.In the case of Comparative Example (3) having a substrate temperature of 800 ° C. or higher, the formation of TiN film and CoN was observed. In this CoN compound, the Co component in the sterilite due to high temperature and the N component due to deposition are compound layers at the interface. It is formed by forming a, and it can be seen that this CoN lowers the interfacial adhesion force and the surface fine hardness rapidly decreases.
한편, 인가전압이 500V이하인 비교예(4)의 경우에는 계면접착력 부족으로 인한 TiN피막 형성이 블가능하고 인가전압이 700V이상인 비교예(5)의 경우에는 스퍼터링 효과에 의한 도막박리가 관찰되는 반면에, 인가전압이 550-650V인 발명예(2)의 경우에는 TiN 피막이 형성되고, 미세경도는 3500Hk0.0l이며, 피막두께는 인가전압의 증가에 따라 증가하다가 감소하는 경향을 나타내고 있다.On the other hand, in Comparative Example (4) having an applied voltage of 500 V or less, TiN film formation was possible due to lack of interfacial adhesion, and in Comparative Example (5) having an applied voltage of 700 V or more, coating film peeling due to sputtering effect was observed. In the case of Inventive Example (2) having an applied voltage of 550-650 V, the TiN film was formed, the microhardness was 3500 Hk0.0l, and the film thickness increased and decreased with the increase of the applied voltage.
한편, 처리시간이 0.5시간인 비교예(6)의 경우에는 피막의 두께는 2 μm이고, 표면경도는 l000Hk0.0l 인 반면에, 처리시간이 l·2시간인 발명예(3)의 경우에는 TiN이 관찰되고, 피막두께가 5-l0 μm이고, 표면경도는 3000-4000Hk0.0l로 높게 나타나며, 처리시간 증가에 따라 피막두께와 표면경도는 증가함을 알수 있다.On the other hand, in the case of Comparative Example (6) having a treatment time of 0.5 hour, the thickness of the film was 2 μm and the surface hardness was l000Hk0.0l, whereas in the case of Inventive Example (3), the treatment time was l · 2 hours. TiN was observed, the film thickness was 5-l0 μm, the surface hardness was high as 3000-4000Hk0.0l, and the film thickness and surface hardness increased with increasing treatment time.
이에 반하여 처리시간이 2.5시간인 경우에는 피막내 잔류응력의 증대로 피막박리가 발생하게 됨을 알 수 있다.In contrast, when the treatment time is 2.5 hours, it can be seen that the peeling of the film occurs due to the increase of the residual stress in the film.
[실시예 2]Example 2
상기 실시예 l의 표 3에 나타난 발명예(3)중 처리시간을 2시간으로하여 플라즈마 화학증착 시킨 스텔라이트재(발명재)와 종래의 스텔라이트재(기존재)에 대하여 간이적 마모시험기를 사용하여 마모성 실험을 행하고, 시간경과에 따른 시편의 무게감량을 측정하여 내마모성을 평가하고 그 결과를 제 2 도에 나타내었다.A simple abrasion tester for the stellite material (invention material) and the conventional stellite material (existing material) subjected to plasma chemical vapor deposition with a treatment time of 2 hours in Inventive Example (3) shown in Table 3 of Example 1 Abrasion test was performed, and the weight loss of the specimen was measured over time to evaluate wear resistance. The results are shown in FIG.
제 2 도에 나타난 바와같이, 본 발명에 따라 폴라즈마 화학증착처리한 경우(발명재)가 증착처리되지 않은 스텔라이트재(기존재)에 비하여 우수한 내마모성을 갖는것을 알수 있으며, 이러한 원인으로는 플라즈마 화학증착에 의해 피복된 TiN의 높은 표면 경도에기인한 것으로 판단된다.As shown in FIG. 2, it can be seen that when the plasma chemical vapor deposition treatment (invention material) according to the present invention has excellent wear resistance as compared to the undeposited stellite material (existing material), the cause is plasma It is believed that this is due to the high surface hardness of TiN coated by chemical vapor deposition.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019940036809A KR0136146B1 (en) | 1994-12-26 | 1994-12-26 | Coating method for tin layer on the surface of satellite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019940036809A KR0136146B1 (en) | 1994-12-26 | 1994-12-26 | Coating method for tin layer on the surface of satellite |
Publications (2)
Publication Number | Publication Date |
---|---|
KR960023222A KR960023222A (en) | 1996-07-18 |
KR0136146B1 true KR0136146B1 (en) | 1998-07-01 |
Family
ID=19403529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019940036809A KR0136146B1 (en) | 1994-12-26 | 1994-12-26 | Coating method for tin layer on the surface of satellite |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR0136146B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100825509B1 (en) * | 2006-08-22 | 2008-04-25 | 홍명수 | Journal bearing of plating equipment and method of manufacturing the same |
-
1994
- 1994-12-26 KR KR1019940036809A patent/KR0136146B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR960023222A (en) | 1996-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4902535A (en) | Method for depositing hard coatings on titanium or titanium alloys | |
US5009966A (en) | Hard outer coatings deposited on titanium or titanium alloys | |
Laugier | Adhesion of TiC and TiN coatings prepared by chemical vapour deposition on WC-Co-based cemented carbides | |
US6372303B1 (en) | Method and device for vacuum-coating a substrate | |
US4640869A (en) | Hard metal watch case with a resistant coating | |
US5330853A (en) | Multilayer Ti-Al-N coating for tools | |
EP0387113B1 (en) | Process for the deposition of a ceramic coating on a metal substrate, and article coated by this process | |
RU2210622C2 (en) | Process of deposition of fine-grained coats of aluminum oxide on cutting tools | |
JPS58153776A (en) | Method for preparing ornamental parts and ion plating apparatus used therein | |
CN107130222A (en) | High-power impulse magnetron sputtering CrAlSiN nano-composite coatings and preparation method thereof | |
Rickerby et al. | Structure, properties and applications of TiN coatings produced by sputter ion plating | |
Gao et al. | Design and synthesis of diffusion-modified HfC/HfCSiC bilayer system onto WC-Co substrate for adherent diamond deposition | |
US5810947A (en) | Method of surface modification for tool steels | |
US7132129B2 (en) | Method of forming a diamond coating on an iron-based substrate and use of an iron-based substrate for hosting a CVD diamond coating | |
EP0349044B1 (en) | Process for the production of a protective film on a magnesium-based substrate, application to the protection of magnesium alloys, substrates thus obtained | |
Wendel et al. | Thin zirconium nitride films prepared by plasma-enhanced CVD | |
JPS5864377A (en) | Surface coated tool and its production | |
KR0136146B1 (en) | Coating method for tin layer on the surface of satellite | |
US7776393B2 (en) | Methods of producing an alumina film mainly in alpha crystal structure and the multilayer film thereof | |
US5262202A (en) | Heat treated chemically vapor deposited products and treatment method | |
Sein et al. | Chemical vapour deposition diamond coating on tungsten carbide dental cutting tools | |
JPS6117912B2 (en) | ||
US4873152A (en) | Heat treated chemically vapor deposited products | |
KR0136185B1 (en) | Coating method for complex layers using plasma on the satellite | |
KR0146878B1 (en) | Coating method of stellite member for the improvement of the surface hardness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20001228 Year of fee payment: 4 |
|
LAPS | Lapse due to unpaid annual fee |