KR0125792B1 - Method of manufacturing the amonia - Google Patents
Method of manufacturing the amoniaInfo
- Publication number
- KR0125792B1 KR0125792B1 KR1019940016036A KR19940016036A KR0125792B1 KR 0125792 B1 KR0125792 B1 KR 0125792B1 KR 1019940016036 A KR1019940016036 A KR 1019940016036A KR 19940016036 A KR19940016036 A KR 19940016036A KR 0125792 B1 KR0125792 B1 KR 0125792B1
- Authority
- KR
- South Korea
- Prior art keywords
- catalyst
- ammonia
- metal
- lanthanum
- alumina
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01C—AMMONIA; CYANOGEN; COMPOUNDS THEREOF
- C01C1/00—Ammonia; Compounds thereof
- C01C1/02—Preparation, purification or separation of ammonia
- C01C1/04—Preparation of ammonia by synthesis in the gas phase
- C01C1/0405—Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
- C01C1/0411—Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst characterised by the catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/02—Boron or aluminium; Oxides or hydroxides thereof
- B01J21/04—Alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/10—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Analytical Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
Abstract
Description
본 발명은 암모니아의 제조방법 및 암모니아 제조용 촉매에 관한 것으로, 보다 상세하게로는 란탄금속을 촉매로 이용하여 수소와 질소로부터 암모니아를 제조하는 방법 및 란탄금속을 함유한 암모니아 제조용 촉매에 관한 것이다.The present invention relates to a method for producing ammonia and a catalyst for producing ammonia, and more particularly, to a method for producing ammonia from hydrogen and nitrogen using a lanthanum metal as a catalyst, and a catalyst for producing ammonia containing a lanthanum metal.
일반적으로 암모니아의 제조방법으로는 석유 가스등의 화석연료를 원료로 하여 제조하는 방법과 수소와 질소가스의 혼합가스로부터 합성하는 방법으로 분류할 수 있다. 수소와 질소가스의 혼합기체로부터의 암모니아 합성은 하버(Haber)와 보쉬(Bosch)가 처음으로 합성에 성공한 이래 많은 발전을 해왔다.Generally, ammonia can be classified into a method of producing fossil fuel such as petroleum gas as a raw material and a method of synthesizing from a mixed gas of hydrogen and nitrogen gas. Ammonia synthesis from a mixture of hydrogen and nitrogen gas has evolved since Haber and Bosch's first successful synthesis.
현재 수소와 질소가스를 촉매하에 압력 10-100기압, 온도 300-600℃의 조건하에서 약 5-50%의 농도를 갖는 암모니아 기체를 합성하고 있으며, 수소와 질소로부터 암모니아의 합성 반응은 다음과 같다. 즉, N2+3H2⇔2NH3로서 질소 1분자와 수소 3분자가 암모니아 2분자를 생성하며 이 반응은 가역 반응으로 압력이 높을수록 온도가 낮을수록 반응수율은 증가하게 된다. 그러나 온도는 압력에 의존적이며 수율을 높이기 위하여 무한정 압력을 증가시키기 어렵다.Currently, ammonia gas having a concentration of about 5-50% is synthesized under hydrogen and nitrogen gas under a pressure of 10-100 atm and a temperature of 300-600 ° C. The synthesis reaction of ammonia from hydrogen and nitrogen is as follows. . That is, as N 2 + 3H 2 ⇔ 2NH 3 , one molecule of nitrogen and three molecules of hydrogen produce two molecules of ammonia. This reaction is a reversible reaction, and the reaction yield increases as the pressure is higher and the temperature is lower. However, the temperature is pressure dependent and it is difficult to increase the pressure indefinitely to increase the yield.
종래의 암모니아 제조에 대한 특허들을 살펴보면 다음과 같다.Looking at the patent for the conventional ammonia production as follows.
미국특허 제4,906,447에서는 전환효율을 증가시키기 위하여 촉매탑에서 나오는 기체중 무기아민(ZnBr2)를 사용 암모니아 기체와 반응 포집하여 회수하고 반응하지 않은 기체를 제2의 촉매탑으로 이송, 위의 과정을 반복하여 회수율을 증가시킨다. 이때 암모니아를 흡수한 무기아민(ZnBr2·2NH3)을 열분해 하여 암모니아를 회수하고 무기아민(ZnBr2)는 재사용하나 제품(NH3)에 무기아민이 미량 혼입되거나 열분해 과정에서 극 미량의 무기아민이 분해 제품에 혼입되어 제품의 순도를 저하시키는 것과 제조공정 또는 복잡하다는 단점이 있다.U.S. Patent No. 4,906,447 collects and recovers the inorganic amine (ZnBr 2 ) in the gas from the catalyst tower using ammonia gas in order to increase the conversion efficiency, and transfers the unreacted gas to the second catalyst tower. Repeatedly increase the recovery. At this time, pyrolysis of the inorganic amine (ZnBr 2 · 2NH 3 ) that absorbed ammonia is used to recover the ammonia, and the inorganic amine (ZnBr 2 ) is reused, but a very small amount of inorganic amine is incorporated in the product (NH 3 ) or in the case of pyrolysis. There are disadvantages in that it is incorporated into the degraded product to lower the purity of the product, and the manufacturing process or complexity.
또한 미국특허 제3,548,998에서는 촉매로 산화철류(Fe3O4와 FeO)와 Al2O3, K2O, CaO 등을 사용하고 60-70% 수소, 30-40% 질소, 2-3% 메틴과 0.5% 아르곤가스를 혼합하여 압력 280-700기압하에 1200-1700℃로 가열 촉매탑에서 암모니아로 전환시키거나 온도와 압력이 너무 높아 불합리한 점이 많다.In addition, U.S. Patent No. 3,548,998 uses iron oxides (Fe 3 O 4 and FeO), Al 2 O 3 , K 2 O, CaO, etc. as catalysts, and 60-70% hydrogen, 30-40% nitrogen, 2-3% methine. And 0.5% argon gas is mixed at 1200-1700 ° C. under a pressure of 280-700 atm and converted to ammonia in the catalyst tower, or the temperature and pressure are too high to be unreasonable.
또한 일본특허 평3-106,445호에서는 촉매로 염소가 없는 Ru에 알카리 토류금속을 섞어 사용한다. 그중 효율이 좋은 Ru-Sm2O3/Al2O3나 Ru-Cl2O3/Al2O3촉매를 사용하고 300-400℃의 온도하에서 반응을 진행 시키며, 미국특허 제4,128,621에서는 촉매로 사용한 것이 프탈로시안 테트라 설폰네이트(phathalo cyanine tetra sulfonate)금속염들로 이것들을 소듐보로하이드라이드(NaBH4)로 활성화하여 사용하고 450℃ 근처의 온도와 1-300기압에서 반응을 수행하여 암모니아를 제조하나, 고온고압이 필요로 하는 단점이 있다.In addition, Japanese Patent No. Hei 3-106,445 uses an alkaline earth metal mixed with Ru without chlorine as a catalyst. Among them, efficient Ru-Sm 2 O 3 / Al 2 O 3 or Ru-Cl 2 O 3 / Al 2 O 3 catalyst is used, and the reaction proceeds at a temperature of 300-400 ° C., US Pat. No. 4,128,621 is used as a catalyst. Phthalo cyanine tetra sulfonate metal salts were used to activate them with sodium borohydride (NaBH 4 ), and the reaction was carried out at a temperature near 450 ° C. and 1-300 atm. However, there is a disadvantage in that high temperature and high pressure are required.
본 발명은 위에서 나열한 특허들의 단점을 해소하기 위한 것으로, 보다 고효율의 반응을 수행할 수 있으며, 낮은 온도와 압력하에서 반응을 진행할 수 있는 암모니아의 제조방법 및 촉매를 제공하는 것을 목적으로 한다.The present invention is to solve the shortcomings of the above-listed patents, and to provide a method and a catalyst for producing ammonia that can carry out the reaction with higher efficiency and can proceed the reaction under low temperature and pressure.
본 발명자는 상기 목적을 달성하기 위하여 연구한 결과, 촉매로 란탄금속을 사용하게 되면 매우 낮은 온도와 압력 하에서도 고농도의 암모니아를 제조할 수 있음을 밝혀내게 되었다.The present inventors have studied to achieve the above object, and it has been found that the use of lanthanum metal as a catalyst can produce a high concentration of ammonia under very low temperature and pressure.
이하 본 발명을 상세하게 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.
본 발명에서는 란탄(La)금속을 암모니아 제조에 있어서 촉매로 사용함으로써 낮은 온도(120-140℃)와 압력(1-3기압)하에서도 고농도의 암모니아 가스의 합성이 가능하며, 제조비용의 상승, 복잡하고 고가의 장치 및 고온고압의 위험등으로부터 해방될 수 있다.In the present invention, by using the lanthanum (La) metal as a catalyst in the production of ammonia, it is possible to synthesize a high concentration of ammonia gas even at low temperature (120-140 ° C.) and pressure (1-3 atm). It can be freed from complicated and expensive devices and the danger of high temperature and high pressure.
수소와 질소가 몰비로 3 : 1로 혼합된 기체를 건조탑을 통과시켜 수분을 제거하고, 고온(250-300℃)으로 가열된 구리스펀지가 충진된 관을 통과시켜 혼합 기체에 포함된 미량의 산소를 제거시킨 후 다층의 란탄금속 촉매가 채워진 탑을 통과시키면 란탄금속촉매에 의하여 암모니아 가스로 전환되는데, 촉매의 특성에 따라 암모니아의 합성 효율이 50-70%로 변화된다. 즉 란탄금속 알갱이(0.5-2mm)를 직접 충진하여 촉매로 사용시에는 암모니아 변화 수율이 50-66%이며, 별도의 처리를 하였을 경우에는 60-70%로 상승된다.A mixture of hydrogen and nitrogen in a molar ratio of 3: 1 was passed through a drying tower to remove moisture, and a small amount of trace gas contained in the mixed gas was passed through a tube filled with a copper sponge heated to a high temperature (250-300 ° C.). After the oxygen is removed, the lanthanum metal catalyst is converted into ammonia gas through a lanthanum metal catalyst-filled tower, and the synthesis efficiency of ammonia is changed to 50-70% according to the characteristics of the catalyst. That is, when lanthanum metal grains (0.5-2mm) are directly charged, the ammonia change yield is 50-66% when used as a catalyst, and is increased to 60-70% when treated separately.
본 발명에서 사용되는 암모니아 제조용 촉매는 감마 알루미나(γ-Al2O3) 또는 알파 알루미나(α-Al2O3)에 란탄(La)금속이 담지된 것이다.In the catalyst for producing ammonia used in the present invention, lanthanum (La) metal is supported on gamma alumina (γ-Al 2 O 3 ) or alpha alumina (α-Al 2 O 3 ).
즉, 본 발명에서 암모니아 제조용 촉매를 제조하는 방법은 보헤마이트(AlOOH)분말과 란탄금속분말을 혼합하고 결합제로 물을 사용하여 1-5mm 크기로 제립한 후 일산화탄소(CO)가스 분위기에서 500-700℃로 1-4시간 소성시켜 혼합된 보헤마이트를 감마 알루미나로 변환시켜 촉매로 사용하거나, 수산화 알루미늄(Al(OH)3)를 묽은 질산 또는 물을 사용하여 1-5mm로 제립, 건조후 온도를 서서히 1000-1300℃까지 승온시켜 2-3시간 소성시킨 다음, 냉각시키고 란탄금속과 제립품을 적당히 혼합한 후 아르곤 기체 분위기하에서 1000-1100℃까지 가열하여 란탄금속을 용융하고 란탄금속이 용융되면 알파-알루미나 동공속으로 란탄금속이 침투될 수 있도록 아르곤 기체를 이용 4-6기압으로 0.5-2시간 가압한 후 란탄금속 액체와 제립품을 분리후 서서히 냉각하여 란탄금속이 담지된 알파-알루미나 제립품으로 제조하여 암모니아 제조용 촉매로 사용할 수 있다.That is, in the present invention, a method for preparing a catalyst for producing ammonia is mixed with boehmite (AlOOH) powder and lanthanum metal powder, and granulated to 1-5 mm in size using water as a binder, followed by 500-700 in a carbon monoxide (CO) gas atmosphere. It is calcined at 1 ℃ for 4-4 hours to convert the mixed boehmite to gamma alumina as a catalyst, or granulate the aluminum hydroxide (Al (OH) 3 ) to 1-5mm using dilute nitric acid or water, and then dry the temperature. Slowly raise the temperature to 1000-1300 ° C, calcinate for 2-3 hours, cool, mix the lanthanum metal and granules appropriately, heat to 1000-1100 ° C under argon gas atmosphere to melt the lanthanum metal, and if the lanthanum metal melts, -Pressurized 0.5-2 hours at 4-6 atmospheres using argon gas to infiltrate the lanthanum metal into the alumina cavity, and then lanthanum metal liquid and granules are separated and gradually cooled to support the lanthanum metal. Alpha-alumina prepared by the rippum can be used as a catalyst for ammonia.
본 발명의 실시예는 다음과 같다.Embodiments of the present invention are as follows.
[실시예 1]Example 1
수소와 질소가 3 : 1의 몰비로 조합된 혼합 가스중 수분과 산소를 제거하기 위한 전처리 컬럼으로 길이 50㎝ 내경 5㎝의 분자체가 충진된 컬럼을 통과한 혼합가스를 길이 30㎝, 내경 5㎝의 구리 스펀지가 충진된 동관을 250℃로 가열하면서 통과시켜 혼합가스를 정제하였다.A pretreatment column for removing water and oxygen in a mixed gas in which hydrogen and nitrogen are combined at a molar ratio of 3: 1. A mixed gas passed through a column filled with molecular sieves having a length of 50 cm and a diameter of 5 cm is 30 cm in length and 5 in inner diameter. A copper tube filled with a copper sponge of cm was heated and heated to 250 ° C. to purify the mixed gas.
정제된 혼합가스를 컬럼온도 120℃±5℃로 조절된 란탄금속 알갱이(직경 1-2mm)로 충진된 길이 60㎝, 내경 5㎝의 관을 압력 2.3±0.3기압으로 통과시켜 암모니아 가스를 얻고 이 가스를 냉동기를 이용 -35℃로 냉각하여 미반응된 수소와 질소를 분리시켜 순도 99.99%의 액체 암모니아를 얻었다. 이때 전환수율은 63-65%이였다.The purified mixed gas was passed through a 60 cm long, 5 cm inner diameter tube filled with lanthanum metal grains (diameter 1-2 mm) adjusted to a column temperature of 120 ° C ± 5 ° C at a pressure of 2.3 ± 0.3 atm to obtain ammonia gas. The gas was cooled to −35 ° C. using a freezer to separate unreacted hydrogen and nitrogen to obtain liquid ammonia with a purity of 99.99%. The conversion yield was 63-65%.
[실시예 2]Example 2
실시예 1과 같은 절차로 수행하였으나 촉매로 란탄금속 알갱이 대용으로 300g의 보헤마이트(AlOOH)와 80mesh를 통과하는 란탄금속 분말 100g을 섞고 20분간 혼합한 후 물을 30-35g 첨가하여 제립 공정을 거쳐 직경 1-2mm의 환형의 제립품을 얻었다. 이 제립품을 질소분위기 하에서 건조하고, 일산화탄소(CO) 분위기에서 550℃ 2시간 소성하여 촉매로 사용하였다.The same procedure as in Example 1 was performed, but 300 g of boehmite (AlOOH) and 100 g of lanthanum metal powder passing through 80mesh were mixed for 20 minutes, and then 30-35 g of water was added. An annular granule of 1-2 mm in diameter was obtained. The granulated product was dried under a nitrogen atmosphere, calcined at 550 ° C. for 2 hours in a carbon monoxide (CO) atmosphere, and used as a catalyst.
이때의 암모니아 전환 효율은 65-69%이였다.The ammonia conversion efficiency at this time was 65-69%.
[실시예 3]Example 3
실시예 1과 같은 절차로 수행하였으나 촉매로 수산화 알루미늄(Al(OH)3)을 15% 질산수용액을 결합제로 사용하여 제립공정을 거쳐 1-2mm의 제립품을 얻고 건조한 후 200℃에서 30분, 600℃에서 1시간 1,250℃에서 2시간 소성시켜 알파-알루미나 제립품을 얻었다. 이를 서서히 상온으로 냉각시키고 기체 가압이 가능한 실린더에 알루미나 제립품과 란탄금속을 무게비로 3 : 1로 혼합하고 아르곤 가스하에서 1000℃까지 15℃/분 속도로 승온시켰다. 1000℃에 도달하였을때 아르곤 가스를 매개체로 하여 5-6기압으로 1시간동안 가압후, 액체란탄금속과 제립품을 분리후 서서히 냉각시켜 촉매로 사용하였다. 이때의 암모니아 변환 효율은 64-66%이였다.The same procedure as in Example 1 was carried out, but the granules were obtained by granulation using 1-2% nitric acid solution (aluminum hydroxide (Al (OH) 3 ) as a binder) as a binder to obtain 1-2 mm granules, dried, and then dried at 200 ° C. for 30 minutes. It calcined at 600 degreeC for 1 hour and 1,250 degreeC for 2 hours, and alpha-alumina granules were obtained. The mixture was slowly cooled to room temperature, and the alumina granules and the lanthanum metal were mixed in a weight ratio of 3: 1 in a cylinder capable of gas pressurization, and heated up at 1000 ° C. at 15 ° C./min under argon gas. When the temperature reached 1000 ° C., the mixture was pressurized with argon gas at 5-6 atm for 1 hour, and then liquid lanthanum metal and granules were separated and gradually cooled to use as a catalyst. At this time, the ammonia conversion efficiency was 64-66%.
[비교예][Comparative Example]
미국 특허 제4,744,966호에 기재된 바와 여러개의 촉매탑에 촉매로 철산화물 촉매를 사용하고 온도 430-520℃의 조건에서 수소와 질소를 암모니아로 변환시킨 결과, 그 변환효율은 15-31℃였다.The conversion efficiency was 15-31 ° C. as a result of converting hydrogen and nitrogen into ammonia at a temperature of 430-520 ° C. using an iron oxide catalyst as a catalyst in several catalyst towers as described in US Pat. No. 4,744,966.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019940016036A KR0125792B1 (en) | 1994-07-05 | 1994-07-05 | Method of manufacturing the amonia |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019940016036A KR0125792B1 (en) | 1994-07-05 | 1994-07-05 | Method of manufacturing the amonia |
Publications (2)
Publication Number | Publication Date |
---|---|
KR960004211A KR960004211A (en) | 1996-02-23 |
KR0125792B1 true KR0125792B1 (en) | 1997-12-18 |
Family
ID=19387307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019940016036A KR0125792B1 (en) | 1994-07-05 | 1994-07-05 | Method of manufacturing the amonia |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR0125792B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3514708B2 (en) * | 2000-07-24 | 2004-03-31 | シャープ株式会社 | Optical pickup device |
-
1994
- 1994-07-05 KR KR1019940016036A patent/KR0125792B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR960004211A (en) | 1996-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0169188B1 (en) | Method of preparing hydrocarbon | |
CA1228345A (en) | Modified copper- and zinc-containing catalyst and process for producing methanol using said catalyst | |
CA2859678C (en) | Process for producing ammonia and urea | |
CN111592011A (en) | Method for directly synthesizing SSZ-13 zeolite molecular sieve by using TEAOH as organic template agent | |
CA1200561A (en) | Catalytic process for the production of methanol | |
US4242103A (en) | Cyclic two step process for production of methane from carbon monoxide | |
KR101917103B1 (en) | Porous Ni-Al alloy powder, catalyst using the same and method for preparing the same | |
KR0125792B1 (en) | Method of manufacturing the amonia | |
JP2002114752A (en) | Integrated method for producing ammonia and urea | |
CA1135478A (en) | Method of producing ammonia by catalyzed reaction between hydrogen and nitrogen | |
Nakano et al. | Synthesis of cubic boron nitride by decomposition of magnesium boron nitride | |
EP0004456B1 (en) | Methanation of carbon monoxide without prior separation of inert gases | |
CA1209804A (en) | Methanol conversion process | |
FI115905B (en) | Hydrocarbon dehydration process | |
JPS62105901A (en) | Production of hydrogen of high purity | |
JPS63502255A (en) | Improved syngas conversion catalysts, their production and use | |
CA1259632A (en) | Catalytic reduction process | |
JP2000233917A (en) | Method of producing carbon monoxide from carbon dioxide | |
EP0826418A1 (en) | Catalyst for oxidation of hydrogen, method for selective oxidation of hydrogen, and method for dehydrogenation of hydrocarbon | |
RU2001119983A (en) | METHOD FOR PRODUCING ALUMINUM AND DEVICE FOR ITS IMPLEMENTATION | |
CN110981688B (en) | Method for synthesizing 3,4, 4-trifluoro cyclobutene by gas phase catalysis | |
JPS6246482B2 (en) | ||
US4400575A (en) | Methanation of gas streams containing carbon monoxide and hydrogen | |
CN110586168B (en) | Catalyst for preparing monoethanolamine and diethanolamine | |
CN110586175B (en) | Catalyst for increasing production of monoethanolamine and diethanolamine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
J2X1 | Appeal (before the patent court) |
Free format text: APPEAL AGAINST DECISION TO DECLINE REFUSAL |
|
B701 | Decision to grant | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20041004 Year of fee payment: 8 |
|
LAPS | Lapse due to unpaid annual fee |