KR0128543B1 - Method for preparing co removal catalysts - Google Patents

Method for preparing co removal catalysts

Info

Publication number
KR0128543B1
KR0128543B1 KR1019940016245A KR19940016245A KR0128543B1 KR 0128543 B1 KR0128543 B1 KR 0128543B1 KR 1019940016245 A KR1019940016245 A KR 1019940016245A KR 19940016245 A KR19940016245 A KR 19940016245A KR 0128543 B1 KR0128543 B1 KR 0128543B1
Authority
KR
South Korea
Prior art keywords
catalyst
carbon monoxide
molecular sieve
porous carrier
copper
Prior art date
Application number
KR1019940016245A
Other languages
Korean (ko)
Other versions
KR960003804A (en
Inventor
이철위
박석준
정필조
Original Assignee
강박광
재단법인한국화학연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강박광, 재단법인한국화학연구소 filed Critical 강박광
Priority to KR1019940016245A priority Critical patent/KR0128543B1/en
Publication of KR960003804A publication Critical patent/KR960003804A/en
Application granted granted Critical
Publication of KR0128543B1 publication Critical patent/KR0128543B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/864Removing carbon monoxide or hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

The preparation method of the catalyst for removing carbon monooxide by carrying the metallic salt containing palladium ion and copper ion into porous carrier in 20~60deg.C is disclosed. Thereby, it is possible to simply and economically remove carbon monooxide in absence of special apparatus.

Description

일산화탄소 제거용 촉매의 제조방법Method for producing a catalyst for removing carbon monoxide

제 1도는 촉매의 활성도 측정장치이고,1 is an activity measuring device of the catalyst,

제 2도는 본 발명의 실시예 1에 의해 제조된 촉매의 활성도(일산화탄소 전환율)를 온도의 함수로 나타낸 그래프이고,2 is a graph showing the activity (carbon monoxide conversion) of the catalyst prepared by Example 1 of the present invention as a function of temperature,

제 3도는 25℃에서 본 발명의 실시예 2에 의해 제조된 촉매의 활성도 (일산화탄소 전환율)를 시간의 함수로 나타낸 그래프이다.3 is a graph showing the activity (carbon monoxide conversion) of the catalyst prepared by Example 2 of the present invention at 25 ° C. as a function of time.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 반응가스용기2 : 압력조절기1: reaction gas container 2: pressure regulator

3 : 유량계4 : 쓰리웨이 밸브3: flow meter 4: three-way valve

5 : 물재킷6 : 반응기5: water jacket 6: reactor

7 : 열전대쌍8 : 전기저항로7: thermocouple pair 8: electric resistance

9 : 소결유리제 다공질 필터10 : 6-포트고리 밸브9 porous filter made of sintered glass 10 6-port ring valve

11 : 가스크로마토그래피12 : 운반(carrier)가스11 gas chromatography 12 carrier gas

13 : 배기구13: exhaust port

본 발명은 일산화탄소 제거용 촉매의 제조방법에 관한 것으로서, 더욱 상세하게는 필라듐이온(Pd2+)과 구리이온(Cu2+)을 함유한 금속염을 다공성 담체에 담지시켜 20~60℃의 저온에서 일산화탄소를 제거할 수 있는 촉매의 제조방법에 관한 것이다.The present invention relates to a method for producing a catalyst for removing carbon monoxide, and more particularly, a metal salt containing piladium ions (Pd 2+ ) and copper ions (Cu 2+ ) supported on a porous carrier at a low temperature of 20 to 60 ° C. It relates to a method for producing a catalyst that can remove carbon monoxide from.

종래의 일산화탄소 제거용 촉매는 보통 150℃의 높은 온도에서 그 효능을 갖게 되며 [E.E. Miro, E.A. Lombardo, J.O. Petunchi, Rev. Lantinoam. Ing. guim. guim. apl. 1987, 17, 101], 최근 개발된 저온에서의 일산화탄소 제거용 촉매는 금 또는 백금 등의 귀금속을 여러종류의 금속산화물에 담지시켜 제조하고 있으나, 이 제조방법에서는 금 또는 백금 등의 고가의 귀금속을 원료물질로 사용하고 있어 생산비가 많이 소요되고, 또한 촉매제조시 금이나 백금 등과 같은 활성금속이온을 담체에 골고루 분산시키기 위해서는 고도의 기술을 필요로 한다[M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet, B. Delmon, J. Catal. 1993, 144 175].Conventional carbon monoxide removal catalysts usually have their efficacy at high temperatures of 150 ° C. [E.E. Miro, E. A. Lombardo, J. O. Petunchi, Rev. Lantinoam. Ing. guim. guim. apl. 1987, 17, 101], the recently developed catalyst for removing carbon monoxide at low temperatures is prepared by supporting precious metals such as gold or platinum on various metal oxides, but in this manufacturing method, expensive precious metals such as gold or platinum are manufactured. Since it is used as a raw material, it requires a lot of production cost, and also requires high technology to evenly distribute active metal ions such as gold or platinum to the carrier when producing catalyst [M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet, B. Delmon, J. Catal. 1993, 144 175.

그밖의 저온에서의 일산화탄소 제거용 촉매로서 산화주석, 산화망간, 산화구리 등의 혼합물로 이루어진 흡켈라이트(Hopcalite)는 비교적 경제적이고 일산화탄소를 제거하는 효능은 좋으나, 10% 이상의 수분 존재하에서는 그 효능이 격감하는 결점이 있다[M.I. Brittan, H. Bilss, C.A. Walker, AIChE J. 1970, 16, 305].As a catalyst for removing carbon monoxide at low temperatures, Hopcalite, which is composed of a mixture of tin oxide, manganese oxide, and copper oxide, is relatively economical and has a good effect of removing carbon monoxide, but the effect is greatly reduced in the presence of 10% or more moisture. Has a flaw [MI Brittan, H. Bilss, C. A. Walker, AIChE J. 1970, 16, 305].

이에 본 발명자들은 생산비가 저렴하고 수분이 있어도 그 효능이 오래 지속되며 쉽게 활성금속이온들을 담체에 골고루 분산시킬 뿐만 아니라 낮은 온도에서도 일산화탄소를 제거할 수 있는 새로운 촉매를 개발하기 위하여 연구 노력한 결과, 다공성 담체에 Pd2+와 Cu2+를 함유한 활성금속염을 투입하므로써 본 발명을 완성하였다.Accordingly, the present inventors have researched to develop a new catalyst capable of removing carbon monoxide even at low temperatures as well as dispersing active metal ions easily and easily dispersing active metal ions in the carrier even though the production cost is low and moisture is high. The present invention was completed by introducing an active metal salt containing Pd 2+ and Cu 2+ into the.

본 발명은 상기 특징을 갖는 새로운 촉매의 제조방법을 제공하는데 그 목적이 있다.It is an object of the present invention to provide a method for preparing a new catalyst having the above characteristics.

이하, 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

본 발명은 다공성 담체에 필라듐이온(Pd2+)염과 구리이온(Cu2+)염을 담지시키는 것을 특징으로 하는 일산화탄소 제거용 촉매의 제조방법에 관한 것이다.The present invention relates to a method for producing a catalyst for removing carbon monoxide, characterized in that the support of the palladium ion (Pd 2 + ) salt and copper ion (Cu 2 + ) salt on a porous carrier.

이와같은 본 발명을 더욱 상세히 설명하면 다음과 같다.Referring to the present invention in more detail as follows.

본 발명은 유독성 기체인 일산화탄소를 저온에서 쉽게 제거할 수 있는 신규촉매의 제조방법에 관한 것으로서, 일정량의 금속염을 물에 녹인다음 여기에 다공성 담체에 혼합하고 60~70℃의 온도에서 수분이 없어질 때까지 교반하여 고체생성물을 얻거나, 또는 60~70℃ 온도에서 교반하여 수분의 양이 어느정도 줄어들면 감압여과하여 본 발명의 촉매를 고체생성물로 얻는다.The present invention relates to a method for preparing a new catalyst which can easily remove toxic carbon monoxide at low temperature, and dissolves a certain amount of metal salt in water, and then mixes it with a porous carrier and removes water at a temperature of 60 to 70 ° C. Stir until until a solid product is obtained, or if the amount of water is reduced to some extent by stirring at a temperature of 60 ~ 70 ℃ by filtration under reduced pressure to obtain the catalyst of the present invention as a solid product.

본 발명에서 사용될 수 있는 다공성 담체는 평균입경이 20~120메쉬인 것을 사용하며 그 예로는 제올라이트계 다공성 분자체, 활성탄 및 알루미나 중에서 선택된 단독 또는 둘이상의 혼합물이고, 제올라이트계 다공성 분자체로는 천연 제올라이트, ZSM-5, 분자체 13X 및 분자체 5A를 사용한다.Porous carriers that can be used in the present invention are those having an average particle diameter of 20 to 120 mesh, and examples thereof are a zeolite-based porous molecular sieve, activated carbon and alumina alone or a mixture of two or more thereof. ZSM-5, molecular sieve 13X and molecular sieve 5A are used.

이때 제올라이트계 다공성 분자체의 공극율은 10Å이하이고, 활성탄의 공극율은 평균적으로 100Å이다.At this time, the porosity of the zeolite-based porous molecular sieve is 10 kPa or less, and the porosity of activated carbon is 100 kPa on average.

본 발명의 일산화탄소 제거용 촉매제조를 위해서는 상기와 같은 다공성 담체에 Pd2+와 Cu2+의 수용성염을 투입하는 바, 이때 팔라듐염으로는 염화팔라듐(PdCl2)을 사용하고, 구리염으로는 염화제이구리(CuCl2)와 질산구리[(Cu(NO3)2]의 혼합물을 사용한다.In order to prepare the catalyst for removing carbon monoxide of the present invention, water-soluble salts of Pd 2+ and Cu 2+ are added to the porous carrier as described above. At this time, palladium chloride (PdCl 2 ) is used as the palladium salt, and as the copper salt, A mixture of copper chloride (CuCl 2 ) and copper nitrate [(Cu (NO 3 ) 2 ] is used.

그 사용량에 있어서, 필라듐염은 다공성담체 100g에 대하여 2~18×10-3몰을 사용하는데 팔라듐염의 사용량이 2×10-3몰 미만이면 제조된 촉매는 낮은 활성도를 보여주고, 18×10-3몰을 초과하면 활성도는 좋으나 비경제적이다.In terms of the amount used, 2 to 18 x 10 -3 mol of the palladium salt is used for 100 g of the porous carrier. When the amount of the palladium salt is less than 2 x 10 -3 mol, the prepared catalyst shows low activity. If it exceeds -3 moles, the activity is good but uneconomical.

구리염 혼합물은 다공성담체 100g에 대하여 4~89×10-3몰 사용하며, 그 사용량이 상기 범위를 벗어나면 활성도가 낮아지는 문제가 있다. 또한 구리염 혼합물에 있어서 질산구리는 조촉매의 역할을 하므로써 촉매 활성 향상과 촉매 수명연장을 할 수 있게 하는 작용을 하는 바, 구리염 혼합물중에 어느 하나가 전체 구리중 적어도 30~45몰%를 차지할 때 일산화탄소 제거율이 가장 좋다.The copper salt mixture is used in 4 ~ 89 × 10 -3 moles per 100 g of porous carrier, there is a problem that the activity is lowered if the amount is out of the above range. In addition, copper nitrate in the copper salt mixture acts as a promoter to enhance catalyst activity and extend catalyst life. Any one of the copper salt mixtures may comprise at least 30 to 45 mol% of the total copper. When the carbon monoxide removal rate is the best.

상기한 바와 같이 본 발명은 별도의 가열장치 없이 저온에서도 간편하고 경제적으로 유독한 일산화탄소를 제거할 수 있는 촉매의 제조방법으로서 그 유용도가 매우 크다.As described above, the present invention is very useful as a method for preparing a catalyst which can remove toxic carbon monoxide easily and economically even at low temperature without a separate heating device.

이하, 본 발명에 따른 일산화탄소 제거용 촉매의 제조방법을 실시예에 의거하여 상세히 설명하겠는 바, 본 발명이 실시예에 의해 한정되는 것은 아니다.Hereinafter, a method for preparing a carbon monoxide removing catalyst according to the present invention will be described in detail with reference to Examples, but the present invention is not limited by Examples.

[실시예 1~2][Examples 1 and 2]

증류수 50ml에 다음 표 1에 활성금속염을 차례로 투입하고 투명한 용액이 되면, 여기에 다음 표 1과 같은 조성의 담체 100g을 투입한다.In 50 ml of distilled water, the active metal salts are sequentially added to the following Table 1, and when a clear solution is obtained, 100 g of a carrier having the composition shown in Table 1 is added thereto.

65℃의 물중탕하에서 잔여 수분이 모두 증발할 때까지 교반하고 얻어진 생성물은 70℃에서 3시간동안 건조시키므로써 촉매를 제조하였다.The catalyst was prepared by stirring until all the remaining moisture was evaporated in a water bath at 65 ° C. and the obtained product was dried at 70 ° C. for 3 hours.

[실시예 3~6]EXAMPLES 3-6

상기 실시예 1과 동일한 방법에 의해 다음 표 1의 조성비로 촉매를 제조하되, 65℃의 물중탕에서 7시간동안 교반하다가 감압 플라스크를 이용하여 여과시키므로써 촉매를 제조하였다.The catalyst was prepared by the same method as in Example 1, the composition of the following Table 1, but stirred for 7 hours in a water bath at 65 ℃ water and filtered using a vacuum flask.

[실시예 7~10]EXAMPLES 7-10

증류수 300ml에 다음 표 1의 활성금속염을 차례로 녹여 투명한 용액을 만든다음 담체 100g에 상기 투명한 용액을 방울방울 넣어주면서 세게 저어준다.In 300 ml of distilled water, the active metal salts of Table 1 are sequentially dissolved to make a transparent solution. Then, the solution is stirred hard while dropping the transparent solution into 100 g of the carrier.

이때 사용한 물의 양은 담체를 적셔줄 최소의 양이다. 생성물은 70℃에서 3시간동안 건조시키므로써 촉매를 제조하였다.The amount of water used is the minimum amount to wet the carrier. The product was prepared by drying at 70 ° C. for 3 hours.

[비교예 1~2][Comparative Examples 1 and 2]

상기 실시예 1과 동일한 방법에 의해 다음 표 1의 조성비로 촉매를 제조하였다.In the same manner as in Example 1, a catalyst was prepared in the following composition ratio.

[비교예 3]Comparative Example 3

상기 실시예 3과 동일한 방법에 의해 다음 표 1의 조성비로 촉매를 제조하였다.In the same manner as in Example 3, a catalyst was prepared in the following composition ratio.

[비교예 4][Comparative Example 4]

상기 실시예 7과 동일한 방법에 의해 다음 표 1의 조성비로 촉매를 제조하였다.A catalyst was prepared in the composition ratio of Table 1 by the same method as in Example 7.

이때 사용한 증류수의 양은 150ml이다.The amount of distilled water used at this time is 150ml.

[표 1]TABLE 1

활성탄 : 일본 준세이(Junsei)사 제품, 표면적 1000㎡/gActivated carbon: Japan Junsei Co., Ltd., surface area 1000㎡ / g

ZSM-5 : 미국 피큐(PQ)사 제품, 표면적 430㎡/g, SiO2/Al2O3=30~50몰 비ZSM-5: Product by PQ Co., Ltd., surface area 430㎡ / g, SiO 2 / Al 2 O 3 = 30 ~ 50 molar ratio

알루미나 : 벨기에 얀센(Janssen)사 제품, 표면적 150㎡/gAlumina: Product made by Janssen of Belgium, surface area 150㎡ / g

분자체-5A : 미국 알드리치(Aldrich)사 제품, 표면적 750㎡/gMolecular sieve-5A: Aldrich, USA, surface area 750㎡ / g

분자체-13A : 미국 알드리치(Aldrich)사 제품, 표면적 850㎡/gMolecular sieve-13A: Made by Aldrich, USA, surface area 850㎡ / g

상기와 같은 본 발명의 제조방법에 따른 다공성 담체에 담지된 활성 금속 이온들은 산화/환원반응을 일으키면서 일산화탄소를 제거하게 되는 바, 기본적인 작동원리는 다음의 화학식으로 나타낼 수 있다.As the active metal ions supported on the porous carrier according to the method of the present invention as described above remove carbon monoxide while causing an oxidation / reduction reaction, the basic operation principle may be represented by the following formula.

CO+Pd2+H2O→CO2+Pd+2H+(가)CO + Pd 2 + H 2 O → CO 2 + Pd + 2H + (A)

Pd+2Cu2+→Pd2++2Cu+(나)Pd + 2Cu 2+ → Pd 2+ + 2Cu + (I)

2Cu++2H++1/202→2Cu2++H2O(다)2Cu + + 2H + +1/20 2 → 2Cu 2+ + H 2 O

CO+1/202→CO2(라)CO + 1/20 2 → CO 2 (D)

상기 화학식(가)에 의하면, Pd2+는 일산화탄소에 의해 팔라듐 금속(Pd)으로 환원되는 동시에 일산화탄소는 이산화탄소로 산화된다. 그리고 화학식(나)에 의하면, Pd는 Cu2+에 의해 산화되어 Pd2+로 부활되고, Cu2+는 Cu+로 환원된다. 또한 화학식(다)에 의해 Cu+는 수소이온과 산소기체에 의해 산화되어 Cu2+가 부활된다.According to the formula (A), Pd 2+ is reduced to palladium metal (Pd) by carbon monoxide and at the same time carbon monoxide is oxidized to carbon dioxide. In addition, according to the formula (b), Pd is oxidized by Cu 2+ to be restored to Pd 2+ , and Cu 2+ is reduced to Cu + . In addition, according to the formula (C), Cu + is oxidized by hydrogen ions and oxygen gas to restore Cu 2+ .

상기 화학식(라)는 화학식(가)~(다)를 통하여 일어나는 일산화탄소 제거에 대한 총괄적인 반응식으로서, 결국 유독한 일산화탄소를 산화시켜 무해(無害)한 이산화탄소로 전환시키는데 기여하는 Pd2+와 Cu2+는 산화/환원반응에 의해 각각 재생되어 재활용되므로 적당량의 Pd2+와 Cu2+의 사용에 의해 일산화탄소를 계속적으로 제거할 수 있다.Formula (D) is a general reaction to carbon monoxide removal occurring through Formulas (A) to (C), which eventually contributes to the conversion of toxic carbon monoxide into harmless carbon dioxide and Pd 2+ and Cu 2. Since + is regenerated and recycled by oxidation / reduction reactions, carbon monoxide can be continuously removed by using an appropriate amount of Pd 2+ and Cu 2+ .

또한, 상기 화학식에서는 본 발명에서 실제로 담체에 도입된 Cu2+가 서로 다른 두종류의 염인데도 불구하고 이들 각각 두종류 Cu2+의 역할을 분리하여 표현하지 않았으나, 실제 이들은 서로 보완작용을 하는 것으로 그중 하나는 증진제(promoter) 역할을 한다.In addition, in the above chemical formula, although Cu 2+ actually introduced to the carrier in the present invention, although two different salts are different from each other, the two roles of Cu 2+ are not separately expressed, but in fact, they are complementary to each other. One of them acts as a promoter.

상기와 같은 제조방법에 의해 제조된 촉매의 활성도를 측정하기 위해 고체 생성물은 30~40℃ 수증기압하의 밀폐된 용기속에서 하루동안 방치시킨 다음 도면 제 1도에 나타낸 촉매활성도 측정장치에 의해 측정하였다. 촉매활성도 측정치는 기체공급장치, 반응기 및 반응생성물 정량분석장치 등 크게 세부분이 유기적으로 연결되어 있다.In order to measure the activity of the catalyst prepared by the preparation method as described above, the solid product was allowed to stand for one day in an airtight container under 30 to 40 ° C. water vapor pressure, and then measured by the catalytic activity measuring device shown in FIG. 1. Catalytic activity measurements are largely organically linked, including gas feeders, reactors and quantitative analysis of reaction products.

제 1도에 있어서, 반응가스용기(1)로부터 각각 공급된 질소, 산소 및 일산화탄소는 쓰리웨이 밸브(threeway valve)(4)를 통하여 직접 반응기(6)로 유입되거나, 또는 물재킷(water jacket)(5)을 통과한 다음 반응기(6)로 유입되도록 구성되어 있다. 즉, 건조한 혼합기체가 직접 반응기(6)속으로 유입되거나, 또는 혼합기체가 물속을 통과하고 실온에서 포화된 수증기와 함께 반응기(6) 속으로 유입된다. 이때 반응기(6)에 유입되는 각각의 기체양과 속도는 압력조절기(2)와 부상구 유량계(flaoting ball flowmeter)(3)로 조절한다.In FIG. 1, nitrogen, oxygen and carbon monoxide supplied from the reaction gas container 1 are respectively introduced into the reactor 6 directly through a three-way valve 4, or a water jacket. It is configured to pass through (5) and then enter the reactor (6). That is, a dry mixed gas flows directly into the reactor 6, or the mixed gas flows into the water and into the reactor 6 with water vapor saturated at room temperature. At this time, the amount and velocity of each gas flowing into the reactor 6 is controlled by a pressure regulator 2 and a floating ball flowmeter 3.

반응기(6)는 파이렉스 유리재질로써, 길이 80㎝ 외경 1.6㎝ 크기로 제작하였으며, 반응기(6)의 온도조절을 위하여 외곽에는 전기저항로(8)를 부착하였다. 또한, 반응기(6)의 한가운데에는 분말상태의 촉매입자들이 반응기(6) 아래로 떨어지지 못하도록 소결유리제 다공질 필터(9)로 막아 놓았다.The reactor 6 was made of Pyrex glass material, 80 cm in length and 1.6 cm in diameter, and an electric resistance furnace 8 was attached to the outside for temperature control of the reactor 6. In the middle of the reactor 6, the catalyst particles in the form of powder were blocked with a porous filter 9 made of sintered glass so as not to fall below the reactor 6.

그리고 실제 반응온도를 측정하기 위하여 열전대쌍(7)의 끝부분을 시료의 한가운데 위치하도록 하였다.And in order to measure the actual reaction temperature, the end of the thermocouple pair (7) was placed in the middle of the sample.

반응기(6) 내부로 유입된 혼합기체 즉, 질소, 산소, 일산화탄소 및 수증기는 촉매층을 통과하면서 다공성 담체에 담지된 활성금속이온들에 의하여 흡착 또는 산화/환원반응을 한 다음, 6-포트고리밸브(10)를 통과하여 열전도검출기(TCD, Thermal conductivity detector)가 부착된 가스크로마토그래피(11)에 주입됨으로써 기체의 조성은 정량분석된다. 정량분석시 운반가스(Carrier gas)(12)로는 헬륨을 사용하며, 분석 후 혼합기체는 배기구(13)를 통하여 대기중으로 방출되도록 하였다.The mixed gas introduced into the reactor 6, such as nitrogen, oxygen, carbon monoxide and water vapor, is adsorbed or oxidized / reduced by the active metal ions supported on the porous carrier while passing through the catalyst bed, and then the 6-port ring valve. The composition of the gas is quantitatively analyzed by passing through (10) and injecting it into the gas chromatography (11) to which a thermal conductivity detector (TCD) is attached. In the quantitative analysis, helium was used as a carrier gas 12, and after the analysis, the mixed gas was discharged into the atmosphere through the exhaust port 13.

[실험예]Experimental Example

상기 실시예 1~9 및 비교예 1~4에서 제조한 고체생성물은 30~40℃의 수증기압하의 밀폐된 용기속에서 하루동안 방치시킨 다음 도면 제 1도의 촉매활성도 측정장치를 이용하여 촉매의 활성도를 측정하였다. 촉매활성도 측정을 위해 사용한 촉매의 양은 0.5g이고, 반응가스용기(1)로부터 공급한 원료기체조성은 질소 76%, 일산화탄소 4% 및 산소 20%이며, 이들 혼합기체를 통과시킨 물의 온도는 약 20℃이고 유속은 40cc/분이다. 또한 가스크로마토그래피(11) 컬럼의 충진물질은 분자체 13X(일본, 히다찌사 제품)이며, 컬럼의 재질은 스테인레스스틸이고 그 규격은 6피트×18인치이다. 정량분석시 컬럼의 온도는 실온(20℃)이었으며, 가스크로마토그래피(11)에 부착된 열전도도 검출기의 온도는 110℃였다.The solid products prepared in Examples 1 to 9 and Comparative Examples 1 to 4 were allowed to stand for one day in a closed vessel under a water vapor pressure of 30 to 40 ° C., and then the activity of the catalyst was measured using the catalytic activity measuring device of FIG. Measured. The amount of catalyst used for the catalytic activity measurement was 0.5 g, the raw material gas composition supplied from the reaction gas container 1 was 76% nitrogen, 4% carbon monoxide and 20% oxygen, and the temperature of the water passed through these mixed gases was about 20%. And flow rate is 40 cc / min. In addition, the filling material of the gas chromatography (11) column is molecular sieve 13X (manufactured by Hitachi, Japan), and the material of the column is stainless steel and its size is 6 feet x 18 inches. In the quantitative analysis, the temperature of the column was room temperature (20 ° C.), and the temperature of the thermal conductivity detector attached to the gas chromatography (11) was 110 ° C.

본 발명에서 제조한 여러종류의 촉맹체 대한 활성도 측정값은 다음 표 2에 나타내었는바, 촉매의 활성도는 측정할 때 사용한 촉매입자의 크기, 반응온도, 활성금속이온의 상대적인 양, 일산화탄소의 농도, 반응기체의 속도, 그리고 담체의 종류 등에 따라 상대적인 활성도가 상이한 결과를 보여준다.The activity measurement values for the various types of catalysts prepared in the present invention are shown in Table 2 below.The activity of the catalyst is measured by the size of the catalyst particles, the reaction temperature, the relative amount of active metal ions, the concentration of carbon monoxide, Relative activity varies depending on the speed of the reactor and the type of carrier.

[표 2]TABLE 2

상기 표 2의 결과에 의하면 본 발명의 제조방법에 의해 제조된 촉매는 20~60℃의 낮은 온도에서 일산화 탄소의 전환율이 40~100%로써 매우 높은 활성도를 나타내었다.According to the results of Table 2, the catalyst prepared by the production method of the present invention showed very high activity as the conversion rate of carbon monoxide at 40 to 100% at a low temperature of 20 ~ 60 ℃.

특히, 실시예 1 내지 실시예 6의 경우 동일양의 팔라듐염과 구리염을 사용함에도 불구하고 다공성 담체의 종류에 따라 일산화탄소의 제거율 즉 촉매의 활성도는 다소 차이가 있었으나, 낮은 온도에서의 일산화탄소 제거율은 모두 높았다.In particular, in the case of Examples 1 to 6, although the same amount of palladium salt and copper salt were used, the removal rate of carbon monoxide, that is, the activity of the catalyst, was slightly different depending on the type of porous carrier. All high.

도면 제 2도는 상기 실시예 1에서 제조된 촉매의 활성도 즉, 일산화탄소 전환율과 온도와의 관계를 그래프로 나타낸 것으로써, 20~60℃의 온도범위에서 일산화탄소의 전환율은 88~95%이었다.Figure 2 is a graph showing the relationship between the activity of the catalyst prepared in Example 1, that is, carbon monoxide conversion and temperature, the conversion rate of carbon monoxide in the temperature range of 20 ~ 60 ℃ was 88 ~ 95%.

그리고, 도면 제 3도는 25℃의 일정온도에서 실시예 2에 의해 제조된 촉매의 활성도와 시간과의 관계를 그래프로 나타낸 것으로서, 촉매의 재생성을 보여주고 있다.3 is a graph showing the relationship between the activity and time of the catalyst prepared in Example 2 at a constant temperature of 25 ° C., showing the regeneration of the catalyst.

따라서, 본 발명의 일산화탄소 제거용 촉매의 제조방법은 비교적 저렴한 가격의 금속염을 사용하며, 또한 제조된 촉매를 이용하여 20~60℃의 온도에서 일산화탄소를 제거할 수 있다.Therefore, the method for producing a catalyst for removing carbon monoxide of the present invention uses a metal salt of a relatively low price, and can also remove carbon monoxide at a temperature of 20 ~ 60 ℃ using the prepared catalyst.

Claims (5)

다공성 담체에 팔라듐이온(Pd2+)염과 구리이온(Cu2+)염을 담지시켜서 유해가스 제거용 촉매를 제조함에 있어서, 제올라이트계 다공성 분자체와 활성탄을 혼합한 다공성 담체에 염화팔라듐(PdCl2)과 염화제이구리(CuCl2) 및 질산구리(Cu(NO3)|2의 구리이온염 혼합물을 담지시켜서 제조하는 것을 특징으로 하는 일산화탄소 제거용 촉매의 제조방법.In preparing a catalyst for removing harmful gases by supporting a palladium ion (Pd 2+ ) salt and a copper ion (Cu 2+ ) salt on a porous carrier, palladium chloride (PdCl) is added to a porous carrier mixed with a zeolite-based molecular sieve and activated carbon. 2 ) and a method for preparing a catalyst for removing carbon monoxide, characterized in that it is prepared by supporting a copper ion mixture of copper chloride (CuCl 2 ) and copper nitrate (Cu (NO 3 ) | 2 . 제 1항에 있어서, 상기 제올라이트계 다공성 분자체는 천연 제올라이트, ZSM-5, 분자체 13X 또는 분자체 5A임을 특징으로 하는 일산화탄소 제거용 촉매의 제조방법.The method of claim 1, wherein the zeolite porous molecular sieve is a natural zeolite, ZSM-5, molecular sieve 13X, or molecular sieve 5A. 제 1항에 있어서, 상기 염화팔라듐은 다공성 담체 100g에 대하여 2~18×10-3몰로 사용함을 특징으로 하는 일산화탄소 제거용 촉매의 제조방법.The method of claim 1, wherein the palladium chloride is used in an amount of 2 to 18 × 10 −3 moles based on 100 g of the porous carrier. 제 1항에 있어서, 상기 구리이온염은 다공성 담체 100g에 대하여 4~89×10-2로 사용함을 특징으로 하는 일산화탄소 제거용 촉매의 제조방법.The method of claim 1, wherein the copper ion salt is used in a range of 4 to 89 × 10 −2 with respect to 100 g of the porous carrier. 제 1항에 의해 제조된 촉매의 20~60℃에서 일산화소를 제거하는데 사용하는 용도.Use of the catalyst prepared according to claim 1 for the removal of hydrogen monoxide at 20-60 ° C.
KR1019940016245A 1994-07-07 1994-07-07 Method for preparing co removal catalysts KR0128543B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940016245A KR0128543B1 (en) 1994-07-07 1994-07-07 Method for preparing co removal catalysts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940016245A KR0128543B1 (en) 1994-07-07 1994-07-07 Method for preparing co removal catalysts

Publications (2)

Publication Number Publication Date
KR960003804A KR960003804A (en) 1996-02-23
KR0128543B1 true KR0128543B1 (en) 1998-04-02

Family

ID=19387451

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940016245A KR0128543B1 (en) 1994-07-07 1994-07-07 Method for preparing co removal catalysts

Country Status (1)

Country Link
KR (1) KR0128543B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100336967B1 (en) * 1999-10-20 2002-05-17 김충섭 A process for preparing honeycomb type monolithic catalyst

Also Published As

Publication number Publication date
KR960003804A (en) 1996-02-23

Similar Documents

Publication Publication Date Title
CN108607565B (en) CuO/CeO2Catalyst, preparation method and application thereof
RU2237514C1 (en) Nitrogen monoxide decomposition catalyst and a way of carrying out processes including formation of nitrogen oxide
JP4954761B2 (en) Tar cracking catalyst
CN106390983A (en) CeO2 catalyst with Ce-based metal-organic framework used as precursor, method for preparing CeO2 catalyst and application of CeO2 catalyst to preventing and remedying air pollution
JPH08500055A (en) Catalytic incineration of organic compounds
CN103157491A (en) Mesoporous metal oxide-supported palladium catalyst used for catalytic oxidation of volatile organic compounds
US20130142720A1 (en) The method of preparation of cerium oxide supported gold-palladium catalysts and its application in destruction of volatile organic compounds
CN108187690A (en) A kind of cobalt manganese composite oxide loaded catalyst that formaldehyde is removed for room temperature and preparation method thereof
CA2961855C (en) Process for removing oxidisable gaseous compounds from a gas mixture by means of a platinum-containing oxidation catalyst
WO2017150596A1 (en) Multicomponent solid solution microparticles and method for producing same, and catalyst
CN111151247A (en) Supported catalyst and preparation method and application thereof
KR100336967B1 (en) A process for preparing honeycomb type monolithic catalyst
EP2326407B1 (en) Process
KR0128543B1 (en) Method for preparing co removal catalysts
JP2004524258A (en) Ammonia oxidation method
KR100336963B1 (en) Honeycomb type monolithic catalyst for removing VOCs
CN111151123A (en) Method for purifying tail gas of acrylonitrile device
JP4026688B2 (en) Low temperature oxidation catalyst for removal of toxic gases
Sun et al. Ammonia oxidation in Ba0. 5Sr0. 5Co0. 8Fe0. 2O3− δ membrane reactor
TWI458549B (en) Preparation of ceria-supported nano gold-silver catalysts and its application in carbon monoxide removal in air
RU2311957C1 (en) Catalyst for oxidative treatment of gases and a method for preparation thereof
Roark et al. Catalytic oxidation of volatile organic liquids
CN110841624B (en) Cerium-tin catalyst for low-temperature catalytic elimination of vinyl chloride and preparation method and application thereof
JPS6123023B2 (en)
RU2488441C1 (en) Catalyst for oxidative decomposition of organochlorine compounds in gases and method for production thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20010828

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee