KR0130732B1 - Process for production of ursodeoxy cholic acid - Google Patents

Process for production of ursodeoxy cholic acid

Info

Publication number
KR0130732B1
KR0130732B1 KR1019940013913A KR19940013913A KR0130732B1 KR 0130732 B1 KR0130732 B1 KR 0130732B1 KR 1019940013913 A KR1019940013913 A KR 1019940013913A KR 19940013913 A KR19940013913 A KR 19940013913A KR 0130732 B1 KR0130732 B1 KR 0130732B1
Authority
KR
South Korea
Prior art keywords
acid
alkali metal
alcohol
solvent
ursodeoxycholic acid
Prior art date
Application number
KR1019940013913A
Other languages
Korean (ko)
Other versions
KR960000918A (en
Inventor
유서홍
유서종
Original Assignee
유서홍
프라임 케미컬스 테크놀러지 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 유서홍, 프라임 케미컬스 테크놀러지 코포레이션 filed Critical 유서홍
Priority to KR1019940013913A priority Critical patent/KR0130732B1/en
Publication of KR960000918A publication Critical patent/KR960000918A/en
Application granted granted Critical
Publication of KR0130732B1 publication Critical patent/KR0130732B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J9/00Normal steroids containing carbon, hydrogen, halogen or oxygen substituted in position 17 beta by a chain of more than two carbon atoms, e.g. cholane, cholestane, coprostane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Steroid Compounds (AREA)

Abstract

A high-purity title compound was prepared with safety by reacting 3- -hydroxy-7-oxo-5- -cholic acid which was obtained from kenodeoxycholic acid by oxidation and alkaline metal mixture containing at least 2 alkaline metal such as Li, Na, K, and Rb in a mixed solvent of t-butyl alcohol and t-amylalcohol, followed by reduction with hydrogen to give the titled compound.

Description

우르소데옥시콜산의 제조방법Method for preparing ursodeoxycholic acid

본 발명은 우르소데옥시콜산의 제조방법에 관한 것으로, 보다 상세하게는 3α-히드록시-7-옥소-5β-콜란산의 7-옥소기를 최소한 2종 이상의 금속원소를 혼합하여 만든 액상의 알칼리금속혼합물과 알콜을 반응시켜 얻은 수소로 환원시키므로써 고순도, 고수율의 우르소데옥시콜산을 제조하는 방법에 관한 것이다.The present invention relates to a method for preparing ursodeoxycholic acid, and more particularly, a liquid alkali metal made by mixing at least two metal elements with 7-oxo groups of 3α-hydroxy-7-oxo-5β-cholanic acid. The present invention relates to a method for preparing ursodeoxycholic acid of high purity and high yield by reducing the mixture with hydrogen obtained by reacting an alcohol.

본래 우르소데옥시콜산은 스테로이드환의 3α 및 7β의 위치에 수산기를 가진 답즙산의 일종으로, 곰의 담즙중에 타우린과 결합하여 담즙산으로 존재하는 물질로, 담즙분비 부전으로 오는 간질환, 담관이나 담낭계질환, 만성간질환의 간기능개선, 고지혈증, 담석증외에 소장절제 후유증 및 염증성 소장질환, 소화불량의 치료에 탁월한 효능을 지니고 있는 것으로 알려져 있으나, 자연계에 존재하는 양은 아주 적을 뿐만 아니라 동물보호 차원에서도 많은 양을 얻을 수가 없었다. 현재 대부분의 우르소데옥시콜산은 화학적으로 제조되고 있으며, 따라서 더욱 안정성이 높고 고순도이며 고수율의 우르소데옥시콜산을 제조할 필요가 있다.Ursodeoxycholic acid is a type of bile acid with hydroxyl groups at the positions of 3α and 7β of the steroid ring. It is a substance that binds with taurine in the bile of a bear and is present as bile acid. It is known to have excellent effects on the treatment of diseases, improvement of liver function of chronic liver disease, hyperlipidemia, gallstones and other small bowel sequelae and inflammatory small bowel disease and indigestion. I could not get a sheep. At present, most ursodeoxycholic acids are chemically produced, and therefore, there is a need to prepare ursodeoxycholic acid having higher stability, higher purity and higher yield.

우르소데옥시콜산을 제조하기 위한 가장 일반적인 종래의 방법은 ⓛ 콜산(3α,7α,12α-트리히드록시콜란산)을 에틸에스테르화하는 공정, ② 무수초산을 이용하여 3α 및 7α 위치의 수산기를 아세틸화하므로써 보호하는 공정, ③ 12α 위치의 수산기를 크롬산으로 산화하여 카르보닐로 하는 공정, ④ 가수분해하여 12-옥시케노데옥시콜산(3α,7α-디히드록시-12-옥시콜란산)으로 하는 공정, ⑤ 12위치의 카르보닐을 환원하여 케노데옥시콜산(3α,7α-디히드록시콜란산)을 얻는 공정, ⑥ 케노데옥시콜산의 7α 위치의 수산기를 산화하여 카르보닐로 하고, 3α-히드록시-7-옥소-5β-콜란산을 얻는 공정, ⑦ 알콜중에서 금속나트륨으로 환원하여 우르소데옥시콜산(3α,7β-디히드록시콜란산)을 얻는 공정으로 되어 있다. 이러한 공정중에서 특히 케톤 중간체로부터의 환원공정은 Li, Na, K, Rb, Cs와 같은 알칼리 금속과 제1,제2,제3부틸알콜, 제3아밀알콜 또는 프로필알콜과 같은 알콜을 용매겸 반응물로 반응시켜 발생되는 수소를 가지고 케노데옥시콜산을 산화시켜 얻은 3α-히드록시-7-옥소-5β-콜란산의 7-옥소기를 입체선택적으로 7α-히드록시기로 환원시키는 것이다.The most common conventional method for preparing ursodeoxycholic acid is the process of ethyl estering phenolic acid (3α, 7α, 12α-trihydroxycholanic acid), and the hydroxyl group at 3α and 7α position using acetic anhydride. (3) oxidizing the hydroxyl group at position 12α with chromic acid to form carbonyl; (4) hydrolyzing to 12-oxykenodeoxycholic acid (3α, 7α-dihydroxy-12-oxycholate) Step (5) reducing carbonyl at position 12 to obtain kenodeoxycholic acid (3α, 7α-dihydroxycholanic acid), and (6) oxidizing the hydroxyl group at position 7α of kenodeoxycholic acid to carbonyl, A step of obtaining hydroxy-7-oxo-5β-cholanic acid, and a step of obtaining ursodeoxycholic acid (3α, 7β-dihydroxycholanic acid) by reducing the metal sodium in an alcohol. Among these processes, the reduction process from ketone intermediates in particular is a solvent and reactant with an alkali metal such as Li, Na, K, Rb, Cs and an alcohol such as first, second, third butyl alcohol, third amyl alcohol or propyl alcohol. The 7-oxo group of 3α-hydroxy-7-oxo-5β-cholanic acid obtained by oxidizing kenodeoxycholic acid with hydrogen generated by the reaction is reduced to stereoselectively with 7α-hydroxy group.

우르소데옥시콜산을 대량으로 생산하기 위하여 사용되는 이와 같은 금속나트륨과 알콜과의 반응에 의한 환원은 잘 알려져 있는 바와 같이, 낮은 입체선택성(일반적으로 우르소데옥시콜산 : 케노데옥시콜산=80 : 20), 장시간의 반응시간, 착색, 낮은 순도, 낮은 수율, 특히 낮은 순도로 인한 복잡한 정제과정 등으로 야기되는 경제적 손실과 제품 및 용매의 손실 등으로 인한 많은 단점들 때문에 현재는 거의 사용되고 있지 않다.Reduction by reaction of metal sodium with alcohols used to produce large amounts of ursodeoxycholic acid, as is well known, has low stereoselectivity (generally, ursodeoxycholic acid: kenodeoxycholic acid = 80: 20). ), Economical losses caused by long reaction times, coloration, low purity, low yields, especially complex purification processes due to low purity, and many shortcomings due to loss of products and solvents.

그러나 금속칼륨과 알콜로 환원시키는 경우에는 높은 입체선택성(우르소데옥시콜산 : 케노데옥시콜산=94 : 6), 높은 수율, 고순도, 낮은 착색도, 정제과정이 비교적 간단한 것 등의 장점이 있으나, 높은 반응성으로 인한 발화위험, 반응시 반응속도 조절의 어려움, 저장 및 취급상의 어려움과 고가인 점등 단점도 많이 있다.However, reduction with metal potassium and alcohol has advantages such as high stereoselectivity (ursodeoxycholic acid: kenodeoxycholic acid = 94: 6), high yield, high purity, low coloration, and relatively simple purification process. Risk of ignition due to reactivity, difficulty in controlling reaction rate in reaction, difficulty in storage and handling, and expensive lighting disadvantages.

상기 환원공정에서 용매 및 반응물로 쓰이는 알콜의 경우, 특히 제3부틸알콜을 사용하는 경우에 높은 어는점(2,562℃)으로 인하여 반응 및 취급에 많은 어려움이 뒤 따르며, 제3아밀알콜을 사용하는 경우에는 높은 끓는점, 낮은 반응성, 고가인 점 등으로 실제 사용상에는 많은 제약이 있다.In the case of the alcohol used as a solvent and reactants in the reduction process, in particular when using a third butyl alcohol, a high freezing point (2,562 ℃) due to a lot of difficulties in the reaction and handling, and when using a third amyl alcohol Due to high boiling point, low reactivity, expensive point, there are many restrictions in actual use.

따라서 본 발명의 목적은 상기와 같은 단점을 해결하여 안전하면서도 저렴하고 고순도 및 고수율의 우르소데옥시콜산을 제조하기 위한 방법을 제공하는 것이다.Accordingly, an object of the present invention is to provide a method for preparing ursodeoxycholic acid which is safe, inexpensive, and of high purity and high yield by solving the above disadvantages.

이와 같은 목적을 달성하기 위하여 본 발명에서는 3α-히드록시-7-옥소-5β-콜란산의 7-옥소기를 Li, Na, K, Rb, Cs와 같은 알칼리금속을 최소한 2가지 이상 혼합하여 액상의 알칼리금속 혼합물로 만들어 알콜과 반응시켜 얻은 수소로 환원시키므로써 고순도, 고수율의 우르소데옥시콜산을 얻는 것을 특징으로 하고 있다. 알칼리금속중 우르소데옥시콜산의 제조에 단독으로 사용되고 있는 칼륨의 경우에는 폭발위험성이있어서 공기중에 처리가 어려우므로 사실상 공업적으로 사용되는 데에는 한계가 있었다. 또한 나트륨의 경우에는 용매에 보관하여야 하므로 보관이 어렵고 반응액에 첨가하는 것 또한 어려울 뿐만 아니라 반응시간이 24시간에서 최고 68시간까지 소요되는 등의 문제점이 있었다. 본 발명에서는 알칼리금속을 2개 이상 서로 혼합하여 액상으로 만들어 사용하므로써 이러한 문제점을 해결할 수 있었으며, 특히 칼륨을 40∼90% 혼합하여 상온에서 액체인 알칼리금속 혼합물을 사용하는 것이 바람직하였다.In order to achieve the above object, in the present invention, 7-oxo group of 3α-hydroxy-7-oxo-5β-cholanic acid is mixed with at least two alkali metals such as Li, Na, K, Rb, Cs, It is characterized by obtaining urethane deoxycholic acid of high purity and high yield by reducing the hydrogen obtained by reacting with an alcohol by making an alkali metal mixture. Potassium, which is used solely for the production of ursodeoxycholic acid among alkali metals, has a risk of explosion and is difficult to be used in the air. In addition, in the case of sodium, since it should be stored in a solvent, it is difficult to store and it is difficult to add to the reaction solution as well as the reaction time takes 24 hours up to 68 hours. In the present invention, this problem can be solved by mixing two or more alkali metals to make them in a liquid phase. Particularly, it is preferable to use an alkali metal mixture which is liquid at room temperature by mixing 40 to 90% of potassium.

본 발명의 또 다른 특징은 용매겸 반응물로 사용되는 알콜과 액상의 알칼리금속 혼합물과의 반응에서 필연적으로 수반되는 폭발위험성, 반응속도, 온도, 시간, 착색정도, 수율, 순도등에 대한 문제점을 보완하기 위하여 최소한 2개 이상의 알칼리금속으로 된 액상의 알칼리금속 혼합물과 제3부틸알콜, 제3아밀알콜 또는 이들의 혼합용매(제3부틸알콜과 제3아밀알콜의 혼합비=온도에 따라 2∼8 : 8∼2)를 사용하므로써 상기와 같은 문제점들을 해결할 수 있었으며, 특히 제3부틸알콜을 단독으로 사용하는 경우에 나타나는 반응속도, 낮은 끓는점, 높은 어는 점의 문제점과 제3아밀알콜을 사용하는 경우에 나타나는 높은 끓는점, 금속에 대한 낮은 반응성, 고가등의 문제점을 해결할 수 있었다.Another feature of the present invention is to solve the problems of explosion risk, reaction rate, temperature, time, degree of coloring, yield, purity, etc. inevitably involved in the reaction of alcohol and liquid alkali metal mixture used as a solvent and reactant For this purpose, a liquid alkali metal mixture of at least two alkali metals and tertiary butyl alcohol, tertiary amyl alcohol or a mixed solvent thereof (mixing ratio of tertiary butyl alcohol with tertiary amyl alcohol = 2 to 8: 8 depending on the temperature) The above problems could be solved by using ˜2). Especially, the problems of reaction rate, low boiling point and high freezing point when the third butyl alcohol was used alone and the third amyl alcohol were used. High boiling point, low reactivity with metal, high price could solve the problems.

예를들어 제3부틸알콜의 어는 점은 25℃이며 제3아밀알콜의 어는 점은 14℃이나 이들을 혼합하였을 때에는 그 혼합비율에 따라 어느 온도가 표 1에 나타낸 바와 같이 다르므로 계절에 따라 혼합비율을 달리하여 사용할 수 있는 특징이 있다.For example, the freezing point of the third butyl alcohol is 25 ℃ and the freezing point of the third amyl alcohol is 14 ℃, but when mixing them, the temperature varies depending on the mixing ratio according to the season as shown in Table 1 There is a feature that can be used in different ways.

[표 1] TABLE 1

따라서 상기 표로부터 알 수 있는 바와 같이 가령 기온이 높은 여름에 우르소데옥시콜산을 제조하기 위하여 알콜용매를 사용하는 경우에는 제3부틸알콜이나 제3아밀알콜을 그대로 사용하여도 되지만, 기온이 낮은 겨울철에 사용하는 경우에는 혼합하여 사용하면 반응시키기가 매우 편리하다.Therefore, as can be seen from the above table, for example, when the alcohol solvent is used to produce ursodeoxycholic acid in the summer when the temperature is high, the third butyl alcohol or the third amyl alcohol may be used as it is. In the case of using, it is very convenient to mix and use.

본 발명의 또 다른 특징은 액상의 알칼리금속 혼합물과 알콜 또는 혼합알콜을 반응시켜 얻은 수소로 3α-히드록시-7-옥소-5β-콜란산의 7-옥소기를 환원할 때에 장시간의 반응에도 불구하고 미반응 알칼리금속이 남게되어 이의 처리에 많은 위험이 수반되었으나, 본 발명에서는 액상의 알칼리금속 혼합물과 알콜 또는 혼합알콜을 일정시간 반응시킨 후 이 반응액에 촉매로 탄소 또는 Ni(II), Mo(Ⅵ)등의 산화물을 단독 혹은 복합적으로 다공질의 안트라사이트에 함침시켜 얻은 물질을 알칼리금속 혼합물을 기준으로 최고10% 가한 다음 80∼90℃에서 2∼4시간 정도 더 가열, 환류하여 미반응의 금속잔사를 완전히 제거할 수 있다는 것이다. 또한 환원반응후에 보편적으로 물과 메탄올을 첨가하여 미반응의 알칼리금속을 분해시키므로써 제3부틸알콜, 제3아밀알콜이나 이들 혼합물과 같은 무수용매의 회수가 불가능하여 많은 경제적 손실을 초래하였으나, 본 발명에 따른 상기 촉매를 사용하는 경우에는 반응후 물과 매탄올을 첨가할 필요가 없어서 무수용매를 회수하여 재사용할 수 있는 장점도 있다.Another feature of the present invention is that despite the prolonged reaction when reducing the 7-oxo group of 3α-hydroxy-7-oxo-5β-cholanic acid with hydrogen obtained by reacting a liquid alkali metal mixture with an alcohol or mixed alcohol Although unreacted alkali metals remained, many treatments were involved, but in the present invention, after reacting a liquid alkali metal mixture with an alcohol or a mixed alcohol for a predetermined time, carbon or Ni (II), Mo ( A substance obtained by impregnating a porous anthracite, alone or in combination, with an oxide, such as Ⅵ), was added at most 10% based on the alkali metal mixture, and then heated and refluxed at 80 to 90 ° C. for about 2 to 4 hours to produce an unreacted metal. The residue can be completely removed. In addition, after the reduction reaction, water and methanol are generally added to decompose the unreacted alkali metals, thereby making it impossible to recover anhydrous solvents such as tertiary butyl alcohol, tertiary amyl alcohol, or mixtures thereof. In the case of using the catalyst according to the invention, there is no need to add water and methanol after the reaction, and thus there is an advantage in that anhydrous solvent can be recovered and reused.

이하 본 발명을 실시예에 따라 더욱 상세히 설명하기로 하며, 이하에 나타낸 실시예들은 본 발명을 위하여 예시한 것에 지나지 않으며 결코 본 발명의 범위를 한정하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to examples, and the following examples are only illustrated for the present invention and do not limit the scope of the present invention.

실시예 1Example 1

제3부틸알콜 3.5에 3α-히드록시-7-옥소-5β-콜란산 254.7mmol을 첨가하고 가열환류시키면서 잘 저어주고 질소를 통과시킨다. 이때 질소존재하에 가열환류시키면서 액상의 알칼리금속 혼합물 60g(Na : K=22 : 78)을 2시간에 걸쳐 조금씩 첨가한다. 알칼리금속 혼합물을 모두 다 첨가한 다음 한시간 더 가열환류시키고 나서 육안으로 미반응의 알칼리금속의 존재 유무를 확인하고 감압하에 용매를 증류제거한다. 이때 얻은 용매는 무수용매로 다음 반응에 사용한다. 용매를 감압증류로 분리한 후 이 반응물에 물을 첨가하고 나서 다시 감압하에 잔존하는 용매를 증류분리하고 진한 염산용액으로 PH를 1∼2로 하면 백색 결정형태의 우르소데옥시콜산과 케노데옥시콜산이 96 : 4의 비율로 얻어졌다(수율 99%).Tertiary butyl alcohol 3.5 To this, add 254.7 mmol of 3α-hydroxy-7-oxo-5β-cholanic acid, stir well while heating under reflux, and let nitrogen flow through. At this time, while heating and refluxing in the presence of nitrogen, 60 g of a liquid alkali metal mixture (Na: K = 22: 78) is added little by little over 2 hours. After adding all the alkali metal mixtures, the mixture was heated to reflux for another hour, and then visually checked for the presence of unreacted alkali metals. The solvent obtained at this time is anhydrous solvent and used for the next reaction. The solvent was separated by distillation under reduced pressure, water was added to the reaction, and the remaining solvent was distilled off under reduced pressure, and the pH was adjusted to 1-2 with concentrated hydrochloric acid solution. Acid was obtained at the ratio of 96: 4 (yield 99%).

실시예 2Example 2

제3부틸알콜 2에 3α-히드록시-7-옥소-5β-콜란산 254.7mmol을 첨가하여 가열환류시키면서 잘 저어주고 질소를 통과시킨다. 이때 질소존재하에 가열환류시키면서 액상의 알칼리금속 혼합물 60g(Na : K=22 : 78)을 3시간에 걸쳐 조금씩 첨가한다. 알칼리금속 혼합물을 모두 다 첨가한 다음 본 발명에 따라 제조된 촉매를 6g 가한 후 한시간 더 가열환류시키고 나서 육안으로 미반응의 알칼리금속의 존재 유무를 확인하고 감압하에 용매를 증류제거한다. 이때 얻은 용매는 무수용매로 다음 반응에 사용한다. 용매를 감압증류로 분리한 후 이 반응물에 물을 첨가하고 나서 다시 감압하에 잔존하는 용매를 증류분리하고 진한 염산용액으로 PH를 1∼2로 하면 백색 결정형태의 우르소데옥시콜산과 케노데옥시콜산이 95 : 5의 비율로 얻어졌다(수율 98.5%).Tert-Butyl alcohol 2 254.7 mmol of 3α-hydroxy-7-oxo-5β-cholanic acid was added to the mixture, and the mixture was stirred while being heated to reflux, and passed through nitrogen. At this time, while heating and refluxing in the presence of nitrogen, 60 g of a liquid alkali metal mixture (Na: K = 22: 78) is added little by little over 3 hours. After all the alkali metal mixtures were added, 6 g of the catalyst prepared according to the present invention was added, and the mixture was heated to reflux for another hour, and then visually checked for the presence of unreacted alkali metal, and the solvent was distilled off under reduced pressure. The solvent obtained at this time is anhydrous solvent and used for the next reaction. The solvent was separated by distillation under reduced pressure, water was added to the reaction, and the remaining solvent was distilled off under reduced pressure, and the pH was adjusted to 1-2 with concentrated hydrochloric acid solution. Acid was obtained in 95: 5 ratio (yield 98.5%).

실시예 3Example 3

제3부틸알콜과 제3아밀알콜을 6 : 4의 비율로 혼합한 혼합용매 2에 3α-히드록시-7-옥소-5β-콜란산 254.7mmol을 첨가하여 가열환류시키면서 잘 저어주고 질소를 통과시킨다. 이때 질소존재하에 가열환류시키면서 액상의 알칼리금속 혼합물 80g(Na : K=40 : 60)을 4시간에 걸쳐 조금씩 첨가한다. 알칼리금속 혼합물을 모두 다 첨가한 다음 본 발명에 따라 제조된 촉매를 6g 가한 후 한시간 더 가열환류시키고 나서 육안으로 미반응의 알칼리금속의 존재 유무를 확인하고 감압하에 용매를 증류제거한다. 이때 얻은 용매는 무수용매로 다음 반응에 사용한다. 용매를 감압증류로 분리한 후 이 반응물에 물을 첨가하고 나서 다시 감압하에 잔존하는 용매를 증류분리하고 진한 염산용액으로 PH를 1∼2로 하면 백색 결정형태의 우르소데옥시콜산과 케노데옥시콜산이 94 : 6의 비율로 얻어졌다(수율 98%).Mixed solvent 2 in which tertiary butyl alcohol and tertiary amyl alcohol were mixed at a ratio of 6: 4. 254.7 mmol of 3α-hydroxy-7-oxo-5β-cholanic acid was added to the mixture, and the mixture was stirred while being heated to reflux, and passed through nitrogen. At this time, while heating and refluxing in the presence of nitrogen, 80 g of a liquid alkali metal mixture (Na: K = 40: 60) is added little by little over 4 hours. After all the alkali metal mixtures were added, 6 g of the catalyst prepared according to the present invention was added, and the mixture was heated to reflux for another hour, and then visually checked for the presence of unreacted alkali metal, and the solvent was distilled off under reduced pressure. The solvent obtained at this time is anhydrous solvent and used for the next reaction. The solvent was separated by distillation under reduced pressure, water was added to the reaction, and the remaining solvent was distilled off under reduced pressure, and the pH was adjusted to 1-2 with concentrated hydrochloric acid solution. Acid was obtained at the ratio of 94: 6 (yield 98%).

실시예 4Example 4

제3부틸알콜과 제3아밀알콜을 4 : 6의 비율로 혼합한 혼합용매 2에 3α-히드록시-7-옥소-5β-콜란산 254.7mmol을 첨가하고 가열환류시키면서 잘 저어주고 질소를 통과시킨다. 이때 질소존재하에 가열환류시키면서 액상의 알칼리금속 혼합물 80g(Na : K=60 : 40)을 4시간에 걸쳐 조금씩 첨가한다. 알칼리금속 혼합물을 모두 다 첨가한 다음 본 발명에 따라 제조된 촉매를 6g 가한 후 한시간 더 가열환류시키고 나서 육안으로 미반응의 알칼리금속의 존재 유무를 확인하고 감압하에 용매를 증류제거한다. 이때 얻은 용매는 무수용매로 다음 반응에 사용한다. 용매를 감압증류로 분리한 후 이 반응물에 물을 첨가하고 나서 다시 감압하에 잔존하는 용매를 증류분리하고 진한 염산용액으로 PH를 1∼2로 하면 백색 결정형태의 우르소데옥시콜산과 케노데옥시콜산이 94 : 6의 비율로 얻어졌다(수율 98%).Mixed solvent 2 in which tertiary butyl alcohol and tertiary amyl alcohol were mixed at a ratio of 4: 6. To this, add 254.7 mmol of 3α-hydroxy-7-oxo-5β-cholanic acid, stir well while heating under reflux, and let nitrogen flow through. At this time, while heating and refluxing in the presence of nitrogen, 80 g (Na: K = 60: 40) of the liquid alkali metal mixture is added little by little over 4 hours. After all the alkali metal mixtures were added, 6 g of the catalyst prepared according to the present invention was added, and the mixture was heated to reflux for another hour, and then visually checked for the presence of unreacted alkali metal, and the solvent was distilled off under reduced pressure. The solvent obtained at this time is anhydrous solvent and used for the next reaction. The solvent was separated by distillation under reduced pressure, water was added to the reaction, and the remaining solvent was distilled off under reduced pressure, and the pH was adjusted to 1-2 with concentrated hydrochloric acid solution. Acid was obtained at the ratio of 94: 6 (yield 98%).

실시예 5Example 5

제3아밀알콜 2에 3α-히드록시-7-옥소-5β-콜란산 254.7mmol을 첨가하고 가열환류시키면서 잘 저어주고 질소를 통과시킨다. 이때 질소존재하에 가열환류시키면서 액상의 알칼리금속 혼합물 60g(Na : K=22 : 78)을 5시간에 걸쳐 조금씩 첨가한다. 알칼리금속 혼합물을 모두 다 첨가한 다음 본 발명에 따라 제조된 촉매를 6g 가한 후 한시간 더 가열환류시키고 나서 육안으로 미반응의 알칼리금속의 존재 유무를 확인하고 감압하에 용매를 증류제거한다. 이때 얻은 용매는 무수용매로 다음 반응에 사용한다. 용매를 감압증류로 분리한 후 이 반응물에 물을 첨가하고 나서 다시 감압하에 잔존하는 용매를 증류분리하고 진한 염산용액으로 PH를 1∼2로 하면 백색 결정형태의 우르소데옥시콜산과 케노데옥시콜산이 95 : 5의 비율로 얻어졌다(수율 98.5%).Tertiary Amyl Alcohol 2 To this, add 254.7 mmol of 3α-hydroxy-7-oxo-5β-cholanic acid, stir well while heating under reflux, and let nitrogen flow through. At this time, while heating and refluxing in the presence of nitrogen, 60 g of a liquid alkali metal mixture (Na: K = 22: 78) is added little by little over 5 hours. After all the alkali metal mixtures were added, 6 g of the catalyst prepared according to the present invention was added, and the mixture was heated to reflux for another hour, and then visually checked for the presence of unreacted alkali metal, and the solvent was distilled off under reduced pressure. The solvent obtained at this time is anhydrous solvent and used for the next reaction. The solvent was separated by distillation under reduced pressure, water was added to the reaction, and the remaining solvent was distilled off under reduced pressure, and the pH was adjusted to 1-2 with concentrated hydrochloric acid solution. Acid was obtained in 95: 5 ratio (yield 98.5%).

실시예 6Example 6

염화나켈-헥사하이드레이트(아세테이트) 50g을 온수 300ml에 용해시킨 후 미세분말의 안트라사이트 500g에 첨가하고 한시간동안 가열환류시킨 후 이 반응액에 나트륨몰리브데이트, 디하이드레이트 15g을 물 300ml에 용해한 것을 첨가하여 90℃에서 1시간 더 가온한다. 실온에서 2일동안 방치한 뒤 900℃로 가열하여 냉각한뒤 사용한다.After dissolving 50 g of sodium chloride-hexahydrate (acetate) in 300 ml of warm water, it was added to 500 g of anthracite in fine powder, heated and refluxed for 1 hour, and then dissolved in 300 ml of sodium molybdate and dihydrate in 300 ml of water. Warm at 90 ° C. for 1 hour. After standing at room temperature for 2 days, it is heated to 900 ℃ and cooled.

이상에서 설명한 바와 같이 액체알칼리금속 혼합물과 제3부틸알콜 및 제3아밀알콜의 혼합용액을 사용하므로써 제3부틸알콜을 사용할때의 단점인 높은 어는 점과 알칼리금속과의 느린 반응속도 문제와 제3아밀알콜을 사용할 때의 단점인 고가 및 알칼리금속과의 반응성 문제를 해결하여 고순도의 우르소데옥시콜산을 고수율로 제조할 수 있었을 뿐만 아니라 알칼리금속을 단독으로 사용하였을 때 발생하는 전술한 문제점들을 해결할 수 있었다.As described above, the high freezing point and the slow reaction rate of alkali metal and the third disadvantage of using tert-butyl alcohol by using the liquid alkali metal mixture, tert-butyl alcohol and tert-amyl alcohol mixed solution Solving the problems of high cost and reactivity with alkali metals, which are disadvantages of using amyl alcohol, could not only produce high-purity ursodeoxycholic acid in high yield, but also solve the problems mentioned above when using alkali metals alone. Could.

또한 본 발명에 따른 촉매를 사용하므로써 반응시간을 단축시킬 수 있었고 용매를 무수용매로 회수하여 다음 반응에 재사용할 수 있는 장점이 있었다.In addition, by using the catalyst according to the invention it was possible to shorten the reaction time and there was an advantage that can be reused in the next reaction to recover the solvent as an anhydrous solvent.

Claims (7)

케노데옥시콜산을 산화시켜 얻은 3α-히드록시-7-옥소-5β-콜린산의 7-옥소기를 Li, Na, K, Rb, Cs의 알칼리금속을 최소한 2 이상 혼합한 액상의 알칼리금속공융 혼합물과 제3부틸알콜 및 제3아밀알콜로 된 혼합용매와 반응시켜 얻은 수소로 환원시키는 것을 특징으로 하는 우르소데옥시콜산의 제조방법.Liquid alkali metal eutectic mixture of 7-oxo groups of 3α-hydroxy-7-oxo-5β-choline acid obtained by oxidizing kenodeoxycholic acid with at least two of alkali metals of Li, Na, K, Rb, and Cs And hydrogen reduced by reacting with a mixed solvent of tert-butyl alcohol and tertiary amyl alcohol. 제1항에 있어서, 칼륨을 40∼90% 포함하여 상온에서 액체인 알칼리금속공융 혼합물을 사용하는 것을 특징으로 하는 우르소데옥시콜산의 제조방법.The method for producing ursodeoxycholic acid according to claim 1, wherein an alkali metal eutectic mixture containing 40 to 90% of potassium is a liquid at room temperature. 제1항에 있어서, 제3부틸알콜을 최고 80% 사용하는 것을 특징으로 하는 우르소데옥시콜산의 제조방법.The method for producing ursodeoxycholic acid according to claim 1, wherein up to 80% of third butyl alcohol is used. 제1항에 있어서, 반응온도에 따라 제3부틸알콜이나 제3아밀알콜을 단독으로 사용하는 것을 특징으로하는 우르소데옥시콜산의 제조방법.The method for producing ursodeoxycholic acid according to claim 1, wherein the third butyl alcohol or the third amyl alcohol is used alone according to the reaction temperature. 제1항에 있어서, 제3부틸알콜과 제3아밀알콜의 혼합용매를 바깥온도에 따라 다르게 배합하여 사용하는 것을 특징으로 하는 우르소데옥시콜산의 제조방법.The method for producing ursodeoxycholic acid according to claim 1, wherein a mixed solvent of the third butyl alcohol and the third amyl alcohol is used in combination according to the outside temperature. 제1항에 있어서, 촉매로 탄소나 니켈 또는 몰리브데늄의 산화물을 단독 혹은 복합적으로 다공질의 안트라사이트에 함침시켜 사용하는 것을 특징으로 하는 우르소데옥시콜산의 제조방법.The method for producing ursodeoxycholic acid according to claim 1, wherein an oxide of carbon, nickel or molybdenum is impregnated with porous anthracite, alone or in combination, as a catalyst. 제6항에 있어서, 상기 촉매를 알칼리금속 혼합물 대비 최고 10% 사용하는 것을 특징으로 하는 우르소데옥시콜산의 제조방법.7. The process for producing ursodeoxycholic acid according to claim 6, wherein the catalyst is used up to 10% of the alkali metal mixture.
KR1019940013913A 1994-06-20 1994-06-20 Process for production of ursodeoxy cholic acid KR0130732B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940013913A KR0130732B1 (en) 1994-06-20 1994-06-20 Process for production of ursodeoxy cholic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940013913A KR0130732B1 (en) 1994-06-20 1994-06-20 Process for production of ursodeoxy cholic acid

Publications (2)

Publication Number Publication Date
KR960000918A KR960000918A (en) 1996-01-25
KR0130732B1 true KR0130732B1 (en) 1998-04-03

Family

ID=19385638

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940013913A KR0130732B1 (en) 1994-06-20 1994-06-20 Process for production of ursodeoxy cholic acid

Country Status (1)

Country Link
KR (1) KR0130732B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140079A (en) 1997-07-15 1999-02-12 Nec Kansai Ltd Color cathode-ray tube and mis-convergence correcting method
KR100419481B1 (en) * 2001-08-13 2004-02-19 엘지.필립스디스플레이(주) Correction apparatus of deflection yoke convergence in the cathode-ray tube
KR100802013B1 (en) * 2006-08-10 2008-02-12 (주)유케이케미팜 Process for preparing pegylated ursodeoxy cholic acid derivatives

Also Published As

Publication number Publication date
KR960000918A (en) 1996-01-25

Similar Documents

Publication Publication Date Title
Pachter et al. The Wohl-Aue Reaction. I. Structure of Benzo [a] Phenazine Oxides and Syntheses of 1, 6-Dimethoxyphenazine and 1, 6-Dichlorophenazine1
CN110776545A (en) Preparation method of progesterone
CN110003298A (en) A kind of synthetic method of Promestriene
CN114920691B (en) Preparation method of N- (2-hydroxyethyl) nicotinamide and preparation method of nicorandil
KR0130732B1 (en) Process for production of ursodeoxy cholic acid
CA2002692A1 (en) 14.alpha., 17.alpha.-ethanoestratrienes
Djerassi et al. Optical Rotatory Dispersion Studies. LVI. 1 Thiones2
US3766224A (en) 15-methyl-substituted steroids
Kozyrod et al. Arylation with Aryllead Triacetates Produced in situ by Mercury-Lead Exchange
Birch et al. 626. Hydroaromatic steroid hormones. Part X. Conversion of Oestrone into androst-4-ene-3, 17-dione
CN110669089B (en) Synthesis method of 6-ketoestradiol
US3318917A (en) 17alpha-(4-alkoxy-3-buten-1-ynyl)estra-1, 3, 5(10)-triene-3, 17beta-diols and derivatives thereof
O'Grodnick et al. Trans dehydration of alcohols with methyl (carboxysulfamoyl) triethylammonium hydroxide inner salt
Wolff et al. The Synthesis of C-18 Functionalized Hormone Analogs. III. Synthesis of Aldosterone1a
Barton et al. Steroidal alkaloids. Part III. The constitution and stereochemistry of cevine
Windholz et al. Synthesis of 19-norsteroids iii. synthesis and birch reduction of d, 1-13-phenyl-18-norestradiol-3-methyl ether
CN117946194A (en) Preparation method of progesterone
US4163744A (en) Synthesis of steroids
CN113896632B (en) Preparation method of 3, 3-dialkoxy propionate
IL23453A (en) Process for the preparation of 17alpha-ethynyl-19-nor steroids
Neef et al. Influence of bulky 11β-substituents on reactivity of estrene derivatives
JPH06511485A (en) Methylating agent or ethylating agent and 1,4-addition method of methyl group or ethyl group to α,β-unsaturated keto compound
US3458541A (en) 13 - alkyl - 17 - (bis(2-hydroxyethyl)amino)-gon-4-en-3-ones,dinitrates
PL79455B1 (en) Process for the acidolysis of nitric acid esters of steroid-21-alcohols[ca969927a]
CN113845555A (en) Progesterone production method

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121120

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20131220

Year of fee payment: 17

EXPY Expiration of term