JPWO2022174312A5 - - Google Patents
Download PDFInfo
- Publication number
- JPWO2022174312A5 JPWO2022174312A5 JP2023574744A JP2023574744A JPWO2022174312A5 JP WO2022174312 A5 JPWO2022174312 A5 JP WO2022174312A5 JP 2023574744 A JP2023574744 A JP 2023574744A JP 2023574744 A JP2023574744 A JP 2023574744A JP WO2022174312 A5 JPWO2022174312 A5 JP WO2022174312A5
- Authority
- JP
- Japan
- Prior art keywords
- user
- optical sensor
- signal
- determining
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 claims 67
- 238000006213 oxygenation reaction Methods 0.000 claims 28
- 230000000638 stimulation Effects 0.000 claims 24
- 230000000694 effects Effects 0.000 claims 23
- 239000008280 blood Substances 0.000 claims 19
- 210000004369 blood Anatomy 0.000 claims 19
- 210000004761 scalp Anatomy 0.000 claims 16
- 210000002442 prefrontal cortex Anatomy 0.000 claims 15
- 210000004556 brain Anatomy 0.000 claims 12
- 210000003128 head Anatomy 0.000 claims 6
- 208000024891 symptom Diseases 0.000 claims 6
- 210000001061 forehead Anatomy 0.000 claims 5
- 230000002490 cerebral effect Effects 0.000 claims 4
- 230000001537 neural effect Effects 0.000 claims 3
- 230000004397 blinking Effects 0.000 claims 2
- 230000004936 stimulating effect Effects 0.000 claims 2
Claims (27)
前記ヘッドセット上に配置され、前記ユーザの脳の所定の領域に刺激を提供するように構成された複数の電極と、a plurality of electrodes disposed on the headset and configured to provide stimulation to predetermined regions of the user's brain;
前記複数の電極のうちの1つの電極の第1の側に配置された第1の光学センサであって、該第1の光学センサは、第1の発光器と少なくとも2つの光検出器とを含み、前記第1の発光器は、前記1つの電極の第1の横端に近接して配置されており、前記第1の光学センサの第1の光検出器は、前記第1の発光器の内側の前記第1の横端に近接して配置されており、前記第1の光学センサの第2の光検出器は、前記第1の横端とは反対側の第2の横端に近接して配置されている、第1の光学センサと、a first optical sensor disposed on a first side of one of the plurality of electrodes, the first optical sensor including a first light emitter and at least two light detectors, the first light emitter being disposed proximate a first lateral edge of the one electrode, a first light detector of the first optical sensor being disposed proximate the first lateral edge inside the first light emitter, and a second light detector of the first optical sensor being disposed proximate a second lateral edge opposite the first lateral edge;
前記複数の電極のうちの前記1つの電極の第2の側に配置された第2の光学センサであって、該第2の光学センサは、第2の発光器と少なくとも2つの光検出器とを含み、前記第2の発光器は、前記1つの電極の前記第2の横端に近接して配置されており、前記第2の光学センサの第1の光検出器は、前記第2の発光器の内側の前記第2の横端に近接して配置されており、前記第2の光学センサの第2の光検出器は、前記第1の横端に近接して配置されている、第2の光学センサと、を含み、a second optical sensor disposed on a second side of the one of the plurality of electrodes, the second optical sensor including a second light emitter and at least two light detectors, the second light emitter being disposed proximate the second lateral edge of the one electrode, a first light detector of the second optical sensor being disposed proximate the second lateral edge inside the second light emitter, and a second light detector of the second optical sensor being disposed proximate the first lateral edge;
前記第1の光学センサ及び前記第2の光学センサは、活動尺度に対応する前記ユーザの脳血液酸素化を示す第1の信号を検出し、前記ユーザの頭皮血液酸素化を示す第2の信号を検出するように構成されている、ヘッドセットと、a headset, the first optical sensor and the second optical sensor configured to detect a first signal indicative of the user's cerebral blood oxygenation corresponding to an activity measure, and a second signal indicative of the user's scalp blood oxygenation;
前記第1の光学センサ、前記第2の光学センサ及び前記複数の電極に通信可能に結合されているコントローラであって、a controller communicatively coupled to the first optical sensor, the second optical sensor, and the plurality of electrodes,
前記第1の信号及び前記第2の信号を受信し、前記第1の信号に基づいて前記ユーザの血液酸素化レベルを決定し、前記第2の信号に基づいて前記ユーザの頭皮酸素化レベルを決定し、かつ、receiving the first signal and the second signal, determining a blood oxygenation level of the user based on the first signal, determining a scalp oxygenation level of the user based on the second signal; and
前記ユーザの脳の前記所定の領域を刺激するように、前記複数の電極のうちの1つ以上を選択的に起動するように構成されている、コントローラとa controller configured to selectively activate one or more of the plurality of electrodes to stimulate the predetermined region of the user's brain;
を含む、システム。Including, the system.
前記コントローラは、前記ユーザの脳の前記所定の領域に刺激を提供するように、前記ユーザのそれぞれの頭のサイズに基づいて前記複数の電極の一部を起動するように構成されている、請求項1に記載のシステム。2. The system of claim 1, wherein the controller is configured to activate a portion of the plurality of electrodes based on a size of the user's respective head to provide stimulation to the predetermined region of the user's brain.
前記複数の電極のうちの少なくとも1つに対して、刺激パラメータ値に基づいて前記ユーザへの経頭蓋刺激を生成させるように、前記複数の電極のうちの前記少なくとも1つへと刺激指示を送信し、transmitting stimulation instructions to at least one of the plurality of electrodes to cause the at least one of the plurality of electrodes to generate a transcranial stimulation to the user based on stimulation parameter values;
前記第1の光学センサ及び前記第2の光学センサの少なくとも1つから、前記第1の信号及び前記第2の信号を受信し、receiving the first signal and the second signal from at least one of the first optical sensor and the second optical sensor;
前記第1の信号に基づいて前記ユーザの前記脳血液酸素化レベルを決定すると共に、前記第2の信号に基づいて前記ユーザの前記頭皮血液酸素化レベルを決定し、determining the cerebral blood oxygenation level of the user based on the first signal and determining the scalp blood oxygenation level of the user based on the second signal;
前記血液酸素化レベルから前記頭皮血液酸素化レベルを減算し、それによって活動データを取得する、subtracting the scalp blood oxygenation level from the blood oxygenation level, thereby obtaining activity data.
ように構成されている、請求項1に記載のシステム。The system of claim 1 , configured to:
前記活動データから進行尺度を決定し、前記進行尺度は、少なくとも1つの臨床的に関連する症状に対応する、determining a progression measure from the activity data, the progression measure corresponding to at least one clinically relevant symptom;
ように構成されている、請求項5に記載のシステム。The system of claim 5 , configured as follows:
前記活動データから活動尺度を決定し、determining an activity measure from the activity data;
前記臨床的に関連する症状を治療するために、前記活動尺度に基づいて前記複数の電極のうちの少なくとも1つ以上を刺激するための1つ以上の更新された刺激パラメータ値を決定する、determining one or more updated stimulation parameter values for stimulating at least one or more of the plurality of electrodes based on the activity measure to treat the clinically relevant condition.
ように構成されている、請求項1に記載のシステム。The system of claim 1 , configured to:
第1の発光器と少なくとも2つの光検出器とを含む、第1の光学センサと、a first optical sensor including a first light emitter and at least two light detectors;
第2の発光器と少なくとも2つの光検出器とを含む、第2の光学センサと、を含み、a second optical sensor including a second light emitter and at least two light detectors;
前記第1の光学センサ及び前記第2の光学センサは、活動データに対応する前記ユーザの脳血液酸素化を示す第1の信号を検出し、前記ユーザの頭皮血液酸素化を示す第2の信号を検出するように構成されている、ヘッドセットと、a headset, the first optical sensor and the second optical sensor configured to detect a first signal indicative of the user's cerebral blood oxygenation corresponding to activity data, and a second signal indicative of the user's scalp blood oxygenation;
前記第1の光学センサ及び前記第2の光学センサに通信可能に結合されているコントローラであって、a controller communicatively coupled to the first optical sensor and the second optical sensor,
前記第1の信号及び前記第2の信号を受信し、前記第1の信号に基づいて前記ユーザの血液酸素化レベルを決定し、前記第2の信号に基づいて前記ユーザの頭皮酸素化レベルを決定し、receiving the first signal and the second signal, determining a blood oxygenation level of the user based on the first signal, and determining a scalp oxygenation level of the user based on the second signal;
1つ以上のそれぞれのタスクを行う際の前記ユーザのパフォーマンスに関連する1つ以上のスコアを含むタスクデータを決定し、determining task data including one or more scores related to the user's performance in performing one or more respective tasks;
前記血液酸素化レベルから前記頭皮酸素化レベルを減算し、それによって活動データを取得し、subtracting the scalp oxygenation level from the blood oxygenation level, thereby obtaining activity data;
前記活動データ及び前記タスクデータに基づいて症状重症度及び/又は進行尺度を決定するように構成されている、コントローラと、a controller configured to determine a symptom severity and/or progression measure based on the activity data and the task data;
を含む、システム。Including, the system.
第1の発光器と少なくとも2つの光検出器とを含む、第1の光学センサと、a first optical sensor including a first light emitter and at least two light detectors;
第2の発光器と少なくとも2つの光検出器とを含む、第2の光学センサと、を含み、a second optical sensor including a second light emitter and at least two light detectors;
前記第1の光学センサ及び前記第2の光学センサは、活動データに対応する前記ユーザの脳血液酸素化を示す第1の信号を検出し、前記ユーザの頭皮血液酸素化を示す第2の信号を検出するように構成されている、ヘッドセットと、a headset, the first optical sensor and the second optical sensor configured to detect a first signal indicative of the user's cerebral blood oxygenation corresponding to activity data, and a second signal indicative of the user's scalp blood oxygenation;
前記第1の光学センサ及び前記第2の光学センサに通信可能に結合されているコントローラであって、a controller communicatively coupled to the first optical sensor and the second optical sensor,
前記第1の信号及び前記第2の信号を受信し、前記第1の信号に基づいて前記ユーザの血液酸素化レベルを決定し、前記第2の信号に基づいて前記ユーザの頭皮酸素化レベルを決定し、receiving the first signal and the second signal, determining a blood oxygenation level of the user based on the first signal, and determining a scalp oxygenation level of the user based on the second signal;
前記第1の光学センサ及び前記第2の光学センサのそれぞれの前記発光器を点滅周波数で変調して、それによってロックインアンプ効果を作り出し、前記第1の光検出器又は前記第2の光検出器のうちの少なくとも一方によって検出されたそれぞれの反射光信号の信号対雑音比(SNR)を改善するように構成されている、コントローラと、a controller configured to modulate the light emitter of each of the first optical sensor and the second optical sensor at a blinking frequency to create a lock-in amplifier effect and improve a signal-to-noise ratio (SNR) of each reflected optical signal detected by at least one of the first optical detector or the second optical detector;
を含む、システム。Including, the system.
前記ヘッドセット上に配置され、前記ユーザの脳の所定の領域に刺激を提供するように構成された複数の電極と、a plurality of electrodes disposed on the headset and configured to provide stimulation to predetermined regions of the user's brain;
複数の光学センサであって、前記複数の光学センサにおける各光学センサは、前記複数の電極のうちの1つの電極に隣接して配置され、発光器、第1の光検出器及び第2の光検出器を含み、前記第1の光検出器は、前記ユーザの脳から反射された光の強度を測定するように構成され、前記第2の光検出器は、前記ユーザの頭皮から反射された光の強度を測定するように構成されている、複数の光学センサと、を含むヘッドセットと、a headset including a plurality of optical sensors, each optical sensor in the plurality of optical sensors disposed adjacent to an electrode of the plurality of electrodes and including a light emitter, a first optical detector, and a second optical detector, the first optical detector configured to measure an intensity of light reflected from the user's brain, and the second optical detector configured to measure an intensity of light reflected from the user's scalp;
前記複数の電極及び前記複数の光学センサに通信可能に結合されているコントローラであって、a controller communicatively coupled to the plurality of electrodes and the plurality of optical sensors,
前記複数の電極のうちの少なくとも1つに対して、刺激パラメータ値に基づいて前記ユーザへの経頭蓋刺激を生成させるように、前記複数の電極のうちの前記少なくとも1つへと刺激指示を送信し、transmitting stimulation instructions to at least one of the plurality of electrodes to cause the at least one of the plurality of electrodes to generate a transcranial stimulation to the user based on stimulation parameter values;
前記ユーザの脳から反射された光の強度を示す第1の信号、及び、前記ユーザの頭皮から反射された光の強度を示す第2の信号を受信し、receiving a first signal indicative of an intensity of light reflected from the user's brain and a second signal indicative of an intensity of light reflected from the user's scalp;
前記第1の信号に基づいて血液酸素化レベルを決定すると共に、前記第2の信号に基づいて頭皮酸素化レベルを決定し、determining a blood oxygenation level based on the first signal and determining a scalp oxygenation level based on the second signal;
前記血液酸素化レベルから前記頭皮酸素化レベルを減算し、それによって前記ユーザの前記脳の所定の領域に関連する活動データを取得するように構成されている、コントローラと、a controller configured to subtract the scalp oxygenation level from the blood oxygenation level, thereby obtaining activity data related to a predetermined region of the user's brain; and
を含む、神経感知及び刺激のためのシステム。A system for neural sensing and stimulation comprising:
前記活動データから抽出された1つ以上の特性に基づいて活動尺度を決定し、前記活動尺度は、前記ユーザの脳の前記所定の領域における神経活動のレベルに対応し、determining an activity metric based on one or more features extracted from the activity data, the activity metric corresponding to a level of neural activity in the predetermined region of the user's brain;
前記活動尺度に基づいて前記複数の電極のうちの少なくとも1つ以上を刺激するための1つ以上の更新された刺激パラメータ値を決定する、determining one or more updated stimulation parameter values for stimulating at least one or more of the plurality of electrodes based on the activity measure;
ように構成されている、請求項10に記載のシステム。The system of claim 10 configured to:
前記活動尺度が閾値未満であるという決定に応答して、前記刺激パラメータ値を増加させ、増加された前記刺激パラメータ値で刺激を再印加することと、in response to determining that the activity measure is below a threshold, increasing the stimulation parameter value and re-applying stimulation at the increased stimulation parameter value;
前記活動尺度が閾値に到達したという決定に応答して、前記刺激パラメータ値をユーザ固有の較正された刺激パラメータとして決定することと、determining, in response to determining that the activity measure has reached a threshold, the stimulation parameter values as user-specific calibrated stimulation parameters;
を含む、請求項11に記載のシステム。The system of claim 11 , comprising:
1つ以上のそれぞれのタスクを行う際の前記ユーザのパフォーマンスに関連する1つ以上のスコアを含むタスクデータを決定するように構成されている、請求項10に記載のシステム。The system of claim 10 , configured to determine task data comprising one or more scores related to the user's performance in performing one or more respective tasks.
前記タスクデータ、又は、前記活動データから抽出された前記1つ以上の特性、のうちの少なくとも1つに基づいて症状重症度を決定し、前記症状重症度及び/又は進行尺度は、少なくとも1つの臨床的に関連する症状に対応する、determining a symptom severity based on at least one of the task data or the one or more features extracted from the activity data, the symptom severity and/or progression measure corresponding to at least one clinically relevant symptom;
ように構成されている、請求項16に記載のシステム。The system of claim 16 configured to:
前記コントローラは、前記ユーザの脳の前記所定の領域に刺激を提供するように、前記ユーザのそれぞれの頭のサイズに基づいて前記複数の電極の一部を起動するように構成されている、請求項10に記載のシステム。11. The system of claim 10, wherein the controller is configured to activate a portion of the plurality of electrodes based on a size of the user's respective head to provide stimulation to the predetermined region of the user's brain.
前記ヘッドセット上に配置され、前記ユーザの脳の所定の領域に刺激を提供するように構成された第1の電極であって、前記第1の電極は、第1の側と、前記第1の側とは反対側の第2の側とを有する、第1の電極と、a first electrode disposed on the headset and configured to provide stimulation to a predetermined region of the user's brain, the first electrode having a first side and a second side opposite the first side;
前記ヘッドセット上に配置され、前記ユーザの脳の所定の領域に刺激を提供するように構成された第2の電極であって、前記第2の電極は、第1の側と、前記第1の側とは反対側の第2の側とを有し、前記第2の電極の前記第1の側は、前記第1の電極の前記第2の側に隣接している、第2の電極と、a second electrode disposed on the headset and configured to provide stimulation to a predetermined region of the user's brain, the second electrode having a first side and a second side opposite the first side, the first side of the second electrode adjacent to the second side of the first electrode;
前記第1の電極の前記第1の側に配置された第1の光学センサと、a first optical sensor disposed on the first side of the first electrode;
前記第1の電極の前記第2の側、かつ、前記第1の電極と前記第2の電極との間に配置された第2の光学センサと、を含み、a second optical sensor disposed on the second side of the first electrode and between the first electrode and the second electrode;
前記第1の光学センサ及び前記第2の光学センサのそれぞれは、発光器及び2つの光検出器を含む、ヘッドセットと、a headset, wherein each of the first optical sensor and the second optical sensor includes a light emitter and two light detectors;
前記複数の電極、前記第1の光学センサ及び前記第2の光学センサに通信可能に結合されているコントローラであって、前記コントローラは、前記第1の光学センサ及び前記第2の光学センサから受信されたデータに基づいて、前記ユーザの血液酸素化レベル及び前記ユーザの頭皮酸素化レベルを決定するように構成されている、コントローラと、a controller communicatively coupled to the plurality of electrodes, the first optical sensor, and the second optical sensor, the controller configured to determine a blood oxygenation level of the user and a scalp oxygenation level of the user based on data received from the first optical sensor and the second optical sensor; and
を含む、神経感知及び刺激のためのシステム。A system for neural sensing and stimulation comprising:
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2021900473A AU2021900473A0 (en) | 2021-02-22 | Apparatus, systems and methods for treatment of symptoms of neurological conditions | |
AU2021900473 | 2021-02-22 | ||
AU2021904220 | 2021-12-23 | ||
AU2021904220A AU2021904220A0 (en) | 2021-12-23 | Apparatus, systems and methods for monitoring symptoms of neurological conditions | |
PCT/AU2022/050136 WO2022174312A1 (en) | 2021-02-22 | 2022-02-22 | Apparatus, systems and methods for monitoring symptoms of neurological conditions |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2024512826A JP2024512826A (en) | 2024-03-19 |
JPWO2022174312A5 true JPWO2022174312A5 (en) | 2024-04-15 |
Family
ID=82932184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023574744A Pending JP2024512826A (en) | 2021-02-22 | 2022-02-22 | Devices, systems and methods for monitoring symptoms of neurological conditions |
Country Status (7)
Country | Link |
---|---|
US (2) | US11931574B2 (en) |
EP (1) | EP4294260A1 (en) |
JP (1) | JP2024512826A (en) |
KR (1) | KR20230148838A (en) |
AU (1) | AU2022221742A1 (en) |
CA (1) | CA3209349A1 (en) |
WO (1) | WO2022174312A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA3209349A1 (en) | 2021-02-22 | 2022-08-25 | Nathalie Gouailhardou | Apparatus, systems and methods for monitoring symptoms of neurological conditions |
CN116999700A (en) * | 2023-09-18 | 2023-11-07 | 深圳般意科技有限公司 | Micro-electrical stimulation effect evaluation method and device, terminal equipment and storage medium |
Family Cites Families (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090062685A1 (en) | 2006-03-16 | 2009-03-05 | Trustees Of Boston University | Electro-optical sensor for peripheral nerves |
EP2539019A4 (en) * | 2010-02-26 | 2014-03-26 | Univ Drexel | Concurrent stimulation effect detection |
KR101233026B1 (en) | 2010-10-22 | 2013-02-20 | 주식회사 싸이버메딕 | The dynamic postural balance training system |
WO2013059833A1 (en) | 2011-10-21 | 2013-04-25 | Neurotrek, Inc. | Method and system for direct communication |
WO2013192582A1 (en) * | 2012-06-22 | 2013-12-27 | Neurotrek , Inc. | Device and methods for noninvasive neuromodulation using targeted transcrannial electrical stimulation |
WO2014036170A1 (en) | 2012-08-29 | 2014-03-06 | Thync, Inc. | Systems and devices for coupling ultrasound energy to a body |
US20200155061A1 (en) * | 2018-11-19 | 2020-05-21 | Stimscience Inc. | Neuromodulation method and system for sleep disorders |
US9517351B2 (en) | 2014-05-17 | 2016-12-13 | Thyne Global, Inc. | Methods and apparatuses for amplitude-modulated ensemble waveforms for neurostimulation |
US9002458B2 (en) | 2013-06-29 | 2015-04-07 | Thync, Inc. | Transdermal electrical stimulation devices for modifying or inducing cognitive state |
US10537703B2 (en) | 2012-11-26 | 2020-01-21 | Thync Global, Inc. | Systems and methods for transdermal electrical stimulation to improve sleep |
US10814131B2 (en) | 2012-11-26 | 2020-10-27 | Thync Global, Inc. | Apparatuses and methods for neuromodulation |
US9440070B2 (en) | 2012-11-26 | 2016-09-13 | Thyne Global, Inc. | Wearable transdermal electrical stimulation devices and methods of using them |
US10293161B2 (en) * | 2013-06-29 | 2019-05-21 | Thync Global, Inc. | Apparatuses and methods for transdermal electrical stimulation of nerves to modify or induce a cognitive state |
US9782585B2 (en) * | 2013-08-27 | 2017-10-10 | Halo Neuro, Inc. | Method and system for providing electrical stimulation to a user |
EP3110497A4 (en) | 2014-02-27 | 2018-12-05 | Cerevast Medical Inc. | Methods and apparatuses for user control of neurostimulation |
CN104042228A (en) * | 2014-04-21 | 2014-09-17 | 燕山大学 | Transcranial direct current stimulation and near infrared detection all-in-one device |
USD785186S1 (en) | 2015-01-05 | 2017-04-25 | Thync Global, Inc. | Electrode assembly for transdermal and transcranial stimulation |
US9333334B2 (en) | 2014-05-25 | 2016-05-10 | Thync, Inc. | Methods for attaching and wearing a neurostimulator |
JP6588472B2 (en) | 2014-05-25 | 2019-10-09 | ハイイン エクイティ インベストメント ファンド エル.ピー. | Wearable transcutaneous nerve stimulator |
US10420937B2 (en) | 2014-06-23 | 2019-09-24 | Hrl Laboratories, Llc | Method and apparatus to determine optimal brain stimulation to induce desired behavior |
WO2016109851A1 (en) | 2015-01-04 | 2016-07-07 | Thync, Inc. | Methods and apparatuses for transdermal stimulation of the outer ear |
US11534608B2 (en) | 2015-01-04 | 2022-12-27 | Ist, Llc | Methods and apparatuses for transdermal stimulation of the outer ear |
US9878155B1 (en) * | 2015-01-05 | 2018-01-30 | Hrl Laboratories, Llc | Method for neurostimulation enhanced team performance |
US10071245B1 (en) * | 2015-01-05 | 2018-09-11 | Hrl Laboratories, Llc | Thinking cap: combining personalized, model-driven, and adaptive high definition trans-cranial stimulation (HD-tCS) with functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) brain state measurement and feedback |
US10376697B2 (en) | 2015-03-10 | 2019-08-13 | Hrl Laboratories, Llc | Montage design for closed loop sensing and neurostimulation of the dorsal lateral prefrontal cortex and/or motor cortex |
CN107548312A (en) * | 2015-03-10 | 2018-01-05 | 赫尔实验室有限公司 | System and method for training and assessing |
USD787686S1 (en) | 2015-05-18 | 2017-05-23 | Thync Global, Inc. | Electrode assembly for a wearable transdermal and transcranial neurostimulator |
WO2016196635A2 (en) | 2015-06-01 | 2016-12-08 | Cerevast Medical Inc. | Apparatuses and methods for neuromodulation |
EP3106202B1 (en) * | 2015-06-18 | 2019-08-07 | Taipei Medical University | Transcranial burst electrostimulation apparatus |
US10307592B1 (en) | 2015-10-23 | 2019-06-04 | Hrl Laboratories, Llc | Method and system to accelerate consolidation of specific memories using transcranial stimulation |
US10720076B1 (en) | 2016-10-20 | 2020-07-21 | Hrl Laboratories, Llc | Closed-loop model-based controller for accelerating memory and skill acquisition |
US10596372B2 (en) | 2015-08-27 | 2020-03-24 | Hrl Laboratories, Llc | Targeted steerable transcranial intervention to accelerate memory consolidation |
US11278722B2 (en) | 2015-08-27 | 2022-03-22 | Hrl Laboratories, Llc | System and method to cue specific memory recalls while awake |
US10357654B1 (en) | 2015-08-27 | 2019-07-23 | Hrl Laboratories, Llc | Mapping transcranial signals to transcranial stimulation required to reproduce a brain state |
US10046162B1 (en) | 2015-08-27 | 2018-08-14 | Hrl Laboratories, Llc | Transcranial intervention to weaken traumatic memories |
US10796596B2 (en) | 2015-08-27 | 2020-10-06 | Hrl Laboratories, Llc | Closed-loop intervention control system |
US10413724B2 (en) | 2015-10-23 | 2019-09-17 | Hrl Laboratories, Llc | Method for low latency automated closed-loop synchronization of neurostimulation interventions to neurophysiological activity |
US10744321B2 (en) | 2015-10-23 | 2020-08-18 | Hrl Laboratories, Llc | Transcranial current stimulation system and virtual reality for treatment of PTSD or fears |
US10736561B2 (en) | 2015-10-23 | 2020-08-11 | Hrl Laboratories, Llc | Neural model-based controller |
US11207489B2 (en) | 2015-10-23 | 2021-12-28 | Hrl Laboratories, Llc | Enhanced brain-machine interfaces with neuromodulation |
US10918862B1 (en) * | 2015-10-23 | 2021-02-16 | Hrl Laboratories, Llc | Method for automated closed-loop neurostimulation for improving sleep quality |
CN108024753B (en) | 2015-10-27 | 2021-08-13 | 赫尔实验室有限公司 | Program memory enhancement system and method, and computer readable medium |
WO2017106878A1 (en) | 2015-12-18 | 2017-06-22 | Thync Global, Inc. | Apparatuses and methods for transdermal electrical stimulation of nerves to modify or induce a cognitive state |
US9956405B2 (en) | 2015-12-18 | 2018-05-01 | Thyne Global, Inc. | Transdermal electrical stimulation at the neck to induce neuromodulation |
US10646708B2 (en) | 2016-05-20 | 2020-05-12 | Thync Global, Inc. | Transdermal electrical stimulation at the neck |
US10716514B1 (en) | 2017-04-10 | 2020-07-21 | Hrl Laboratories, Llc | System and method for optimized independent component selection for automated signal artifact removal to generate a clean signal |
US11344723B1 (en) | 2016-10-24 | 2022-05-31 | Hrl Laboratories, Llc | System and method for decoding and behaviorally validating memory consolidation during sleep from EEG after waking experience |
US11690560B2 (en) * | 2016-10-24 | 2023-07-04 | Akili Interactive Labs, Inc. | Cognitive platform configured as a biomarker or other type of marker |
EP3563219A4 (en) * | 2016-12-30 | 2020-07-29 | HRL Laboratories, LLC | Closed-loop intervention control system |
US11052252B1 (en) | 2017-06-07 | 2021-07-06 | Hrl Laboratories, Llc | Transcranial intervention to weaken an undesirable memory |
WO2019018052A2 (en) | 2017-07-18 | 2019-01-24 | Hrl Laboratories, Llc | A transcranial stimulation system and method to improve cognitive function after traumatic brain ilnjury |
CN110662576B (en) * | 2017-07-18 | 2024-04-30 | 赫尔实验室有限公司 | Personalized closed-loop pulse transcranial stimulation system for cognitive enhancement |
US11288977B1 (en) | 2017-10-11 | 2022-03-29 | Hrl Laboratories, Llc | System and method for predicting performance to control interventions by assistive technologies |
US10507324B2 (en) * | 2017-11-17 | 2019-12-17 | Halo Neuro, Inc. | System and method for individualizing modulation |
KR102050319B1 (en) * | 2017-11-30 | 2019-12-02 | 주식회사 싸이버메딕 | A cranial nerve adjustifing apparatus |
KR102100696B1 (en) | 2017-11-30 | 2020-04-16 | 주식회사 싸이버메딕 | A cranial nerve adjustifing apparatus using complex stimulation of central and peripherial nerves |
US11285320B1 (en) | 2018-04-06 | 2022-03-29 | Hrl Laboratories, Llc | Comprehensive second-language acquisition system leveraging sleep neuromodulation and neuroaugmented executive control |
US11285319B1 (en) | 2018-04-06 | 2022-03-29 | Hrl Laboratories, Llc | Method and system for improving quality of life for the elderly through neurostimulation |
EP3784337B1 (en) | 2018-04-24 | 2023-06-28 | Thync Global, Inc. | Streamlined and pre-set neuromodulators |
US20210353224A1 (en) * | 2018-10-15 | 2021-11-18 | The Board Of Trustees Of The Leland Stanford Junior University | Treatment of depression using machine learning |
US20200289054A1 (en) | 2019-06-05 | 2020-09-17 | Mohan Muvvala | System and method for monitoring brain activity using near- infrared spectroscopy and selectively applying transcranial direct current stimulation and photobiomodulation therapy |
KR102278547B1 (en) | 2019-10-01 | 2021-07-16 | 버볼 셔키러브 | Wearable brain stimulation and image acquisition device |
CN111195393A (en) | 2020-01-08 | 2020-05-26 | 国家康复辅具研究中心 | Near-infrared brain region activation mode-oriented peripheral electrical stimulation system and use method thereof |
CA3209349A1 (en) | 2021-02-22 | 2022-08-25 | Nathalie Gouailhardou | Apparatus, systems and methods for monitoring symptoms of neurological conditions |
KR102538308B1 (en) | 2022-12-08 | 2023-05-31 | 주식회사 카티스 | A operation cloud Server and methods of cloud operation for integrated Transcranical Direct Current Stimulation (tDCS) and Near Infrared Spectroscopy (fNIRS) Based Wearable Portable Brain Function Activation Promotion and Monitoring System |
-
2022
- 2022-02-22 CA CA3209349A patent/CA3209349A1/en active Pending
- 2022-02-22 WO PCT/AU2022/050136 patent/WO2022174312A1/en active Application Filing
- 2022-02-22 JP JP2023574744A patent/JP2024512826A/en active Pending
- 2022-02-22 AU AU2022221742A patent/AU2022221742A1/en active Pending
- 2022-02-22 EP EP22755421.9A patent/EP4294260A1/en active Pending
- 2022-02-22 KR KR1020237032324A patent/KR20230148838A/en unknown
-
2023
- 2023-08-21 US US18/453,146 patent/US11931574B2/en active Active
- 2023-12-22 US US18/395,005 patent/US20240226551A1/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wunderlich et al. | Maturation of CAEP in infants and children: a review | |
US7684856B2 (en) | Detection of artifacts in bioelectric signals | |
ES2366219B1 (en) | METHOD AND SYSTEM OF MEASUREMENT OF PHYSIOLOGICAL PARAMETERS. | |
JP6254281B2 (en) | EEG measurement and brain stimulation system | |
US4874237A (en) | Electroretinogram apparatus | |
US20070135727A1 (en) | Detection of artifacts in bioelectric signals | |
Boone et al. | Abnormal sleep architecture and hippocampal circuit dysfunction in a mouse model of fragile X syndrome | |
WO2023179305A1 (en) | Method and system for performing stroke rehabilitation analysis by using near-infrared brain function imaging device | |
US11931574B2 (en) | Apparatus, systems and methods for monitoring symptoms of neurological conditions | |
KR20150061609A (en) | Brain signal detecting and brain stimulating system | |
KR20140022312A (en) | Device for measuring vital signs of drivers | |
KR20190135315A (en) | Wearable device and method for determining concentration degree of user | |
CN108113668A (en) | One-piece type depth of anesthesia and cerebral blood oxygen saturation detection sensor | |
JPWO2022174312A5 (en) | ||
JP4343502B2 (en) | Work comfort level evaluation apparatus and work comfort level evaluation method | |
JP2023540546A (en) | Characterization of tinnitus by functional near-infrared spectroscopy | |
KR101348233B1 (en) | Forehead EOG Measurement System | |
US11583201B2 (en) | Device for recording the vascular response of the human spinal cord triggered by a suprasensible stimulus through the use of functional near-infrared spectroscopy | |
Carrasco et al. | Development of response selectivity in the mouse auditory cortex | |
Lickey et al. | Swept contrast visual evoked potentials and their plasticity following monocular deprivation in mice | |
KR20140127977A (en) | Apparatus for Judgment of Drowsy Driving using Bio Signal | |
KR102332569B1 (en) | Method, system and non-transitory computer-readable recording medium for providing information about prognosis after cardiac arrest | |
US20220212029A1 (en) | Therapy System, Bed System Comprising Same, and Method for Operating Therapy System | |
KR102330796B1 (en) | Method, system and non-transitory computer-readable recording medium for assessment of autoregulation performance based on hemodynamics | |
CN211749600U (en) | Self-adaptive electrode unit for electroencephalogram cap |