JPWO2022083395A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2022083395A5
JPWO2022083395A5 JP2022576528A JP2022576528A JPWO2022083395A5 JP WO2022083395 A5 JPWO2022083395 A5 JP WO2022083395A5 JP 2022576528 A JP2022576528 A JP 2022576528A JP 2022576528 A JP2022576528 A JP 2022576528A JP WO2022083395 A5 JPWO2022083395 A5 JP WO2022083395A5
Authority
JP
Japan
Prior art keywords
gas
column
tower
acetic acid
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022576528A
Other languages
Japanese (ja)
Other versions
JP7486848B2 (en
JP2023531172A (en
Publication date
Priority claimed from CN202011125426.1A external-priority patent/CN112299989B/en
Application filed filed Critical
Publication of JP2023531172A publication Critical patent/JP2023531172A/en
Publication of JPWO2022083395A5 publication Critical patent/JPWO2022083395A5/ja
Application granted granted Critical
Publication of JP7486848B2 publication Critical patent/JP7486848B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (8)

循環ガス圧縮機と、酢酸蒸発器と、循環エチレン予熱器と、酸素ガス混合器と、合成反応器と、反応器出口の第1熱交換器と、反応器出口の第2熱交換器と、第1ガス分離塔と、第1ガス分離塔凝縮器と、第1ガス分離塔アフタークーラーと、第1ガス分離塔相分離器と、第2ガス分離塔と、脱気槽と、回収ガス圧縮機と、水洗塔と、吸収塔と、エチレン回収塔と、酢酸回収システムと、脱着システムとを備えた酢酸ビニル製造工程であって、
(1)新鮮なエチレンと循環ガスを混合し、混合物を前記循環ガス圧縮機に導入し、前記反応器出口の第2熱交換器で反応器出口のストリームと熱交換した後、前記酢酸蒸発器の底部に導入し、前記酢酸蒸発器の頂部から前記エチレン回収塔の塔底液を噴霧し、蒸発器の頂部からエチレンと酢酸の混合ガスを導出し、蒸発器の塔底液を前記酢酸回収システムに送り、
(2)エチレンと酢酸の混合ガスが前記酢酸蒸発器の頂部から出た後、前記反応器出口の第1熱交換器、前記循環エチレン予熱器でそれぞれ加熱され、次に前記酸素ガス混合器で酸素と混合され、前記酸素ガス混合器からの混合ガスは頂部から前記合成反応器に送り込まれ、
(3)反応器出口の反応ガスをそれぞれ前記反応器出口の第1熱交換器、前記反応器出口の第2熱交換器によって熱交換した後、前記第1ガス分離塔の塔底に送り込み、前記第1ガス分離塔の塔釜で脱水後の反応液が得られ、精留部に送られて精製処理を施し、前記第1ガス分離塔の塔頂から主成分が酢酸ビニルと水である塔頂ガスが得られ、前記第1ガス分離塔凝縮器に送り込んで凝縮し、前記第1ガス分離塔凝縮器の非凝縮性ガスが前記第1ガス分離塔アフタークーラーに送り込んでさらに冷却し、前記第1ガス分離塔凝縮器及び前記第1ガス分離塔アフタークーラーの凝縮液が、前記第1ガス分離塔相分離器に入れられ、相分離を実施し、相分離後の油相が前記第1ガス分離塔内に還流として送り込まれ、水相がさらに処理するため精留部に送り込まれ、
(4)前記第1ガス分離塔アフタークーラー後の非凝縮性ガスは、前記第2ガス分離塔の塔底に送り込まれ、反応液、酢酸を吸収・分離した後、塔釜から一定量の反応液を連続的に抜き出し、前記脱気槽に送られ、前記脱気槽から取り出したガスは、前記回収ガス圧縮機で圧縮された後、前記水洗塔に送り込まれ、前記第2ガス分離塔の塔頂では主成分がエチレン、二酸化炭素、エタン及び酸素である混合ガスが得られ、前記循環ガスとして前記循環ガス圧縮機に送られ、
(5)前記水洗塔内に送り込まれたガスを水洗した後、塔頂ガスを前記吸収塔に送り込んでアルカリ液でガス中の二酸化炭素を吸収し、前記吸収塔の塔頂から出たガスの大部分を前記循環ガス圧縮機に送り、残りのガスを前記エチレン回収塔及び不純物排出口に送り、前記吸収塔の塔底液を前記脱着システムに送り込み、
(6)前記吸収塔の塔頂ガスは、前記エチレン回収塔に送り込まれた後、前記エチレン回収塔の塔頂に新鮮な酢酸を加えてその中のエチレンガスを回収し、前記エチレン回収塔の塔底液を前記酢酸蒸発器の塔頂に送り、前記エチレン回収塔の塔頂から焼却に送り、
前記循環ガスには、エタンガスが含まれ、反応器入口でのエタンガス濃度は9~18mol%であり、
反応器入口での酸素濃度は、6~12mol%である
ことを特徴とする、酢酸ビニル製造工程。
a circulating gas compressor, an acetic acid evaporator, a circulating ethylene preheater, an oxygen gas mixer, a synthesis reactor, a first heat exchanger at the reactor outlet, a second heat exchanger at the reactor outlet, A first gas separation tower, a first gas separation tower condenser, a first gas separation tower aftercooler, a first gas separation tower phase separator, a second gas separation tower, a degassing tank, and a recovered gas compression A vinyl acetate production process comprising a machine, a water washing tower, an absorption tower, an ethylene recovery tower, an acetic acid recovery system, and a desorption system,
(1) Mix fresh ethylene and cycle gas, introduce the mixture into the cycle gas compressor, and exchange heat with the stream at the reactor outlet in a second heat exchanger at the reactor outlet, and then into the acetic acid evaporator. The bottom liquid of the ethylene recovery tower is sprayed from the top of the acetic acid evaporator, a mixed gas of ethylene and acetic acid is led out from the top of the evaporator, and the bottom liquid of the evaporator is sprayed into the acetic acid recovery column. send to the system,
(2) After the mixed gas of ethylene and acetic acid exits from the top of the acetic acid evaporator, it is heated in the first heat exchanger at the outlet of the reactor and the circulating ethylene preheater, and then heated in the oxygen gas mixer. mixed with oxygen, the mixed gas from the oxygen gas mixer is fed into the synthesis reactor from the top;
(3) After heat-exchanging the reaction gas at the reactor outlet with a first heat exchanger at the reactor outlet and a second heat exchanger at the reactor outlet, the reaction gas is sent to the bottom of the first gas separation column, A reaction liquid after dehydration is obtained in the column kettle of the first gas separation column, and is sent to a rectification section for purification treatment, and the main components are vinyl acetate and water from the top of the first gas separation column. overhead gas is obtained and sent to the first gas separation tower condenser for condensation, non-condensable gas in the first gas separation tower condenser is sent to the first gas separation tower aftercooler for further cooling; The condensate from the first gas separation column condenser and the first gas separation column aftercooler is put into the first gas separation column phase separator to perform phase separation, and the oil phase after phase separation is transferred to the first gas separation column aftercooler. 1 into the gas separation column as reflux, and the aqueous phase is sent to the rectification section for further treatment.
(4) The non-condensable gas after the aftercooler of the first gas separation tower is sent to the bottom of the second gas separation tower, and after absorbing and separating the reaction liquid and acetic acid, a certain amount of reaction gas is removed from the tower. The liquid is continuously extracted and sent to the degassing tank, and the gas taken out from the degassing tank is compressed by the recovery gas compressor, then sent to the water washing tower, and then sent to the second gas separation tower. A mixed gas whose main components are ethylene, carbon dioxide, ethane and oxygen is obtained at the top of the tower and sent to the circulating gas compressor as the circulating gas,
(5) After washing the gas sent into the water washing tower with water, the tower top gas is sent into the absorption tower and the carbon dioxide in the gas is absorbed with an alkaline liquid, and the gas released from the top of the absorption tower is Sending most of the gas to the circulating gas compressor, sending the remaining gas to the ethylene recovery tower and impurity outlet, sending the bottom liquid of the absorption tower to the desorption system,
(6) After the overhead gas of the absorption tower is sent to the ethylene recovery tower, fresh acetic acid is added to the top of the ethylene recovery tower to recover the ethylene gas therein. sending the bottom liquid to the top of the acetic acid evaporator and sending it to incineration from the top of the ethylene recovery tower;
The circulating gas contains ethane gas, and the ethane gas concentration at the inlet of the reactor is 9 to 18 mol%,
The oxygen concentration at the reactor inlet is 6-12 mol%
A vinyl acetate manufacturing process characterized by:
前記酢酸回収システムは、酢酸フラッシュ蒸発タンクと、酢酸回収塔と、酢酸回収塔凝縮器と、真空ユニットとを備え、前記酢酸蒸発器の塔底液は先に前記酢酸フラッシュ蒸発タンクに入り、フラッシュ蒸発タンクから蒸発したガスが精留部に送られ、前記フラッシュ蒸発タンクの塔底液が前記酢酸回収塔に送られ、前記酢酸回収塔の塔頂ガスが前記酢酸回収塔凝縮器によって凝縮された後で還流され、前記酢酸回収塔凝縮器の未凝縮ガスが前記真空ユニットを通過した後で前記脱気槽に送られ、前記真空ユニットの凝縮液が前記酢酸回収塔に送られて仕込むことを特徴とする、請求項1に記載の酢酸ビニル製造工程。 The acetic acid recovery system includes an acetic acid flash evaporation tank, an acetic acid recovery column, an acetic acid recovery column condenser, and a vacuum unit, and the bottom liquid of the acetic acid evaporator first enters the acetic acid flash evaporation tank and is flashed. The gas evaporated from the evaporation tank was sent to a rectification section, the bottom liquid of the flash evaporation tank was sent to the acetic acid recovery column, and the top gas of the acetic acid recovery column was condensed by the acetic acid recovery column condenser. The uncondensed gas in the acetic acid recovery tower condenser that is later refluxed passes through the vacuum unit and is sent to the degassing tank, and the condensate in the vacuum unit is sent to the acetic acid recovery tower for charging. The vinyl acetate production process according to claim 1, characterized by: 前記脱着システムは、脱着塔と、脱着塔の塔頂凝縮器とを備え、前記吸収塔の塔底液は前記脱着塔の塔頂から前記脱着塔に送り込まれ、前記脱着塔の塔頂から2つのストリームを抽出し、エチレンを含む原料の一方のストリームが前記脱気槽に送られ、原料の他方のストリームの主成分が二酸化炭素で、前記脱着塔の塔頂凝縮器で凝縮された後、非凝縮性の二酸化炭素が境界領域から送り出され、凝縮された凝縮液は前記脱着塔の塔底液と混合され、追加の新鮮なアルカリ液とともに前記吸収塔に戻されることを特徴とする、請求項1に記載の酢酸ビニル製造工程。 The desorption system includes a desorption tower and a condenser at the top of the desorption tower, and the bottom liquid of the absorption tower is sent to the desorption tower from the top of the desorption tower, and the bottom liquid of the absorption tower is sent to the desorption tower from the top of the desorption tower. After extracting two streams, one stream of feedstock containing ethylene is sent to the degassing tank, and the other stream of feedstock is mainly composed of carbon dioxide, which is condensed in the top condenser of the desorption column; Claim characterized in that non-condensable carbon dioxide is pumped out of the boundary region, and the condensed condensate is mixed with the bottoms of the desorption column and returned to the absorption column with additional fresh alkaline liquid. Item 1. Vinyl acetate production process according to item 1. 請求項1に記載の酢酸ビニル製造工程に用いられる酢酸ビニルの製造装置であって、循環ガス圧縮機(101)と、循環エチレン予熱器(102)と、酢酸蒸発器(103)と、反応器出口の第1熱交換器(104)と、反応器出口の第2熱交換器(105)と、酸素ガス混合器(106)と、合成反応器(107)と、第1ガス分離塔(108)と、第1ガス分離塔凝縮器(109)と、第1ガス分離塔アフタークーラー(110)と、第1ガス分離塔相分離器(111)と、第2ガス分離塔(112)と、脱気槽(113)と、回収ガス圧縮機(114)と、水洗塔(115)と、吸収塔(116)と、エチレン回収塔(117)と、酢酸フラッシュ蒸発タンク(118)と、酢酸回収塔(119)と、酢酸回収塔凝縮器(120)と、真空ユニット(121)と、脱着塔(122)と、脱着塔凝縮器(123)と、補助加熱・搬送設備とを備え、接続関係としては、前記循環ガス圧縮機(101)は反応器出口の第2熱交換器(105)の昇温側入口に接続され、前記反応器出口の第2熱交換器(105)の昇温側出口は前記酢酸蒸発器(103)の底部入口に接続され、前記酢酸蒸発器(103)の頂部出口は前記反応器出口の第1熱交換器(104)の昇温側入口に接続され、前記反応器出口の第1熱交換器の昇温側出口(104)は前記循環エチレン予熱器(102)に接続され、前記循環エチレン予熱器(102)は前記酸素ガス混合器(106)に接続され、前記酸素ガス混合器(106)の出口は前記合成反応器(107)の入口に接続され、前記合成反応器(107)の出口は前記反応器出口の第1熱交換器(104)、前記反応器出口の第2熱交換器(105)の降温側に順次接続され、前記反応器出口の第2熱交換器(105)の降温側出口は前記第1ガス分離塔(108)の底部仕込口に接続され、前記第1ガス分離塔(108)の塔頂は前記第1ガス分離塔凝縮器(109)、前記第1ガス分離塔アフタークーラー(110)に順次接続され、前記第1ガス分離塔凝縮器(109)、前記第1ガス分離塔アフタークーラー(110)は前記第1ガス分離塔相分離器(111)に接続され、前記第1ガス分離塔相分離器(111)の水側を精留部に送り、油側を前記第1ガス分離塔(108)の還流口に接続し、前記第1ガス分離塔アフタークーラー(110)の非凝縮性ガス出口は前記第2ガス分離塔(112)の底部仕込口に接続され、前記第2ガス分離塔(112)の塔頂は前記循環ガス圧縮機(101)に接続され、前記第2ガス分離塔(112)の塔釜出口は前記脱気槽(113)に接続され、前記脱気槽(113)の気相出口は前記回収ガス圧縮機(114)に接続され、回収ガス圧縮機(114)は前記水洗塔(115)の入口に接続され、前記水洗塔(115)の塔頂出口は前記吸収塔(116)の塔底入口に接続され、前記吸収塔(116)の塔頂出口は前記循環ガス圧縮機(101)、不純物排出口及び前記エチレン回収塔(117)の塔底入口に接続され、前記エチレン回収塔(117)の塔釜出口は前記酢酸蒸発器(103)の頂部入口に接続され、前記酢酸蒸発器(103)の塔釜出口は前記酢酸フラッシュ蒸発タンク(118)に接続され、前記酢酸フラッシュ蒸発タンク(118)の底部出口が前記酢酸回収塔(119)の仕込口に接続され、前記酢酸回収塔(119)の塔頂出口は前記酢酸回収塔凝縮器(120)に接続され、酢酸凝縮器凝縮液出口が前記酢酸回収塔(119)の塔頂還流口に接続され、前記酢酸回収塔凝縮器(120)の非凝縮性ガス口が前記真空ユニット(121)に接続され、前記真空ユニット(121)の液相出口は前記酢酸回収塔(119)の仕込口に接続され、前記真空ユニット(121)の気相出口が前記脱気槽(113)の入口に接続され、前記吸収塔(116)の塔釜は前記脱着塔(122)の塔頂入口に接続され、前記脱着塔(122)の塔頂の二酸化炭素流股出口が前記脱着塔凝縮器(123)の入口に接続され、前記脱着塔凝縮器(123)の凝縮液出口が前記吸収塔(116)の吸収液仕込口に接続されていることを特徴とする、酢酸ビニルの製造装置。 A vinyl acetate manufacturing apparatus used in the vinyl acetate manufacturing process according to claim 1 , comprising a circulating gas compressor (101), a circulating ethylene preheater (102), an acetic acid evaporator (103), and a reactor. A first heat exchanger (104) at the outlet, a second heat exchanger (105) at the reactor outlet, an oxygen gas mixer (106), a synthesis reactor (107), and a first gas separation column (108). ), a first gas separation column condenser (109), a first gas separation column aftercooler (110), a first gas separation column phase separator (111), a second gas separation column (112), Deaeration tank (113), recovery gas compressor (114), water washing tower (115), absorption tower (116), ethylene recovery tower (117), acetic acid flash evaporation tank (118), acetic acid recovery It is equipped with a column (119), an acetic acid recovery column condenser (120), a vacuum unit (121), a desorption column (122), a desorption column condenser (123), and auxiliary heating/transfer equipment, and has a connection relationship. The circulating gas compressor (101) is connected to the temperature increasing side inlet of the second heat exchanger (105) at the reactor outlet, and the circulating gas compressor (101) is connected to the temperature increasing side inlet of the second heat exchanger (105) at the reactor outlet. The outlet is connected to the bottom inlet of the acetic acid evaporator (103), the top outlet of the acetic acid evaporator (103) is connected to the heating side inlet of the first heat exchanger (104) at the reactor outlet, and the The temperature increasing side outlet (104) of the first heat exchanger at the reactor outlet is connected to the circulating ethylene preheater (102), and the circulating ethylene preheater (102) is connected to the oxygen gas mixer (106). , the outlet of the oxygen gas mixer (106) is connected to the inlet of the synthesis reactor (107), and the outlet of the synthesis reactor (107) is connected to the first heat exchanger (104) at the outlet of the reactor; The cooling side outlet of the second heat exchanger (105) at the outlet of the reactor is sequentially connected to the cooling side of the second heat exchanger (105) at the outlet of the reactor. The top of the first gas separation column (108) is connected to the first gas separation column condenser (109) and the first gas separation column aftercooler (110) in sequence, The separation column condenser (109) and the first gas separation column aftercooler (110) are connected to the first gas separation column phase separator (111), and the water in the first gas separation column phase separator (111) is connected to the first gas separation column phase separator (111). The oil side is sent to the rectification section, the oil side is connected to the reflux port of the first gas separation column (108), and the non-condensable gas outlet of the first gas separation column aftercooler (110) is connected to the second gas separation section. The top of the second gas separation column (112) is connected to the circulating gas compressor (101), and the column outlet of the second gas separation column (112) is connected to the bottom inlet of the column (112). is connected to the deaeration tank (113), the gas phase outlet of the deaeration tank (113) is connected to the recovery gas compressor (114), and the recovery gas compressor (114) is connected to the water washing tower (115). The top outlet of the water washing column (115) is connected to the bottom inlet of the absorption column (116), and the top outlet of the absorption column (116) is connected to the inlet of the circulating gas compressor (101). , is connected to an impurity outlet and a bottom inlet of the ethylene recovery column (117), and a column outlet of the ethylene recovery column (117) is connected to a top inlet of the acetic acid evaporator (103), and the acetic acid evaporator The column outlet of (103) is connected to the acetic acid flash evaporation tank (118), the bottom outlet of the acetic acid flash evaporation tank (118) is connected to the inlet of the acetic acid recovery column (119), and the acetic acid recovery column The top outlet of (119) is connected to the acetic acid recovery column condenser (120), the acetic acid condenser condensate outlet is connected to the top reflux port of the acetic acid recovery column (119), and the acetic acid recovery column condenser The non-condensable gas port (120) is connected to the vacuum unit (121), the liquid phase outlet of the vacuum unit (121) is connected to the inlet of the acetic acid recovery column (119), and the vacuum unit (121) has a non-condensable gas port connected to the vacuum unit (121). ) is connected to the inlet of the degassing tank (113), the column pot of the absorption tower (116) is connected to the top inlet of the desorption tower (122), and the gas phase outlet of the absorption tower (116) is connected to the top inlet of the desorption tower (122). The carbon dioxide stream outlet at the top of the tower is connected to the inlet of the desorption tower condenser (123), and the condensate outlet of the desorption tower condenser (123) is connected to the absorption liquid inlet of the absorption tower (116). A vinyl acetate manufacturing equipment characterized by: 前記酢酸蒸発器(103)の操作圧力は、1.0~1.2baraで、塔頂温度は40~100℃であることを特徴とする、請求項に記載の製造装置。 The production apparatus according to claim 4 , wherein the operating pressure of the acetic acid evaporator (103) is 1.0 to 1.2 bara, and the top temperature is 40 to 100°C. 、前記合成反応器(107)の反応温度は、100~180℃で、反応圧力は1.0~1.2baraであり、前記第1ガス分離塔(108)の操作圧力は、6~9baraで、塔頂温度は65~100℃であり、前記第2ガス分離塔(112)の操作圧力は、6~9baraで、塔頂温度は20~50℃であることを特徴とする、請求項に記載の製造装置。 , the reaction temperature of the synthesis reactor (107) is 100 to 180°C, the reaction pressure is 1.0 to 1.2 bara, and the operating pressure of the first gas separation column (108) is 6 to 9 bara. 4. The top temperature of the column is 65 to 100°C, the operating pressure of the second gas separation column (112) is 6 to 9 bara, and the top temperature is 20 to 50°C. The manufacturing equipment described in . 前記水洗塔(115)の操作圧力は、8~11baraで、塔頂温度は22~55℃であり、前記吸収塔(116)の操作圧力は、8~11baraで、塔頂温度は92~112℃であり、前記エチレン回収塔(117)の操作圧力は、7~8baraで、塔頂温度は23~45℃であることを特徴とする、請求項に記載の製造装置。 The operating pressure of the water washing tower (115) is 8 to 11 bara and the top temperature is 22 to 55°C, and the operating pressure of the absorption tower (116) is 8 to 11 bara and the top temperature is 92 to 112°C. 5 C, the operating pressure of the ethylene recovery column (117) is 7 to 8 bara, and the top temperature is 23 to 45 C. 前記酢酸フラッシュ蒸発タンク(118)の操作圧力は、1.0~1.2baraで、塔頂温度は92~115℃であり、前記酢酸回収塔(119)の操作圧力は、1.0~1.2baraで、塔頂温度は77~91℃であり、前記脱着塔(122)の操作圧力は、1.0~1.3baraで、塔頂温度は103~124℃であることを特徴とする、請求項に記載の製造装置。 The operating pressure of the acetic acid flash evaporation tank (118) is 1.0-1.2 bara, the top temperature is 92-115°C, and the operating pressure of the acetic acid recovery column (119) is 1.0-1.2 bara. .2 bara, and the top temperature is 77 to 91°C, and the operating pressure of the desorption column (122) is 1.0 to 1.3 bara, and the top temperature is 103 to 124°C. , The manufacturing apparatus according to claim 4 .
JP2022576528A 2020-10-20 2021-09-23 Vinyl acetate manufacturing method and manufacturing apparatus Active JP7486848B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202011125426.1 2020-10-20
CN202011125426.1A CN112299989B (en) 2020-10-20 2020-10-20 Vinyl acetate production process and device
PCT/CN2021/119873 WO2022083395A1 (en) 2020-10-20 2021-09-23 Vinyl acetate production process and device

Publications (3)

Publication Number Publication Date
JP2023531172A JP2023531172A (en) 2023-07-21
JPWO2022083395A5 true JPWO2022083395A5 (en) 2023-10-03
JP7486848B2 JP7486848B2 (en) 2024-05-20

Family

ID=74328040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022576528A Active JP7486848B2 (en) 2020-10-20 2021-09-23 Vinyl acetate manufacturing method and manufacturing apparatus

Country Status (4)

Country Link
US (1) US20230312456A1 (en)
JP (1) JP7486848B2 (en)
CN (1) CN112299989B (en)
WO (1) WO2022083395A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112299989B (en) * 2020-10-20 2021-08-31 天津大学 Vinyl acetate production process and device
CN113861026B (en) * 2021-10-29 2022-09-06 天津大学 Refining method of vinyl acetate and acetic acid synthesized by acetylene method
CN115745794B (en) * 2022-11-16 2023-06-20 天津大学 Ethylene process and apparatus for producing vinyl acetate
CN116924877A (en) * 2023-07-26 2023-10-24 天津大学 Process and device for refining recycle gas in vinyl acetate synthesis process

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3855280A (en) * 1972-12-08 1974-12-17 Celanese Corp Process for producing an alkenyl alkanoate from an olefin and a carboxylic acid
JPH0611730B2 (en) * 1985-10-11 1994-02-16 日本合成化学工業株式会社 Method for purifying vinyl acetate reaction product gas
US20120149939A1 (en) * 2010-12-10 2012-06-14 Celanese International Corporation Recovery of Acetic Acid from Heavy Ends in Vinyl Acetate Synthesis Process
CN102936198B (en) * 2012-10-12 2016-05-25 天津大学 Produce the method for vinyl acetate
CN112209830B (en) * 2020-10-20 2021-08-27 天津大学 Method for producing vinyl acetate
CN112299989B (en) * 2020-10-20 2021-08-31 天津大学 Vinyl acetate production process and device

Similar Documents

Publication Publication Date Title
CN102936198B (en) Produce the method for vinyl acetate
CN104817481B (en) Technological method for recovering DMSO from DMSO aqueous solution
JP7486847B2 (en) Method for producing ethylene acetate
CN113045372B (en) Production process and device for preparing ethylene by ethanol dehydration
CN110698320B (en) Continuous recovery device and continuous recovery process for glyphosate hydrolyzed gas phase
JP7486848B2 (en) Vinyl acetate manufacturing method and manufacturing apparatus
CN111807981A (en) Method for recovering DMF (dimethyl formamide) from trichloroethane
CN112521252A (en) Concentrated heat pump rectification process and equipment for propargyl alcohol and butynediol aqueous solution system
CN109734558A (en) Potassium tert-butoxide is compressed indirectly from backheat rectificating method
JPWO2022083395A5 (en)
CN113443961A (en) Heat pump partition plate rectification method and equipment applied to separation and concentration of formaldehyde and acetylene reaction products
CN105947983A (en) Preparation method of anhydrous hydrogen chloride
CN111333484A (en) Ultrahigh-purity methane chloride production system and process
CN111592469A (en) Method for recovering DMAC (dimethylacetamide) residual liquid in sucralose production
CN109232166A (en) A kind of carbonated hydrogen chloride gas produces monochloro methane Processes and apparatus
CN216427170U (en) Deep recovery system for chloromethane
CN214781576U (en) Caprolactam rearrangement heat energy cyclic utilization device
TW202322881A (en) System and method for improving water quality of dehydrating tower of purified terephthalic acid device
CN114249676A (en) Method and device for purifying and separating methyl mercaptan
CN203007173U (en) Preparation device of ultra-high-purity difluoromonochloroethane
JPWO2022083396A5 (en)
CN110180327A (en) A kind of method and system of the tail gas resource utilization containing organic amine
CN218166519U (en) Purification and quality improvement system for residual ammonia water and ammonia distillation strong ammonia water
CN218590466U (en) 2-amino-3-chlorine-5-trifluoromethyl pyridine production device
CN114516816B (en) Method and device for recycling DMAC and isoquinoline from solution