JPWO2023176602A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2023176602A5
JPWO2023176602A5 JP2023538109A JP2023538109A JPWO2023176602A5 JP WO2023176602 A5 JPWO2023176602 A5 JP WO2023176602A5 JP 2023538109 A JP2023538109 A JP 2023538109A JP 2023538109 A JP2023538109 A JP 2023538109A JP WO2023176602 A5 JPWO2023176602 A5 JP WO2023176602A5
Authority
JP
Japan
Prior art keywords
oil film
film thickness
impedance
electric circuit
metal contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2023538109A
Other languages
Japanese (ja)
Other versions
JPWO2023176602A1 (en
JP7347721B1 (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/JP2023/008684 external-priority patent/WO2023176602A1/en
Application granted granted Critical
Publication of JP7347721B1 publication Critical patent/JP7347721B1/en
Publication of JPWO2023176602A1 publication Critical patent/JPWO2023176602A1/ja
Publication of JPWO2023176602A5 publication Critical patent/JPWO2023176602A5/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (12)

すべり軸受を含んで構成される軸受装置の状態を検出する検出方法であって、
前記すべり軸受および回転軸から構成される電気回路に交流電圧を印加し、
前記交流電圧の印加時の前記電気回路のインピーダンスおよび位相角を測定し、
前記インピーダンスおよび前記位相角に基づき、前記すべり軸受と前記回転軸との間における油膜厚さおよび金属接触割合を導出し、
前記油膜厚さおよび前記金属接触割合は、前記軸受装置内にて発生する前記すべり軸受と前記回転軸との間に生じる線接触により構成される電気回路に対応する算出式を用いて導出されることを特徴とする検出方法。
A detection method for detecting the state of a bearing device including a plain bearing,
Applying an alternating current voltage to an electric circuit composed of the sliding bearing and the rotating shaft,
measuring the impedance and phase angle of the electric circuit when the alternating current voltage is applied;
Based on the impedance and the phase angle, derive the oil film thickness and metal contact ratio between the sliding bearing and the rotating shaft,
The oil film thickness and the metal contact ratio are derived using a calculation formula corresponding to an electric circuit formed by a line contact that occurs between the sliding bearing and the rotating shaft within the bearing device. A detection method characterized by:
前記線接触により構成される電気回路は、前記線接触により生じる抵抗、前記線接触から所定の範囲に位置する潤滑剤により構成される第1のコンデンサ、および、前記所定の範囲外に位置する潤滑剤により構成される第2のコンデンサを含んで構成されることを特徴とする請求項1に記載の検出方法。 An electric circuit configured by the line contact includes a resistance caused by the line contact, a first capacitor configured by a lubricant located within a predetermined range from the line contact, and a lubricant located outside the predetermined range. 2. The detection method according to claim 1, further comprising a second capacitor made of an agent. 前記第1のコンデンサの静電容量Cは、
Figure 2023176602000001

ε:潤滑剤の誘電率
α:油膜の破断率(金属接触割合)(0≦α<1)
a:回転軸の短手方向における接触幅
L:回転軸の長さ
:Hertzian接触域における油膜厚さ
にて示され、
前記第2のコンデンサの静電容量C2は、
Figure 2023176602000002

r:ローラ片の半径
にて示されることを特徴とする請求項2に記載の検出方法。
The capacitance C1 of the first capacitor is
Figure 2023176602000001

ε: Dielectric constant of lubricant α: Fracture rate of oil film (metal contact ratio) (0≦α<1)
a: Contact width in the short direction of the rotating shaft L: Length of the rotating shaft h 1 : Indicated by the oil film thickness in the Hertzian contact area,
The capacitance C2 of the second capacitor is
Figure 2023176602000002

3. The detection method according to claim 2, wherein r: the radius of the roller piece.
前記油膜厚さhおよび前記金属接触割合αを導出するための前記算出式は、
Figure 2023176602000003

Figure 2023176602000004

Figure 2023176602000005

|Z|:動的接触状態におけるインピーダンス
|Z|:静的接触状態におけるインピーダンス
θ:動的接触状態における位相角
θ:静的接触状態における位相角
ε:潤滑剤の誘電率
α:油膜の破断率(金属接触割合)(0≦α<1)
a:回転軸の短手方向における接触幅
L:回転軸の長さ
:Hertzian接触域における油膜厚さ
r:ローラ片の半径
ω:交流電圧の角周波数
であることを特徴とする請求項に記載の検出方法。
The calculation formula for deriving the oil film thickness h1 and the metal contact ratio α is as follows:
Figure 2023176602000003

Figure 2023176602000004

Figure 2023176602000005

|Z|: Impedance in dynamic contact state |Z 0 |: Impedance in static contact state θ: Phase angle in dynamic contact state θ 0 : Phase angle in static contact state ε: Dielectric constant of lubricant α: Oil film Fracture rate (metal contact ratio) (0≦α<1)
a: contact width in the short direction of the rotating shaft L: length of the rotating shaft h 1 : oil film thickness in the Hertzian contact area r: radius of the roller piece ω: angular frequency of the alternating voltage. Detection method according to 2 .
更に、前記油膜厚さおよび前記金属接触割合を用いて前記軸受装置を診断することを特徴とする請求項1から4のいずれか一項に記載の検出方法。 5. The detection method according to claim 1, further comprising diagnosing the bearing device using the oil film thickness and the metal contact ratio. すべり軸受を含んで構成される軸受装置の状態を検出する検出装置であって、
前記すべり軸受および回転軸から構成される電気回路に交流電圧を印加させた際に得られる前記交流電圧の印加時の前記電気回路のインピーダンスおよび位相角を取得する取得手段と、
前記インピーダンスおよび前記位相角に基づき、前記すべり軸受と前記回転軸との間における油膜厚さおよび金属接触割合を導出する導出手段と、
を有し、
前記導出手段は、前記油膜厚さおよび前記金属接触割合を、前記軸受装置内にて発生する前記すべり軸受と前記回転軸との間に生じる線接触により構成される電気回路に対応する算出式を用いて導出することを特徴とする検出装置。
A detection device for detecting the state of a bearing device including a sliding bearing,
Acquisition means for acquiring the impedance and phase angle of the electric circuit when the AC voltage is applied, which are obtained when an AC voltage is applied to the electric circuit constituted by the sliding bearing and the rotating shaft;
Deriving means for deriving an oil film thickness and metal contact ratio between the sliding bearing and the rotating shaft based on the impedance and the phase angle;
has
The deriving means calculates the oil film thickness and the metal contact ratio using a calculation formula corresponding to an electric circuit formed by a line contact occurring between the sliding bearing and the rotating shaft in the bearing device. A detection device characterized in that the detection device uses
コンピュータを、
すべり軸受を含む軸受装置に対し、前記すべり軸受および回転軸から構成される電気回路に交流電圧を印加させた際に得られる前記交流電圧の印加時の前記電気回路のインピーダンスおよび位相角を取得する取得手段、
前記インピーダンスおよび前記位相角に基づき、前記すべり軸受と前記回転軸との間における油膜厚さおよび金属接触割合を導出する導出手段、
として機能させ、
前記導出手段は、前記油膜厚さおよび前記金属接触割合を、前記軸受装置内にて発生する前記すべり軸受と前記回転軸との間に生じる線接触により構成される電気回路に対応する算出式を用いて導出することを特徴とするプログラム。
computer,
Obtaining the impedance and phase angle of the electrical circuit when the alternating current voltage is applied, which are obtained when an alternating current voltage is applied to an electric circuit consisting of the plain bearing and the rotating shaft for a bearing device including a plain bearing. acquisition means,
Derivation means for deriving an oil film thickness and metal contact ratio between the sliding bearing and the rotating shaft based on the impedance and the phase angle;
function as
The deriving means calculates the oil film thickness and the metal contact ratio using a calculation formula corresponding to an electric circuit formed by a line contact occurring between the sliding bearing and the rotating shaft in the bearing device. A program characterized in that it is derived using
外方部材、内方部材、および複数のころを含んで構成される軸受装置の状態を検出する検出方法であって、
前記軸受装置に所定のラジアル荷重を付与した状態で、前記外方部材、前記内方部材、および前記複数のころから構成される電気回路に交流電圧を印加し、
前記交流電圧の印加時の前記電気回路のインピーダンスおよび位相角を測定し、
前記インピーダンスおよび前記位相角に基づき、前記内方部材と前記複数のころの間、または、前記内方部材と前記複数のころの間の少なくとも一つにおける油膜厚さおよび金属接触割合を導出
前記所定のラジアル荷重により特定される前記軸受装置内の負荷圏と非負荷圏それぞれにおいて構成される電気回路に対応する算出式を用いて前記油膜厚さおよび前記金属接触割合を導出することを特徴とする検出方法。
A detection method for detecting the state of a bearing device including an outer member, an inner member, and a plurality of rollers, the method comprising:
applying an alternating current voltage to an electric circuit made up of the outer member, the inner member, and the plurality of rollers while applying a predetermined radial load to the bearing device;
measuring the impedance and phase angle of the electric circuit when the alternating current voltage is applied;
Based on the impedance and the phase angle, derive an oil film thickness and a metal contact ratio between at least one of the inner member and the plurality of rollers, or between the inner member and the plurality of rollers,
The oil film thickness and the metal contact ratio are derived using calculation formulas corresponding to electric circuits configured in each of a loaded zone and a non-load zone within the bearing device specified by the predetermined radial load. detection method.
前記油膜厚さhおよび前記金属接触割合αを導出するための前記算出式は、
Figure 2023176602000006

Figure 2023176602000007

Figure 2023176602000008

Figure 2023176602000009

Figure 2023176602000010

n:軸受内の全転動体の数
:負荷圏に位置する転動体の数
b ̄:転動体の平均接触幅
L:転動体の長さ
tx:転動体の有効半径
t1 ̄:平均接触域
i1(m):転動体mと内輪の間の接触域
o1(m):転動体mと外輪の間の接触域
ω:交流電圧の角周波数
ε:潤滑剤の誘電率
k:軸受の数
Ψ:無次元定数
gap:ラジアル隙間
m:非負荷圏に位置する転動体を示す自然数(1≦m≦(n-n1))
|Z|:静的接触状態におけるインピーダンス
θ:静的接触状態における位相
|Z|:動的接触状態におけるインピーダンス
θ:動的接触状態における位相
であることを特徴とする請求項に記載の検出方法。
The calculation formula for deriving the oil film thickness h and the metal contact ratio α is as follows:
Figure 2023176602000006

Figure 2023176602000007

Figure 2023176602000008

Figure 2023176602000009

Figure 2023176602000010

n: Total number of rolling elements in the bearing n 1 : Number of rolling elements located in the load area b ̄: Average contact width of rolling elements L: Length of rolling elements R tx : Effective radius of rolling elements S t1 : Average contact area S i1 (m): Contact area between rolling element m and inner ring S o1 (m): Contact area between rolling element m and outer ring ω: Angular frequency of AC voltage ε: Dielectric constant of lubricant k : Number of bearings Ψ: Dimensionless constant h gap : Radial gap m: Natural number indicating rolling elements located in non-load area (1≦m≦(n-n1))
|Z 0 |: impedance in static contact state θ 0 : phase in static contact state |Z|: impedance in dynamic contact state θ: phase in dynamic contact state Detection method.
更に、前記油膜厚さおよび前記金属接触割合を用いて前記軸受装置を診断することを特徴とする請求項8または9に記載の検出方法。 10. The detection method according to claim 8, further comprising diagnosing the bearing device using the oil film thickness and the metal contact ratio. 外方部材、内方部材、および複数のころを含んで構成される軸受装置の状態を検出する検出装置であって、
前記軸受装置に所定のラジアル荷重を付与した状態で、前記外方部材、前記内方部材、および前記複数のころから構成される電気回路に交流電圧を印加させた際に得られる前記交流電圧の印加時の前記電気回路のインピーダンスおよび位相角を取得する取得手段と、
前記インピーダンスおよび前記位相角に基づき、前記内方部材と前記複数のころの間、または、前記内方部材と前記複数のころの間の少なくとも一つにおける油膜厚さおよび金属接触割合を導出する導出手段と
を有し、
前記導出手段は、前記所定のラジアル荷重により特定される前記軸受装置内の負荷圏と非負荷圏それぞれにおいて構成される電気回路に対応する算出式を用いて前記油膜厚さおよび前記金属接触割合を導出することを特徴とする検出装置。
A detection device for detecting the state of a bearing device including an outer member, an inner member, and a plurality of rollers, the detection device comprising:
The alternating current voltage obtained when an alternating current voltage is applied to an electric circuit composed of the outer member, the inner member, and the plurality of rollers with a predetermined radial load applied to the bearing device. acquisition means for acquiring the impedance and phase angle of the electric circuit when applied;
Deriving an oil film thickness and metal contact ratio between at least one of the inner member and the plurality of rollers or between the inner member and the plurality of rollers based on the impedance and the phase angle. means and
has
The deriving means calculates the oil film thickness and the metal contact ratio using calculation formulas corresponding to electric circuits configured in each of a loaded zone and a non-load zone within the bearing device specified by the predetermined radial load. A detection device characterized by deriving .
コンピュータを、
外方部材、内方部材、および複数のころを含んで構成される軸受装置に所定のラジアル荷重を付与した状態で、前記外方部材、前記内方部材、および前記複数のころから構成される電気回路に交流電圧を印加させた際に得られる前記交流電圧の印加時の前記電気回路のインピーダンスおよび位相角を取得する取得手段、
前記インピーダンスおよび前記位相角に基づき、前記内方部材と前記複数のころの間、または、前記内方部材と前記複数のころの間の少なくとも一つにおける油膜厚さおよび金属接触割合を導出する導出手段、
として機能させ
前記導出手段は、前記所定のラジアル荷重により特定される前記軸受装置内の負荷圏と非負荷圏それぞれにおいて構成される電気回路に対応する算出式を用いて前記油膜厚さおよび前記金属接触割合を導出する、プログラム。
computer,
When a predetermined radial load is applied to a bearing device that includes an outer member, an inner member, and a plurality of rollers, the bearing device that includes the outer member, the inner member, and the plurality of rollers acquisition means for acquiring the impedance and phase angle of the electric circuit when the AC voltage is applied, which are obtained when the AC voltage is applied to the electric circuit;
Deriving an oil film thickness and metal contact ratio between at least one of the inner member and the plurality of rollers or between the inner member and the plurality of rollers based on the impedance and the phase angle. means,
function as
The deriving means calculates the oil film thickness and the metal contact ratio using calculation formulas corresponding to electric circuits configured in each of a loaded zone and a non-load zone within the bearing device specified by the predetermined radial load. A program to derive .
JP2023538109A 2022-03-14 2023-03-07 Bearing device condition detection method, detection device, and program Active JP7347721B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2022039417 2022-03-14
JP2022039417 2022-03-14
JP2022039416 2022-03-14
JP2022039416 2022-03-14
PCT/JP2023/008684 WO2023176602A1 (en) 2022-03-14 2023-03-07 Bearing device state detecting method, detecting device, and program

Publications (3)

Publication Number Publication Date
JP7347721B1 JP7347721B1 (en) 2023-09-20
JPWO2023176602A1 JPWO2023176602A1 (en) 2023-09-21
JPWO2023176602A5 true JPWO2023176602A5 (en) 2024-02-22

Family

ID=88021650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023538109A Active JP7347721B1 (en) 2022-03-14 2023-03-07 Bearing device condition detection method, detection device, and program

Country Status (1)

Country Link
JP (1) JP7347721B1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6729633B2 (en) 2018-06-04 2020-07-22 日本精工株式会社 Diagnosis method of rolling device
JP7200789B2 (en) 2019-03-25 2023-01-10 日本精工株式会社 Preload Diagnosis Method for Rolling Device
JP7484410B2 (en) 2019-05-22 2024-05-16 日本精工株式会社 Method for diagnosing rolling devices

Similar Documents

Publication Publication Date Title
US5001435A (en) Lubrication film thickness measuring system and method
EP3567358B1 (en) Method for diagnosing rolling device
JP7200789B2 (en) Preload Diagnosis Method for Rolling Device
WO2018050010A1 (en) Evaluation method and apparatus for remaining life of bearing
JP4912255B2 (en) Bearing state inspection device and bearing state inspection method
KR20230074778A (en) Oil slick state detection method, state detection device, and program
JPWO2023176602A5 (en)
JP2003214810A (en) Measuring device and method for oil film
Furtmann et al. Evaluation of oil-film thickness along the path of contact in a gear mesh by capacitance measurement
JPWO2022054352A5 (en)
JPWO2023199655A5 (en)
Scherb et al. A study on the smearing and slip behaviour of radial cylindrical roller bearings
KR102611596B1 (en) Diagnosis methods for powertrains
JP2023081983A (en) Detection method, detection device and program for state of bearing device
JPWO2022250060A5 (en)
EP1676041A1 (en) Method and apparatus for measuring the thickness of a lubrication film between surfaces
WO2023176602A1 (en) Bearing device state detecting method, detecting device, and program
JP7347721B1 (en) Bearing device condition detection method, detection device, and program
WO2022250060A1 (en) Bearing device state detecting method, detecting device, and program
JP7367898B1 (en) Measuring method, measuring device, and program
JP7168139B1 (en) Bearing device state detection method, detection device, and program
WO2023199655A1 (en) Bearing device state detection method, detection device, and program
WO2024101321A1 (en) Film state measurement method, film state measurement device, and program
JP7347720B1 (en) Bearing device condition detection method, detection device, and program
WO2024101322A1 (en) Condition measuring method, condition measuring device, and program