KR0125149B1 - Composite positive electrode of lithium secondary battery - Google Patents

Composite positive electrode of lithium secondary battery

Info

Publication number
KR0125149B1
KR0125149B1 KR1019940039508A KR19940039508A KR0125149B1 KR 0125149 B1 KR0125149 B1 KR 0125149B1 KR 1019940039508 A KR1019940039508 A KR 1019940039508A KR 19940039508 A KR19940039508 A KR 19940039508A KR 0125149 B1 KR0125149 B1 KR 0125149B1
Authority
KR
South Korea
Prior art keywords
secondary battery
battery
lithium
cathode
composite
Prior art date
Application number
KR1019940039508A
Other languages
Korean (ko)
Other versions
KR960027033A (en
Inventor
이동일
선우준
Original Assignee
이정성
엘지금속주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이정성, 엘지금속주식회사 filed Critical 이정성
Priority to KR1019940039508A priority Critical patent/KR0125149B1/en
Publication of KR960027033A publication Critical patent/KR960027033A/en
Application granted granted Critical
Publication of KR0125149B1 publication Critical patent/KR0125149B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

The secondary battery comprises a composite anode including an anode material of a secondary battery and a cathode of an electrolyte comprising alkali metal and polymer electrolytic complex, lithium or lithium alloy. The composite anode is characterized by being formed by mixing and adding an anode material of a primary battery into the anode material of the secondary battery.

Description

리튬(Li) 2차전지에서의 복합양극Composite Anode in Lithium (Li) Secondary Battery

제1도는 기존의 리튬 2차전지 구조도.1 is a structure diagram of a conventional lithium secondary battery.

제2도는 본 발명에 따른 복합양극의 단면도.2 is a cross-sectional view of a composite anode according to the present invention.

제3도는 충, 방전에 따른 용량변화를 나타낸 그래프.3 is a graph showing a change in capacity according to charging and discharging.

제4도는 1차전지 양극물질 첨가량에 따른 전지의 초기 용량변화를 나타낸 그래프.Figure 4 is a graph showing the initial capacity change of the battery according to the amount of the positive electrode positive electrode material.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 복합양극 2 : 2차전지 양극물질1: composite anode 2: secondary battery cathode material

3 : 1차전지 양극물질 4 : 고분자 전해질 착물3: primary battery positive electrode material 4: polymer electrolyte complex

6 : 음극6: cathode

본 발명은 리튬(Li) 2차전지에 관한 것으로, 특히 2차전지의 복합양극에 1차전지의 양극물질을 첨가함으로써 전기전도도와 초기 방전용량을 향상시키는 2차전지의 복합양극에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium (Li) secondary battery, and more particularly, to a composite anode of a secondary battery that improves electrical conductivity and initial discharge capacity by adding a cathode material of a primary battery to a composite anode of a secondary battery.

이듐 2차전지는 제1도에 나타낸 바와 같이 바나듐 산화물(V6O13또는 V2O5), 티타늄 황화물(TiS2)과 같은 양극물질을 포함한 복합양극(1), 알칼리 금속염(예 : LiClO4등)과 고분자물질(예 : 폴리에틸렌 옥사이드)의 착물로 구성된 전해질(5), 리듐 또는 리튬합금으로 된 음극(6), 양극집전판(7), 음극집전판(8)으로 구성된다.As shown in FIG. 1, an indium secondary battery includes a composite anode (1) containing an anode material such as vanadium oxide (V 6 O 13 or V 2 O 5 ), titanium sulfide (TiS 2 ), and an alkali metal salt (eg, LiClO 4). Etc.) and an electrolyte 5 composed of a complex of a polymer material (eg, polyethylene oxide), a negative electrode 6 made of lithium or lithium alloy, a positive electrode current collector plate 7, and a negative electrode current collector plate 8.

이와 같은 구성에서 양극물질들은 각각 단위 몰(mol)당 많은 양의 리튬을 인터칼레이션(Intercalation)시킬 수 있으며, 리튬등의 음극에 대한 상대전위도 비교적 높아 리튬 2차전지의 양극물질로 주목 받아 왔다.In such a configuration, the positive electrode materials can intercalate a large amount of lithium per mol, and have a relatively high relative potential with respect to the negative electrode such as lithium, which is attracting attention as a positive electrode material of a lithium secondary battery. come.

그러나 위의 양극물질을 주성분으로 하는 전지는 충, 방전에 따라 리튬이 양극격자속으로 침입/탈리를 계속하게 되는데, (표 1)에 나타낸 바와 같이 리튬이온의 첨가에 따라 양극물질의 전기전도도는 급격히 감소하게 된다.However, in the battery containing the above positive electrode material, lithium continues to invade / desorb into the positive electrode grid as the charge and discharge are discharged. As shown in (Table 1), the electrical conductivity of the positive electrode material is increased according to the addition of lithium ions. It will decrease sharply.

바나듐 산화물(V6O13)의 경우, Lix V6O13의 x값이 0(제로), 즉 V6O13일때는 전기전도성이 10-1/ΩCm로 1/100이상의 전기전도도 감소를 나타내고 있다.In the case of vanadium oxide (V 6 O 13 ), when x value of Lix V 6 O 13 is 0 (zero), that is, V 6 O 13 , the electrical conductivity is 10 −1 / ΩCm, indicating a decrease in electrical conductivity of 1/100 or more. have.

따라서 위와 같은 양극물질로 구성된 전지에서 추가로 높은 전기전도성(예 : 켓젼블랙)을 가지는 물질의 첨가가 필요하게 된다.Therefore, in the battery composed of the positive electrode material as described above, it is necessary to add a material having a high electrical conductivity (eg, cationic black).

[표 1 : 양극 활성물질의 전기전도도][Table 1: Electrical conductivity of positive electrode active material]

그러나 전기전도성 향상을 위해 첨가되는 고전기전도성물질은 전기화학적으로 불활성이어서 첨가결과 양극의 전기전도성은 향상되지만, 전지의 단위무게 및 단위 부피당 에너지밀도가 감소하는 문제를 가지고 있다.However, the high electroconductive material added to improve the electrical conductivity is electrochemically inert so that the electrical conductivity of the positive electrode is improved as a result of the addition, but there is a problem that the unit weight of the battery and the energy density per unit volume decrease.

이러한 문제를 해결하기 위하여 켓젼블랙(Ketjen Black) 대신에 Cu(CF3SO3)2를 고분자(폴리에틸렌 옥사이드) 및 LiCF3SO3와 함께 착물(Complex)을 형성하는 방법으로 전기전도성과 아울러 이온전도성향상을 시도하였고(US 4,908,284), 켓젼블랙대신에 리튬전지의 양극물질인 카본불화물(CFn)을 첨가하여 전기전도성 향상과 아울러 전지의 초기용량을 향상시키는 방법이 제시되었으나(GB 2,228,614), 전지의 높은 전기전도성을 위해 상대적으로 많은 양의 첨가물이 필요하게 되어 기존의 켓젼블랙의 사용시보다 단위무게, 단위부피당 에너지밀도가 크게 향상되지 않는 등의 문제가 있어 왔다.In order to solve this problem, instead of Ketjen Black, Cu (CF 3 SO 3 ) 2 is complexed with a polymer (polyethylene oxide) and LiCF 3 SO 3 to form a complex (Complex). In addition to improving the electrical conductivity and improving the initial capacity of the battery by adding carbon fluoride (CFn), a cathode material of lithium battery, instead of Ketjeon Black (GB 2,228,614), it was proposed. Since a relatively large amount of additives is required for high electrical conductivity, there has been a problem such that the unit weight and energy density per unit volume are not significantly improved than in the case of conventional Ketjeon Black.

이에 본 발명은 상기한 문제점을 해결함과 함께 종래와는 달리 1차전지의 양극물질중 용량이 크게 분해되어 높은 전기전도성을 나타내는 양극물질을 2차전지 양극 물질(예 : V6O13)에 혼합함으로써 초기 전지용량과 전기도전성을 증대시키는 복합양극을 갖는 2차전지를 얻고자 하는데 그 목적이 있다.Accordingly, the present invention solves the above-mentioned problems, and unlike the conventional method, a cathode material exhibiting high electrical conductivity due to large decomposition of capacity of cathode materials of a primary battery is included in a cathode material of a secondary battery (eg, V 6 O 13 ). The purpose is to obtain a secondary battery having a composite anode that increases the initial battery capacity and electrical conductivity by mixing.

이와 같은 목적달성을 위한 본 발명은 2차전지의 양극물질을 포함한 복합양극, 알칼리 금속염과 고분자 물질의 착물로 구성된 전해질, 리튬 또는 리튬합금으로 된 음극, 양극집전판, 음극집전판으로 하는 리튬 2차전지에 있어서, 2차전지의 양극물질에 1차전지의 양극물질이 첨가 혼합되어 이루어짐을 특징으로 하는 리튬 2차 전지에서의 복합양극으로 구성된다.The present invention for achieving the above object is a composite anode including a cathode material of a secondary battery, an electrolyte consisting of a complex of an alkali metal salt and a polymer material, a lithium or lithium alloy anode, a cathode current collector, a lithium current collector 2 The secondary battery is composed of a composite anode in a lithium secondary battery, characterized in that the positive electrode material of the primary battery is added and mixed with the positive electrode material of the secondary battery.

이와 같이 리튬 1차전지의 양극물질중 용량이 크고 분해되어 높은 전기전도성을 나타내는 양극물질(예 : CuO)을 2차전지 양극물질(예 : V6O13)과 혼합함으로써 전지의 초기 방전시에는 2차전지 양극물질과 같은 양극역할을 하여 초기 전지용량을 향상시키고 몇회의 충, 방전이 지난 후에는 분해되어 높은 전기전도성을 가진 구리로 변화하여 2차 전극양극에서 부족한 전기전도성을 향상시키는 역할을 한다.As described above, when the initial discharge of the battery is performed by mixing a positive electrode material (eg, CuO) having a large capacity and decomposing high electrical conductivity with the secondary battery positive electrode material (eg, V 6 O 13 ) among the positive electrode materials of the lithium primary battery. It improves initial battery capacity by acting as a positive electrode like secondary battery positive electrode material and decomposes after several charges and discharges and turns into copper with high electrical conductivity to improve the electrical conductivity which is insufficient in secondary electrode anode. do.

1차전지 양극물질이 전지의 방전시 리튬과 반응/분해되어 리튬염과 구리를 생성하는 과정을 식(1)에 나타내었다.Equation (1) shows a process in which a cathode material of a primary battery reacts / decomposes with lithium when the battery is discharged to generate lithium salt and copper.

CuO+2Li++2e-----Cu+Li2O…………………………………………(1) CuO + 2Li + + 2e - ---- Cu + Li 2 O ... … … … … … … … … … … … … … … … (One)

식(1)에서 생성된 구리는 매우 미세하고 균일하여 높은 전기전도성을 나타낼뿐만 아니라 양극물질로서 고용량(670Wh/Kg, 4260Wh/ℓ)을 가지고 있어 전지의 초기용량이 향상될 수 있었다.The copper produced in Equation (1) is very fine and uniform and exhibits high electrical conductivity as well as a high capacity (670 Wh / Kg, 4260 Wh / L) as the cathode material, thereby improving initial capacity of the battery.

따라서 본 발명에서는 1차전지의 양극물질중 분해되어 높은 전기전도성을 나타내는 물질을 2차 전지양극에 첨가함으로써, 기존의 켓젼블랙등의 전기전도성향상을 위해 전기화학적으로 불활성인 물질의 첨가가 필요없거나, 적은 양의 첨가로도 충분한 전기전도성을 나타내게 되었으며 추가로 초기용량의 향상을 이룰 수 있었다.Therefore, in the present invention, by adding a substance decomposed in the cathode material of the primary battery and showing a high electrical conductivity to the secondary battery anode, it is not necessary to add an electrochemically inert material for improving the electrical conductivity of the existing cathodic black or the like. In addition, the addition of a small amount showed sufficient electrical conductivity and further improved initial capacity.

본 발명에서 첨가되는 1차전지 양극물질은 방전시 분해되어 높은 전기전도성을 나타내는 물질로서, 산화구리(CuO), 황화구리(CuS), 염화구리(CuCl2), 불화구리(CuF2), 황화철(FeS 또는 FeS2), 염화코발트(CoCl2), 크롬산은(Ag2CrO4)중에서 선택된 1종으로 하며, 첨가되는 양은 복합양극 전체무게에서 1∼30wt% 비율로 첨가됨이 바람직하다.The primary battery positive electrode material added in the present invention is a material that exhibits high electrical conductivity due to decomposition during discharge, and includes copper oxide (CuO), copper sulfide (CuS), copper chloride (CuCl 2 ), copper fluoride (CuF 2 ), and iron sulfide (FeS or FeS 2 ), cobalt chloride (CoCl 2 ), silver chromic acid (Ag 2 CrO 4 ) It is one selected from the amount, the amount is preferably added in a proportion of 1 to 30wt% in the total weight of the composite anode.

2차전지 양극물질로는 주기율표 Ⅳb∼Ⅶb족 또는 Ⅷ족에 속하는 원소와 Ⅵa족 원소와의 화합물로 대표적인 예로는 바나듐 산화물(V6O13)과 티타늄 황화물(TiS2) 등이 있다.The cathode material of the secondary battery is a compound of elements of the group IVb to Vb or group VIII and the group VIa, and vanadium oxide (V 6 O 13 ) and titanium sulfide (TiS 2 ).

제2도는 2차전지의 복합양극에 1차전지의 양극물질첨가에 따른 복합양극의 단면도를 나타낸 것으로, 2차전지 양극물질(2)(예 : V6O13)과 전자전도성을 갖는 1차전지의 양극물질(3)(예 : CuO) 및 고분자전해질 착물(4)(PEO : LiClO4-PC/PE)로 구성된 복합양극(1)으로 이루어진다.2 is a cross-sectional view of the composite cathode according to the addition of the cathode material of the primary battery to the composite anode of the secondary battery. The secondary battery cathode material 2 (for example, V 6 O 13 ) and a primary having electron conductivity It consists of a composite anode (1) consisting of a cathode material 3 (eg CuO) and a polymer electrolyte complex (4) (PEO: LiClO 4 -PC / PE) of the battery.

위의 조성을 갖는 복합양극 및 전해질 착물은 닥터 블레이드(Doctor Blade)등의 코팅방법을 이용하여 필름으로 제조되며, 리튬(합금) 호일(foil)과 함께 적층되어 전지로 제조된다.The composite cathode and electrolyte complex having the above composition is made into a film using a coating method such as a doctor blade, and laminated with a lithium (alloy) foil to produce a battery.

다음은 실시예에 따라 설명한다.The following is described according to the embodiment.

[복합양극제조][Composite Anode Manufacturing]

250㎖ 플라스틱통에 V6O13(8.72g), 1, 1, 1-TCE(트리클로로에탄 : 35㎖)과 분산제로서 Span 80, 3방울을 넣는다.Into a 250 ml plastic pail add V 6 O 13 (8.72 g), 1, 1, 1-TCE (trichloroethane: 35 ml) and 3 drops of Span 80 as a dispersant.

상기 플라스틱통에 직경 3㎝의 알루미나 볼 4개와, 직경 1㎝의 알루미나 볼 16개를 넣고 2시간 30분 동안 분쇄/혼합한다.Four alumina balls having a diameter of 3 cm and 16 alumina balls having a diameter of 1 cm were placed in the plastic barrel and pulverized / mixed for 2 hours and 30 minutes.

분쇄/혼합작업이 완료된 후, 폴리에틸렌 옥사이드(PEO : 1.5g : M.W=4,000,000)를 넣고 다시 10분동안 분쇄/혼합한다.After the grinding / mixing operation is completed, polyethylene oxide (PEO: 1.5 g: M.W = 4,000,000) is added thereto, and then mixed / mixed for 10 minutes.

LiClO4(0.61g)과 에틸렌 카보네이트(EC : 1.13g) 및 프로필렌 카보네이트(PC : 0.37g)를 아세토니트릴(ACN : 70㎖)에 첨가/용해시킨 용액을 상기 분쇄/혼합한 혼합물에 첨가시켜 30분 동안 다시 분쇄/혼합한다.LiClO 4 (0.61 g), ethylene carbonate (EC: 1.13 g), and propylene carbonate (PC: 0.37 g) were added / dissolved in acetonitrile (ACN: 70 mL) to the ground / mixed mixture. Crush / mix again for minutes.

상기 혼합물을 닥터 블레이드를 이용하여 양극 집전판인 Ni 호일위에 코팅한 후(0.5황동블레이드 이용), 상온에서 건조시킨다.The mixture is coated on Ni foil, which is a positive electrode current collector plate, using a doctor blade (using 0.5 brass blades), and then dried at room temperature.

코팅된 복합양극 필름은 50㎛정도의 두께를 가진다.Coated composite cathode film has a thickness of about 50㎛.

[고분자 전해질 착물(Polymer Electrolyte Complex)의 제조][Production of Polymer Electrolyte Complex]

500㎖ 삼각 플라스크에 LiClO4(1.81g), EC(7.87g), PC(2.63g)를 넣고 ACN 250㎖를 첨가한 후, 용질이 완전히 용해될 때까지 저어준다.LiClO 4 (1.81 g), EC (7.87 g) and PC (2.63 g) were added to a 500 mL Erlenmeyer flask and 250 mL of ACN was added, followed by stirring until the solute was completely dissolved.

상기 용액에 PEO(4.5g : M.W=4,000,000)를 넣고 상온에서 24시간동안 용액이 균일한 슬러리상태로 될 때까지 저어준다.Add PEO (4.5g: M.W = 4,000,000) to the solution and stir at room temperature for 24 hours until the solution becomes a uniform slurry.

상기 슬러리를 닥터 블레이드 코팅법을 이용하여 이형지위에 1.5㎜ PTFE 블레이드를 이용하여 코팅한 후 상온에서 건조시킨다.The slurry is coated on a release sheet using a 1.5 mm PTFE blade using a doctor blade coating method and then dried at room temperature.

코팅된 필름은 57㎛정도의 두께를 가진 필름으로 제조된다.The coated film is made of a film having a thickness of about 57 μm.

[셀(cell)의 제조][Manufacture of Cell]

건조된 복합 양극필름(7㎝×4㎝:28㎠)을 압연기로 표면을 고르게 한 후 무게를 잰다(셀의 이론용량을 계산하기 위함).The dried composite positive electrode film (7 cm × 4 cm: 28 cm 2) was evenly weighed after rolling the surface with a rolling mill (to calculate the theoretical capacity of the cell).

이형지위에 코팅된 전해질 착물 3개층을 적층시킨 후, 복합 양극필름위에 적층시킨다.Three layers of the electrolyte complex coated on the release paper were laminated, and then laminated on the composite cathode film.

음극집전판 Ni 호일위에 접합시킨 리튬 호일(두께 : 100㎛)을 상기 복합양극과 전해질 착물의 적층물위에 적층시켜 셀을 제조한다.A lithium foil (thickness: 100 mu m) bonded to the negative electrode current collector plate Ni foil was laminated on the laminate of the composite positive electrode and the electrolyte complex to prepare a cell.

(셀의 테두리부분은 양극과 음극의 단락을 방지하기 위하여 절연 테잎으로 절연시킨다.)(The edges of the cells are insulated with insulating tape to prevent shorting of the anode and cathode.)

[실시예 2, 3, 4]EXAMPLE 2, 3, 4

상기 실시예 1의 조성중 전자 전도성물질 CuO(0.56g)대신에:In place of CuO (0.56 g) of the electronic conductive material in the composition of Example 1:

-CuO(0.28g)을 첨가(실시예 2)-CuO (0.28 g) was added (Example 2)

-CuO(4.00g)을 첨가(실시예 3)-CuO (4.00 g) was added (Example 3)

-CuO(0.28g)과 켓젼블랙(0.28g)을 첨가(실시예 4)Addition of CuO (0.28 g) and Castion Black (0.28 g) (Example 4)

[비교예 1, 2][Comparative Examples 1 and 2]

상기 실시예1의 조성중 전자 전도성물질인 CuO(0.56g) 대신에:In place of CuO (0.56 g) which is an electronic conductive material in the composition of Example 1:

-켓젼블랙(0.56g)을 첨가(비교예 1)Add Ketjeon Black (0.56 g) (Comparative Example 1)

-비전도성 알루미나(0.56g)을 첨가(비교예 2)Non-conductive alumina (0.56 g) was added (Comparative Example 2)

[셀(cell)의 시험 및 평가][Test and Evaluation of Cells]

상기 실시예 1, 2, 3 및 비교예 1, 2에서 제조된 셀을 상온에서 충, 방전시험기를 이용하여 전지의 사이클수명을 측정, 평가한다.The cycles of the battery were measured and evaluated using the charge and discharge tester at room temperature for the cells prepared in Examples 1, 2, and 3 and Comparative Examples 1 and 2.

-충전전류 : 1/10CCharge current: 1 / 10C

-방전전류 : 1/10CDischarge current: 1 / 10C

-충, 방전 한계전압-상한전압 : 3.25VCharge and discharge limit voltage-Upper limit voltage: 3.25V

-하한전압 : 1.70VLower limit voltage: 1.70V

평가결과는 제3도에 나타난 바와 같이 1차전지 양극물질인 CuO의 첨가에 따라 초기 방전용량이 증가한 결과를 나타내었다.As shown in FIG. 3, the initial discharge capacity increased with the addition of CuO, the primary battery cathode material.

제4도는 CuO의 첨가량변화에 따른 전지의 초기 용량변화를 나타낸 것으로 CuO의 첨가량이 증가함에 따라 전지의 초기용량이 증가함을 알 수 있다.4 shows the initial capacity change of the battery according to the change in the amount of added CuO, it can be seen that the initial capacity of the battery increases as the amount of added CuO.

[WT%=(100×CuO의 무게)/(복합양극 전체무게)][WT% = (weight of 100 × CuO) / (total weight of composite anode)]

Claims (4)

2차전지의 양극물질을 포함한 복합양극, 알칼리금속염과 고분자물질의 착물로 구성된 전해질, 리튬 또는 리튬합금을 음극으로 하여 구성된 2차전지에 있어서, 2차 전지의 양극물질에 1차전지의 양극물질이 첨가 혼합되어 이루어짐을 특징으로 하는 리튬(Li) 2차전지에서의 복합양극.A composite battery including a cathode material of a secondary battery, an electrolyte composed of a complex of an alkali metal salt and a polymer material, a secondary battery composed of lithium or a lithium alloy as a cathode, wherein the cathode material of the primary battery is the cathode material of the secondary battery. A composite anode in a lithium (Li) secondary battery, characterized in that the addition and mixing. 제1항에 있어서, 1차 전지양극물질이 CuO, CuS, CiCl2, CuF2, FeS, FeS2, CoCl2, Ag2CrO4에서 선택된 1종임을 특징으로 하는 리튬(Li) 2차전지에서의 복합양극.The lithium (Li) secondary battery of claim 1, wherein the primary battery anode material is one selected from CuO, CuS, CiCl 2 , CuF 2 , FeS, FeS 2 , CoCl 2 , Ag 2 CrO 4 . Composite anode. 제1항에 있어서, 2차 전지양극물질이 Ⅳb∼Ⅶb족 또는 Ⅷ족의 원소와 Ⅵa족 원소와의 혼합물로 구성됨을 특징으로 하는 리튬(Li) 2차전지에서의 복합양극.The composite anode according to claim 1, wherein the secondary battery anode material is composed of a mixture of elements of Group IVb to Group b or Group VIII elements. 제1항 또는 제2항에 있어서, 1차전지 양극물질첨가량이 복합양극 전체무게에서 1∼30중량%임을 특징으로 하는 리튬(Li) 2차전지에서의 복합양극.The composite cathode according to claim 1 or 2, wherein the amount of the primary battery cathode material added is 1 to 30% by weight based on the total weight of the composite cathode.
KR1019940039508A 1994-12-30 1994-12-30 Composite positive electrode of lithium secondary battery KR0125149B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940039508A KR0125149B1 (en) 1994-12-30 1994-12-30 Composite positive electrode of lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940039508A KR0125149B1 (en) 1994-12-30 1994-12-30 Composite positive electrode of lithium secondary battery

Publications (2)

Publication Number Publication Date
KR960027033A KR960027033A (en) 1996-07-22
KR0125149B1 true KR0125149B1 (en) 1997-12-15

Family

ID=19405579

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940039508A KR0125149B1 (en) 1994-12-30 1994-12-30 Composite positive electrode of lithium secondary battery

Country Status (1)

Country Link
KR (1) KR0125149B1 (en)

Also Published As

Publication number Publication date
KR960027033A (en) 1996-07-22

Similar Documents

Publication Publication Date Title
KR100320999B1 (en) Rechargeable lithium battery
US5690702A (en) Method of making electroactive high storage capacity polycarbon-sulfide materials and electrolytic cells containing same
US4952330A (en) Nonaqueous electrolyte
US6203947B1 (en) Long cycle-life alkali metal battery
CA2016517C (en) Solid state electrochemical cell having microroughened current collector
US3639174A (en) Voltaic cells with lithium-aluminum alloy anode and nonaqueous solvent electrolyte system
US6174621B1 (en) Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same
US4163829A (en) Metallic reducing additives for solid cathodes for use in nonaqueous cells
KR101015741B1 (en) Non-aqueous electrolyte secondary battery
EP0576686B1 (en) Cell
KR20000019944A (en) Solid-state secondary battery composed of thin film type multiple material anode
US4714665A (en) Secondary battery
EP3550639A1 (en) Anode for secondary battery and secondary battery comprising same
EP0205913B1 (en) Conjugated polymer as substrate for the plating of alkali metal in a nonaqueous secondary battery
US5183543A (en) Polyanilines, process for the preparation thereof and cells using them
GB2060242A (en) Rechargeable nonaqueous silver alloy anode cell
GB1603154A (en) Electrochemical cells with solid electrolytes and electrodes
US4780381A (en) Rechargeable battery cathode from sodium cobalt dioxide in the O3, O'3, P3 and/or P'3 phases
EP0905807B1 (en) Nonaqueous secondary battery
KR0125149B1 (en) Composite positive electrode of lithium secondary battery
Kozawa Lithium‐MnO2 Cells Containing CF x or C 2 F in the Cathode
Maxfield et al. Alloy/conducting-polymer composite electrodes: electrolytes, cathodes, and morphology
EP0997543A1 (en) Nanostructure alloy anodes, process for their preparation and lithium batteries comprising said anodes
US6309778B1 (en) Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same
JPH02204976A (en) Electrochenical battery and its manufacture

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee