KR0132273B1 - Trichlorophenol assimilating microorganism and process for waste water treatment - Google Patents

Trichlorophenol assimilating microorganism and process for waste water treatment

Info

Publication number
KR0132273B1
KR0132273B1 KR1019940011967A KR19940011967A KR0132273B1 KR 0132273 B1 KR0132273 B1 KR 0132273B1 KR 1019940011967 A KR1019940011967 A KR 1019940011967A KR 19940011967 A KR19940011967 A KR 19940011967A KR 0132273 B1 KR0132273 B1 KR 0132273B1
Authority
KR
South Korea
Prior art keywords
tcp
trichlorophenol
wastewater
present
kctc
Prior art date
Application number
KR1019940011967A
Other languages
Korean (ko)
Other versions
KR950032612A (en
Inventor
이성택
배희성
Original Assignee
심상철
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 심상철, 한국과학기술원 filed Critical 심상철
Priority to KR1019940011967A priority Critical patent/KR0132273B1/en
Publication of KR950032612A publication Critical patent/KR950032612A/en
Application granted granted Critical
Publication of KR0132273B1 publication Critical patent/KR0132273B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/38Pseudomonas

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

Wastewater generated at pulp or paper factory is in contact with pseudomonas solancerum strain TCP 114(KCTC 0106BP) including 2,4,6-trichlorophenol magnetization properties to eliminate 2,4,6-trichlorophenol effectively.

Description

삼염화폐놀 자화능을 갖는 미생물 및 그를 이용한 삼염화폐놀-함유 폐수의 처리방법Microorganisms having trigonal phenolic magnetizing ability and a method for treating trichlorinol-containing wastewater using the same

제1도는 2차 탄소원의 존재하에 본 발명의 균주 슈도모나스 솔라나세아룸 TCP 114에 의한 TCP 분해능을 시험한 결과를 보여주는 그래프이다.FIG. 1 is a graph showing the results of testing TCP resolution by strain Pseudomonas Solanaserum TCP 114 of the present invention in the presence of a secondary carbon source.

본 발명은 삼염화페놀 자화능을 갖는 신규의 미생물 및 그를 이용하여 삼염화페놀-함유 폐수를 처리하는 방법에 관한 것이고, 보다 상세하게는 삼염화페놀 자화능을 갖는 미생물 슈도모나스 솔라나세아룸(Pseudomonas solanacearum) TCP 114 및 이를 이용하여 삼염화페놀-함유 폐수를 처리하는 방법에 관한 것이다.The present invention relates to a novel microorganism having trichlorophenol magnetizing ability and a method for treating trichlorophenol-containing wastewater using the same, and more particularly, Pseudomonas solanacearum TCP having trichlorophenol magnetizing ability. 114 and methods of treating trichloride-containing wastewater using the same.

삼염화페놀(2,4,6-trichlorophenol; 이하 TCP로 약함)을 포함한 염화페놀류는 펄프의 표백, 목재에서의 방부처리 및 가죽이나 피혁공업에서 염색 보조제로 사용되는 것 이외에도, 살균제, 살충제로 사용되는 5염화페놀 및 4염화페놀, 그리고 염화페놀계 방부제(상품명 프로클로라즈, prochloraz )의 전구물질로 활용된다.Chlorinated phenols, including trichlorinated phenol (2,4,6-trichlorophenol; weakly referred to as TCP), are used as fungicides and insecticides in addition to bleaching pulp, preservatives in wood, and as dyeing aids in leather or leather industries. It is used as a precursor of pentachloride and tetrachloride and chlorinated chlorinated preservatives (prochloraz).

염화페놀류는 자연계에서 분해가 용이하지 않기 때문에 토양이나 지표수에 농축되며, 발암등의 독성을 나타내고 있어, 미국 환경청에서는 난분해성 독성물질(recalcitrants)로 분류되어 있음이 보고되어 있다. 또한 상술한 바 있는 각종 처리공정후에 발생하는 염화페놀류-함유 페수가 천저리 과정이 없이 폐수처리장에 유입되면, 활성오니들을 파괴시켜 벌킹현상을 유발한다.Chlorinated phenols are concentrated in soil or surface water because they are not easily degraded in nature and show toxicity such as carcinogenesis, and the US Environmental Protection Agency has reported that they are classified as recalcitrants. In addition, when the phenol-containing wastewater generated after the various treatment processes described above flows into the wastewater treatment plant without a bleeding process, the activated sludge is destroyed to cause a bulking phenomenon.

미생물을 이용하여 TCP를 처리하려는 시도는 비교적 최근의 일로 TCP처리에 사용될 수 있는 균주로는 예를 들면 호기성 세균인 아조터박터 속 미생물(Azotobacter sp, ;Liet al., Appl. Environ. Microbiol., 57, 1920, 1991)과 슈도모나스 피케티(Pseudomonas pickettil; Klyohara et al., lbld, 58, 1276, 1992)가 보고되었다.Attempts to treat TCP using microorganisms have been relatively recent and include strains that can be used for TCP treatment, such as, for example, azotobacter sp, Li et al., Appl. Environ. Microbiol., Which are aerobic bacteria. 57, 1920, 1991) and Pseudomonas pickettil (Klyohara et al., Lbld, 58, 1276, 1992).

그러나 이들의 TCP 분해능은 상당히 높지만 아직 만족할 만한 수준은 아니고, 또한 아조토박터 속 미생물은 토양 미생물로서 폐수처리의 효율성이 저하될 수 있으며, 5염화페놀-자화 미생물인 플레보박테리움 속 미생물은 포도당등 분해가 용이한 탄소원이 존재할 때에는 TCP분해능이 현저히 저하된다는 것이 보고된 바 있다. (Sarber, D. L. et., Appl. Environ. Microbiol. 50:1512-1518, 1987)However, their TCP resolution is quite high, but not yet satisfactory. Also, the microorganisms of azotobacters are soil microorganisms, which can reduce the efficiency of wastewater treatment, and the microorganisms of Plebobacterium, a phenol-magnetizing microorganism, It has been reported that TCP resolution is significantly reduced when there is a carbon source that is easy to decompose. (Sarber, D. L. et., Appl. Environ. Microbiol. 50: 1512-1518, 1987)

따라서, TCP 분해능이 매우 높으면서 포도당 또는 숙신산과 같이 자화가 용이한 기질이 공존하는 경우에도 계속 높은 TCP 분해능을 유지할 수 있는 균주의 개발이 요구되어 왔다.Therefore, there has been a demand for the development of a strain capable of maintaining a high TCP resolution even when a very high TCP resolution coexists with an easy magnetization substrate such as glucose or succinic acid.

이러한 상황하에서 본 발명자들은 새로운 종류의 TCP-자화성 균주를 찾아내고자 예의연구한 결과, 공장 폐수로부터 분리한 슈도모나스 솔라나세아룸(Pseudomonas solanacearum)에 의해 상기 목적을 달성할 수 있음을 발견하고 본 발명을 완성하기에 이르렀다.Under these circumstances, the present inventors have diligently studied to find a new kind of TCP-magnetizing strain, and have found that the present invention can achieve the above object by Pseudomonas solanacearum isolated from plant wastewater. Came to complete.

즉, 본 발명의 목적은 삼염화페놀 자화능을 갖는 슈도모나스 솔라나세아룸(Pseudomonas solanacearum) KCTC 0106BP를 제공하는 것이다.That is, an object of the present invention is to provide Pseudomonas solanacearum KCTC 0106BP having trichlorophenol magnetization ability.

본 발명의 또다른 목적은 상기 균주를 이용하여 삼염화페놀-함유 폐수를 처리하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for treating trichloride-containing wastewater using the strain.

이하 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명자들은 TCP 분해능이 매우 높으면서 포도당, 페놀 또는 숙신산과 같이 자화가 용이한 기질이 공존하는 경우에도 계속 높은 TCP 분해능을 유지할 수 있는 균주를 찾기 위해, 청주 공업단지의 페수를 채취하고 그로부터 TCP자화능을 갖는 균주들을 1차 선발하였다. 선발된 균주들중에서 특히 TCP 자화능이 200mg/l의 TCP를 20시간내에 분해할 수 있는 균주를 선발하였다. 이 균주는 700mg/l 농도의 TCP를 자화할 수 있으며, 더욱이 숙신산, 페놀, 포도당이 TCP와 함께 동시에 존재하더라도 TCP 분해속도가 변화가 없거나 오히려 증가되고, 방향족 독성 화합물로 알려진 아닐린, p-크레졸, 페놀, 벤조산 등을 자화할 수 있음이 관찰되었다.The present inventors collected the wastewater of Cheongju Industrial Complex to find a strain capable of maintaining high TCP resolution even in the presence of very high TCP resolution and coexistence of easy magnetization such as glucose, phenol or succinic acid. Strains with were first selected. Among the selected strains, particularly, strains capable of degrading 200 mg / l of TCP in 20 hours were selected. This strain is capable of magnetizing TCP at a concentration of 700 mg / l, and furthermore, even if succinic acid, phenol, and glucose are present together with TCP, the rate of TCP degradation remains unchanged or rather increased, and aniline, p-cresol, known as aromatic toxic compounds, It has been observed that phenol, benzoic acid and the like can be magnetized.

따라서, 본 발명의 미생물은 TCP뿐만 아니라 각종 유기물을 함유하고 있는 공업용 폐수, 특히 펄프 또는 제지회사의 폐수를 처리하는 데 있어 아주 유용하게 이용될 수 있다. 특히, 공장 페수를 활성 오니법으로 처리하는 경우에 있어서, 페수를 처리장으로 보내기 전에 본 발명의 미생물로 예비 처리하면 폐수중의 TCP가 100% 가깝게 분해되므로 그 이후의 본 처리장의 활성오니를 파괴하는 일이 발생되지 않는다. 본 발명의 미생물을 이용하여 TCP-함유 공업용 페수를 전처리하는 것은 페수를 처리하기 위한 통상의 미생물학적 방법에 따라 실시할 수 있으며, 예를 들면 본 발명의 미생물을 고농도로 충입한 컬럼에 펄프나 제지회사의 폐수를 통과시키으로써 TCP를 제거하여 이들 폐수를 처리하기 위한 활성오니가 파괴되는 것을 방지할 수 있다.Therefore, the microorganism of the present invention can be very useful for treating not only TCP but also industrial wastewater containing various organic matters, in particular pulp or paper wastewater. In particular, in the case of treating the plant wastewater by the active sludge method, pretreatment with the microorganism of the present invention before sending the wastewater to the treatment plant decomposes nearly 100% of TCP in the wastewater, thereby destroying the activated sludge of the plant afterwards. It doesn't happen. Pretreatment of TCP-containing industrial wastewater using the microorganism of the present invention can be carried out according to a conventional microbiological method for treating wastewater, for example, pulp or papermaking in a column packed with a high concentration of the microorganism of the present invention. By passing the company's wastewater, TCP can be removed to prevent destruction of the activated sludge to treat these wastewaters.

이하 실시예를 통하여 본 발명을 보다 상세히 설명하지만 본 발명이 이들 실시예만 국한되는 것은 아니다.The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

실시예1Example 1

리터당 인산제2칼륨 0.1%(중량%, 이하 동일하다), 인산제1나트륨 0.06%, 질산암모툼 0.1%, 황산마그네슘 0.02%, 염화칼륨 0.02%, 미량원소(황산구리 0.2%, 황산아염 0.03%, 황산코발트 0.1%, 4산화몰리브덴 나트륨 0.1%, 분산 0.05%, 황산칼슘 2%를 0.1ml의 증류수에 용해하고 10배 희석한다) 1ml, TCP 50mg를 첨가한 베지(이를 스크리닝 배지라 한다)에 청주공업단지의 폐수를 1% 첨가하여 30℃에서 1주일간 호기적 조건하에 배양하였다.0.1% dipotassium phosphate per liter (% by weight, same as below), monobasic sodium phosphate 0.06%, ammonium nitrate 0.1%, magnesium sulfate 0.02%, potassium chloride 0.02%, trace elements (copper sulfate 0.2%, sulphate 0.03%, 0.1% cobalt sulfate, 0.1% molybdenum tetraoxide, 0.05% dispersion, and 2% calcium sulfate are dissolved in 0.1 ml of distilled water and diluted 10-fold. 1% of the wastewater of the industrial complex was added and incubated for 1 week at 30 ° C. under aerobic conditions.

배양액 0.1ml를 상기 스크리닝 배지에 아가를 1.8% 첨가하여 제조한 고체배지에 도말하고, 30℃에서 3일간 호기 배양하여 3000개 정도의 집락을 얻었다.0.1 ml of the culture solution was plated on a solid medium prepared by adding 1.8% agar to the screening medium, and exhaled incubation at 30 ° C. for 3 days to obtain about 3000 colonies.

실시예2.Example 2.

실시예1에서 얻은 미생물들을 각각 스크리닝 배지에 접종하여 30℃에서 1주일간 배양한 뒤, 배양액 1ml를 취하여 형광분석기로 310nm에서의 흡광도를 측정하여 TCP를 정량하였다. TCP를 100%제거한 미생물 집락은 7개이었다.The microorganisms obtained in Example 1 were inoculated in screening medium and incubated at 30 ° C. for 1 week, and then 1 ml of the culture was taken to measure the absorbance at 310 nm using a fluorescence analyzer to quantify TCP. Seven microbial colonies were 100% free of TCP.

이들 집락의 미생물을 동정하고자 생리학적, 형태학적 및 배양학적 특성을 검사한 결과 이들은 모두 동일한 특성을 나타내었으며 그 결과는 다음과 같다.In order to identify the microorganisms of these colonies, the physiological, morphological and culture characteristics were examined, and they all showed the same characteristics.

형태학적 특성Morphological characteristics

그람 염색시 음성이며, 직경 0.7m, 길이 1m의 간균이고, 모노서브폴라(one subpola)의 편모를 가지고 있고, 포자는 형성하지 않는다.It is negative at gram staining, has a diameter of 0.7 m and a length of 1 m, has a flagellum of mono subpola, and does not form spores.

생화학적 특성Biochemical properties

염색체내 G+C(mol %)는 68.5%이며, 지방산은 C14:00, 20H C14:00, 3OH C14:00, C16:19, C16:00, C17:△, 18:19로 구성되어 있다.G + C (mol%) in the chromosome is 68.5%, fatty acid is composed of C14: 00, 20H C14: 00, 3OH C14: 00, C16: 19, C16: 00, C17: △, 18:19.

배양학적 특성Culture characteristics

최적 배양 온도 및 pH는 각각 27∼27℃, 6.8∼7.8이고, 41℃와 4℃에서의 생장은 관찰되지 않았다.Optimum incubation temperature and pH were 27-27 ° C. and 6.8-7.8, respectively, and growth at 41 ° C. and 4 ° C. was not observed.

생리학적 특성Physiological characteristics

옥시다제 +Oxidase +

카탈라제 +Catalase +

라이신 탈카르복실라제 -Lysine Decarboxylase-

오르니틴 탈카르복실라제 -Ornithine Decarboxylase-

황화수소 생성 -Hydrogen Sulfide Generation-

질산으로부터 질소개스 방출 +Nitrogen gas release from nitric acid +

포도당 이용능 +Glucose capacity +

만니톨 이용능 +Mannitol capacity +

자일로스 이용능 +Xylose Ability +

람노스 이용능 +Rhamnose ability +

솔비톨 이용능 +Sorbitol ability +

락토스 이용능 +Lactose ability +

설탕 이용능 +Sugar utilization +

아라비노스 이용능 +Arabinose ability +

아도니톨 이용능 +Adonitol Utilization +

라피노스 이용능 +Rafinos ability +

살리신 이용능 +Utilizing Salinity +

o-니트로페닐-β-D-갈락토피라노시드 -o-nitrophenyl-β-D-galactopyranoside-

인돌 생성 -Indole Generation-

요소 가수분해 +Urea Hydrolysis +

포게스-프로스카우어(V.P) 반응 -Forges-Pro Scout (V.P) Reaction-

구연산 이용 +Citric acid use +

트립토판 탈아미나제 -Tryptophan Deaminase-

알지닌 수화효소 -Arginine Hydase-

젤라틴 액화능 -Gelatin Liquefaction-

말론사 억제 +Malonsa suppression +

전부 가수분해 -Hydrolysis-

세포내 폴리히트록시분틸산 축적 +Intracellular Polyhydroxybuntyric Acid Accumulation +

세포외 폴리히드록시부틸산의 가수분해 -Hydrolysis of Extracellular Polyhydroxybutyl Acid-

상기 데이타로부터 본 발명의 미생물은 슈도모나스 솔라나세아룸(Pseudomonas solanasearum)으로 확인되었다.From the above data, the microorganism of the present invention was identified as Pseudomonas solanasearum.

상기와 같은 방법으로 분리 및 동정된 본 발명의 미생물 슈도모나스 솔라나세아룸(Pseudomonas solanasearum)은 TCP 114로 명명하고, 대전에 소재하는 유전공학연구소에 1994년 3월 17일자로 기탁하여 KCTC 0106BP의 수탁번호를 부여받았다.The microorganism Pseudomonas solanasearum of the present invention isolated and identified by the above method was named TCP 114 and deposited on March 17, 1994 at the Genetic Engineering Research Institute in Daejeon, and deposited KCTC 0106BP. I am assigned a number.

실시예3Example 3

250ml 플라스크내에 스크리닝 배지 560ml와 TCP를 각각 80, 100, 150 ,200, 300, 400, 500, 700mg/l로 첨가하고, 30℃에서 120rpm으로 진탕배양하였다.In a 250 ml flask, 560 ml of screening medium and TCP were added at 80, 100, 150, 200, 300, 400, 500 and 700 mg / l, respectively, and shaken at 30 ° C. at 120 rpm.

TCP 농도별로 비성장율(specific growth rate)를 측정하고 결과를 표1에 나타내었다.Specific growth rate was measured for each TCP concentration, and the results are shown in Table 1.

이상의 결과로부터 본 발명의 미생물 슈도모나스 솔라나세아룸 KCTC 0106BP는 TCP농도가 150-200mg/l으이 범위내에 있을때 최적의 성장을 나타냄을 알 수 있다. 또한 TCP가 700mg/l의 높은 농도로 존재하는 경우에도 생육하는 것을 알수 있다.From the above results, it can be seen that the microorganism Pseudomonas solaranaserum KCTC 0106BP of the present invention exhibits optimal growth when the TCP concentration is in the range of 150-200 mg / l. It can also be seen that TCP grows even when present at high concentrations of 700 mg / l.

실시예4.Example 4.

TCP를 100㎎/ℓ의 농도로 첨가한 스크리닝 배지에 본 발명의 슈도모나스 솔라나세아룸 TCP 114(KCTC 0106BP)를 접종하였다(건조중량 42mg/l 세포농도). 30℃에서 120rpm으로 진탕 배양하면서 TCP의 비분해속도 (specific degradation rate)를 측정하였을 때, 그 값은 시간당 0.240이었다.The screening medium to which TCP was added at a concentration of 100 mg / L was inoculated with Pseudomonas solaranacerum TCP 114 (KCTC 0106BP) of the present invention (dry weight 42 mg / l cell concentration). When the specific degradation rate of TCP was measured by shaking culture at 30 ° C. at 120 rpm, the value was 0.240 per hour.

실시예5Example 5

TCP 100mg/l와 숙신산 0.5mM을 스크리닝 배지에 첨가하고 본 발명의 슈도모나스 솔라나세아룸 TCP 114(KCTC 0106BP)를 접종하였다.(건조중량 42mg/l 세포농도). 30℃에서 120rpm으로 진탕배양하면서 TCP의 비분해속도를 측정하였을 때, 시간당 0.329이었다.100 mg / l of TCP and 0.5 mM of succinic acid were added to the screening medium and inoculated with Pseudomonas Solanasearum TCP 114 (KCTC 0106BP) of the present invention (dry weight 42 mg / l cell concentration). When the specific decomposition rate of TCP was measured while shaking at 30 ° C. and 120 rpm, it was 0.329 per hour.

실시예6Example 6

실시예 5와 동일하게 실시하되, 숙신산 대신 페놀 0.5mM을 스크리닝 배지에 첨가하고, 슈도모나스 솔라나세아룸 TCP 114(KCTC 0106BP)를 접종하였다(건조중량 42mg/l 세포농도). 30℃에서 120rpm으로 진탕하배양하면서 TCP의 비분해속도를 측정하였을 때 그 값은 시간당 0.329이었다.In the same manner as in Example 5, 0.5 mM of phenol was added to the screening medium instead of succinic acid, and was inoculated with Pseudomonas solaranacerum TCP 114 (KCTC 0106BP) (dry weight 42 mg / l cell concentration). When the specific resolution of TCP was measured under shaking at 30 ° C. at 120 rpm, the value was 0.329 per hour.

실시예7Example 7

TCP 100mg/l와 포도당 0.5mM을 스크리닝배지에 첨가하고, 슈도모나스 솔라나세아룸 TCP 114(KCTC 0106BP)를 건조중량 42mg/l 세포농도로 접종하였다. 30℃에서 120rpm으로 진탕배양하면서 TCP의 비분해속도를 측정하였을 때, 시간당 0.309이었다.100 mg / l of TCP and 0.5 mM of glucose were added to the screening medium, and Pseudomonas Solanasearum TCP 114 (KCTC 0106BP) was inoculated at a dry weight of 42 mg / l cell concentration. When the specific resolution of TCP was measured while shaking at 30 ° C. and 120 rpm, the rate was 0.309 per hour.

실시예8Example 8

아닐린, p-크레졸 또는 벤조산 각각을 0.5mM의 농도로 스크리닝 배지에 첨가하고, 슈도모나스 솔라나세아룸 TCP 114(KCTC 0106BP)를 건조중량 90mg/l 의 세포농도로 접종하였다. 30℃에서 120rpm으로 1주일간 진탕배양하였다. 배양후 형광분석기를 이용하여 250-350nm에서의 기질의 흡광도 변화와 세포성장(흡광도 600nm)을 동시에 측정하고, 결과를 표2에 나타내었다.Aniline, p-cresol or benzoic acid, respectively, was added to the screening medium at a concentration of 0.5 mM and Pseudomonas Solanasearum TCP 114 (KCTC 0106BP) was inoculated at a dry weight of 90 mg / l cell concentration. Shake culture was performed for 30 days at 30 ℃ 120 rpm. After incubation using a fluorescence spectrometer, the absorbance change of the substrate and cell growth (absorption at 600 nm) at 250-350 nm were simultaneously measured, and the results are shown in Table 2.

(주) * : 기질이 분해되면서 적갈색을 나타내면 배지를 바꾸어 배양하였음.(Note) *: When the substrate was degraded and reddish brown, the medium was changed and cultured.

상기 표2의 결과로부터 본 발명의 균주가 3염화페놀외에도 페놀, 벤조산, 아닐린 및 p-크레졸을 자화할수 있다는 것이 확인된다. 이들 물질이외에도 본 발명의 균주는 방향족 화합물인 2염화페놀(2,6-디클로로페놀)과 1염화벤조산(3-클로로벤조에이트)을 부분적으로 자화할 수 있으며, 여러 종류의 수산기로 치환된 여러 종류의 벤조산을 완전히 분해하여 생육하는 것이 확인되었다.The results of Table 2 confirm that the strain of the present invention can magnetize phenol, benzoic acid, aniline and p-cresol in addition to trichloride phenol. In addition to these substances, the strains of the present invention can partially magnetize aromatic dichlorophenol (2,6-dichlorophenol) and monochlorobenzoic acid (3-chlorobenzoate), and are substituted with various hydroxyl groups. It was confirmed that the benzoic acid of was completely decomposed and grown.

실시예9Example 9

2차 탄소원이 존재하는 경우에도 본 발명의 균주가 TCP를 자화하는 능력을 상실하지 않는지의 여부를 확인하기 위하여, 실시예 4와 동일하게 실시하되 배지에 각각 0.5mM씩의 포도당, 페놀 및 숙신산을 첨가하거나 또는 첨가하지 않고 배양하였다. 배양후 TCP, 포도당, 페놀 및 숙신산의 농도를 측정하고, 각각의 초기 농도를 100으로 한 상대치로서 잔류량을 계산하고 결과를 제1도에 나타내었다.In order to confirm whether the strain of the present invention does not lose the ability to magnetize TCP even in the presence of a secondary carbon source, the same procedure as in Example 4 was carried out in the medium with 0.5 mM glucose, phenol and succinic acid, respectively. Cultures were with or without addition. After incubation, the concentrations of TCP, glucose, phenol and succinic acid were measured, and the residual amount was calculated as a relative value of 100 at each initial concentration, and the results are shown in FIG.

제1도에서 볼수 있는 바와 같이, 본 발명의 균주는 2차 탄소원이 첨가되지 않은 경우 (-▼-)와 비교하여 포도당 첨가(-■-), 페놀 첨가(-●-) 및 숙신산 첨가(-▲-)의 경우에도 여전히 높은 TCP 분해능을 나타낸다. 참고로, 제1도에서, -▼-는 2차 탄소원을 첨가하지 않은 경우의 잔류 TCP 농도를, -■-,-●-, 및 -▲-는 각각 포도당, 페놀 및 숙신산을 첨가한 경우의 잔류 TCP 농도를 나타내며, -□-,-○- 및 -△-은 각각 배양후 배지중에 남은 포도당, 페놀 및 숙신산의 농도를 나타낸다As can be seen in FIG. 1, the strain of the present invention has a glucose addition (-■-), phenol addition (-●-) and succinic acid addition (-) as compared to (-▼-) when no secondary carbon source is added. ▲-) also shows high TCP resolution. For reference, in FIG. 1,-▼-indicates residual TCP concentration when no secondary carbon source is added, and-■-,-●-, and-▲-indicate glucose, phenol and succinic acid, respectively. Residual TCP concentrations are indicated, and-□-,-○-and -Δ- represent the concentrations of glucose, phenol and succinic acid remaining in the medium after incubation, respectively.

Claims (2)

1. 2, 4, 6-트리클로로페놀 자화능을 갖는 슈도모나스 솔라나세아룸(Pseudononas solanacearum) 균주 TCP 114(KCTC 0106BP). 2. 2, 4, 6-트리클로로페놀을 함유하는 폐수를 미생물학적으로 처리하는 방법에 있어서, 상기 페수를 슈도모나스 솔라나세아룸(Pseudononas solanacearum) 균주 TCP 114(KCTC 0106BP)와 접촉시킴을 특징으로 하는 방법.1. Pseudononas solanacearum strain TCP 114 (KCTC 0106BP) with 2, 4, 6-trichlorophenol magnetization ability. 2. Microbiological treatment of wastewater containing 2, 4, 6-trichlorophenol, characterized by contacting the wastewater with Pseudononas solanacearum strain TCP 114 (KCTC 0106BP). How to. 2, 4, 6-트리클로로페놀을 함유하는 폐수를 미생물학적으로 처리하는 방법에 있어, 상기 페수를 슈도모나스솔라나세아룸(Pseudononas solanacearum) 균주 TCP 114(KCTC 0106BP)와 접촉시킴을 특징으로 하는 방법.A method for microbiologically treating wastewater containing 2, 4, 6-trichlorophenol, wherein the wastewater is contacted with Pseudononas solanacearum strain TCP 114 (KCTC 0106BP). .
KR1019940011967A 1994-05-30 1994-05-30 Trichlorophenol assimilating microorganism and process for waste water treatment KR0132273B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940011967A KR0132273B1 (en) 1994-05-30 1994-05-30 Trichlorophenol assimilating microorganism and process for waste water treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940011967A KR0132273B1 (en) 1994-05-30 1994-05-30 Trichlorophenol assimilating microorganism and process for waste water treatment

Publications (2)

Publication Number Publication Date
KR950032612A KR950032612A (en) 1995-12-22
KR0132273B1 true KR0132273B1 (en) 1998-04-11

Family

ID=19384187

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940011967A KR0132273B1 (en) 1994-05-30 1994-05-30 Trichlorophenol assimilating microorganism and process for waste water treatment

Country Status (1)

Country Link
KR (1) KR0132273B1 (en)

Also Published As

Publication number Publication date
KR950032612A (en) 1995-12-22

Similar Documents

Publication Publication Date Title
Shashirekha et al. Phenol degradation by the marine cyanobacterium Phormidium valderianum BDU 30501
Dawkar et al. Effect of inducers on the decolorization and biodegradation of textile azo dye Navy blue 2GL by Bacillus sp. VUS
De Bont et al. Microbial degradation of 1, 3-dichlorobenzene
Wiggins et al. Explanations for the acclimation period preceding the mineralization of organic chemicals in aquatic environments
Wang et al. Biodegradation of 2, 4, 6-trichlorophenol in the presence of primary substrate by immobilized pure culture bacteria
EP0712808B1 (en) Process for decomposing pollutant with microorganism, process for remedying environment with microorganism, and microorganism itself
Krug et al. Degradation of phenolic compounds by the yeast Candida tropicalis HP 15 I. Physiology of growth and substrate utilization
Joe et al. Decolorization of reactive dyes by Clostridium bifermentans SL186 isolated from contaminated soil
DE69320938T2 (en) Process for the biodegradation of trichloroethylene and dichloroethylene and for soil remediation by microorganisms Pseudomonas cepacia KKO1 (FERM BP-4235)
Pandey et al. Microbial decolorization and degradation of reactive red 198 azo dye by a newly isolated Alkaligenes species
Telke et al. Significant reduction in toxicity, BOD, and COD of textile dyes and textile industry effluent by a novel bacterium Pseudomonas sp. LBC1
US4855051A (en) Microbial treatment of wastewater to remove tertiary butyl alcohol
Crawford et al. Catabolism of 5-chlorosalicylate by a Bacillus isolated from the Mississippi River
IE58045B1 (en) Process for the microbiological preparation of l-carnitine
Kumari et al. Exploring triclosan degradation potential of Citrobacter freundii KS2003
Lallai et al. pH variation during phenol biodegradation in mixed cultures of microorganisms
KR0132273B1 (en) Trichlorophenol assimilating microorganism and process for waste water treatment
Sugiura et al. Grazing characteristics of musty-odor-compound-producing Phormidium tenue by a microflagellate, Monas guttula
EP0567102B1 (en) Method of biologically decomposing phenol or furan compounds by microorganisms
RU2159139C2 (en) Biodegradation of metal cyanides
JPH0622769A (en) Method for biodegradation of phenolic compound, new strain used therefor and method for obtaining microorganism having ability to degrade phenolic compound
US8080403B2 (en) Biological process for color reduction of pulp and paper effluent
BRPI0318197B1 (en) Process for color reduction of paper and pulp effluent
Bevinakatti et al. Biodegradation of 4-chlorobiphenyl by Micrococcus species
US7267772B2 (en) Biological process for reducing chemical and biochemical oxygen demand of pulp and paper industrial effluent

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20050110

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee