JPWO2022004536A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2022004536A5
JPWO2022004536A5 JP2022533924A JP2022533924A JPWO2022004536A5 JP WO2022004536 A5 JPWO2022004536 A5 JP WO2022004536A5 JP 2022533924 A JP2022533924 A JP 2022533924A JP 2022533924 A JP2022533924 A JP 2022533924A JP WO2022004536 A5 JPWO2022004536 A5 JP WO2022004536A5
Authority
JP
Japan
Prior art keywords
film
long period
pva film
stretching
pva
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022533924A
Other languages
Japanese (ja)
Other versions
JPWO2022004536A1 (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/JP2021/023876 external-priority patent/WO2022004536A1/en
Publication of JPWO2022004536A1 publication Critical patent/JPWO2022004536A1/ja
Publication of JPWO2022004536A5 publication Critical patent/JPWO2022004536A5/ja
Pending legal-status Critical Current

Links

Description

小角X線散乱測定では、試料にX線を照射した際、X線が原子の周りにある電子によって散乱又は干渉して起こる回折を解析する。特に、2θ<10°以下の低角領域に現れる回折を解析することで、測定対象である試料の構造を評価することができ、通常、数nm~数十nm程度の大きさの構造を評価できるとされている。例えば、測定対象である試料の結晶長周期(ポリマー中にランダムに存在する結晶間距離の平均値)を評価することができる。 In the small-angle X-ray scattering measurement, when a sample is irradiated with X-rays, the X-rays are scattered or interfered by electrons around atoms, and the diffraction is analyzed. In particular, by analyzing the diffraction that appears in the low-angle region of 2θ<10° or less, it is possible to evaluate the structure of the sample that is the object of measurement. It is said to be possible. For example, it is possible to evaluate the crystal long period (the average value of the inter-crystal distances randomly present in the polymer) of the sample to be measured.

PVAフィルムには、PVAの分子鎖が折り畳まれた状態である結晶部(ラメラ結晶)とPVAの分子鎖が折り畳まれずほどけた状態である非晶部が存在する。そして、本発明では、結晶部(ラメラ結晶)同士の結晶間距離の平均値を結晶長周期とする。この結晶長周期は、PVAフィルムに対して小角X線散乱測定を行って得られる散乱曲線の回折ピークから求めることができる。そして、PVAフィルムが光学フィルム製造用の原反フィルムである場合には、この結晶長周期に由来する回折ピークは、散乱ベクトルq(nm-1)が0.5nm-1付近に出現することが一般に知られている。 The PVA film has a crystalline portion (lamellar crystal) in which the PVA molecular chains are folded and an amorphous portion in which the PVA molecular chains are unfolded. In the present invention, the crystal long period is defined as the average distance between crystals (lamellar crystals). This crystal long period can be obtained from the diffraction peak of the scattering curve obtained by performing small-angle X-ray scattering measurement on the PVA film. Then, when the PVA film is a raw film for optical film production, the diffraction peak derived from this crystal long period may appear near the scattering vector q(nm −1 ) of 0.5 nm −1 . commonly known.

上記のように、PVAフィルムの小角X線散乱測定では、PVAフィルムの結晶長周期に由来する回折ピークは、散乱曲線において、散乱ベクトルq(nm-1)が0.5nm-1付近に出現する。本発明においては、この回折ピークのピークトップの散乱ベクトルq(nm-1)の値から結晶長周期Ds及び結晶長周期Daを算出した。ここで、このピークトップは、散乱ベクトルq(nm-1)が0.2以上1.0以下の範囲において、散乱曲線が上に凸となる変曲点である(図1参照)。 As described above, in the small-angle X-ray scattering measurement of the PVA film, the diffraction peak derived from the crystal long period of the PVA film appears near the scattering vector q (nm −1 ) of 0.5 nm −1 in the scattering curve. . In the present invention, the crystal long period Ds and the crystal long period Da were calculated from the value of the scattering vector q (nm −1 ) at the peak top of this diffraction peak. Here, the peak top is an inflection point at which the scattering curve becomes convex in the range of the scattering vector q(nm −1 ) from 0.2 to 1.0 (see FIG. 1).

本発明において、水/メタノール混合溶媒中(体積比率:2/8)で行った小角X線散乱測定から求められる結晶長周期Dsと、前記混合溶媒に浸漬する前に行った小角X線散乱測定から求められる結晶長周期Daとが、0.3≦(Ds-Da)/Da<0.5の式を満たすことが重要である。 In the present invention, the crystal long period Ds obtained from the small-angle X-ray scattering measurement performed in a water/methanol mixed solvent (volume ratio: 2/8), and the small-angle X-ray scattering measurement performed before immersion in the mixed solvent It is important that the crystal long period D a obtained from the formula satisfies the formula 0.3≦(Ds−Da)/Da<0.5.

このようにして製造されたPVAフィルムは、必要に応じて、さらに、調湿処理、フィルム両端部(耳部)のカットなどを行い、円筒状のコアの上にロール状に巻き取られ、防湿包装されて、製品となる。 The PVA film thus produced is further subjected to humidity control treatment, cutting of both ends (edges) of the film, etc., if necessary, and wound into a roll on a cylindrical core to provide a moisture-proof film. It is packaged and becomes a product.

一軸延伸におけるPVAフィルムの最大延伸応力は、50N/mm以下であることが好ましく、25N/mm以下であることがより好ましく、15N/mm以下であることがさらに好ましく、10N/mm以下であることが特に好ましい。ここで、最大延伸応力とは、延伸処理浴において隣接するロール間にかかるPVAフィルムの延伸張力をPVAフィルムの断面積で除した値である。このとき、PVAフィルムの延伸張力は、延伸処理浴において隣接するロール間に設置したテンションロールによって計測することができ、延伸処理浴において3本以上のロールを用いたときはその中の最大の値が用いられるまた、PVAフィルムの断面積は、偏光フィルムの作製に供する前の未延伸のPVAフィルムから求められる。最大延伸応力を小さくすることによって、収縮応力の小さい偏光フィルムを得ることができる。また通常、最大延伸応力は1N/mm以上である。 The maximum stretching stress of the PVA film in uniaxial stretching is preferably 50 N/mm 2 or less, more preferably 25 N/mm 2 or less, even more preferably 15 N/mm 2 or less, and 10 N/mm 2 . The following are particularly preferred. Here, the maximum stretching stress is a value obtained by dividing the stretching tension applied to the PVA film between adjacent rolls in the stretching bath by the cross-sectional area of the PVA film. At this time, the stretching tension of the PVA film can be measured by tension rolls installed between adjacent rolls in the stretching bath, and the maximum value among them when three or more rolls are used in the stretching bath. is used . Also, the cross-sectional area of the PVA film is obtained from the unstretched PVA film before being subjected to the preparation of the polarizing film. A polarizing film with low shrinkage stress can be obtained by reducing the maximum stretching stress. Also, the maximum stretching stress is usually 1 N/mm 2 or more.

(6)高温下における偏光フィルムの収縮応力
収縮応力は島津製作所製の恒温槽付きオートグラフAG-Xを用いて測定した。測定には20℃/20%RHで18時間調湿した偏光フィルム(長さ方向15cm、幅方向1.5cm)をチャック(チャック間隔5cm)に取り付け、引張り開始と同時に、80℃へ恒温槽の昇温を開始した。偏光フィルムを1mm/minの速さで引張り、張力が2Nに到達した時点で引張りを停止し、その状態で4時間後までの張力を測定した。このとき、シャフトの熱膨張によってチャック間の距離が変わるため、チャックに標線シールを貼り、ビデオ式伸び計TR ViewX120Sを用いてチャックに貼り付けた標線シールが動いた分だけチャック間の距離を修正できるようにして測定を行った。なお、4時間後の張力の測定値から初期張力2Nを差し引いた値を変更フィルムの収縮力とし、その値をサンプル断面積で除した値を収縮応力(N/mm)と定義した。
(6) Shrinkage stress of polarizing film at high temperature Shrinkage stress was measured using an autograph AG-X with a constant temperature bath manufactured by Shimadzu Corporation. For the measurement, a polarizing film (15 cm in the length direction, 1.5 cm in the width direction) that had been conditioned at 20° C./20% RH for 18 hours was attached to a chuck (chuck interval: 5 cm), and at the same time as the start of pulling, it was heated to 80° C. in a constant temperature bath. Heating was started. The polarizing film was pulled at a speed of 1 mm/min, and when the tension reached 2 N, the pulling was stopped, and the tension was measured for 4 hours after that state. At this time, the distance between the chucks changes due to the thermal expansion of the shaft. Measurements were made with the ability to correct for distance. The shrinkage force of the modified film was obtained by subtracting the initial tension of 2 N from the tension measured after 4 hours, and the shrinkage stress (N/mm 2 ) was defined as the value obtained by dividing this value by the cross-sectional area of the sample.

JP2022533924A 2020-06-30 2021-06-23 Pending JPWO2022004536A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020112280 2020-06-30
PCT/JP2021/023876 WO2022004536A1 (en) 2020-06-30 2021-06-23 Polyvinyl alcohol film and method for manufacturing optical film in which same is used

Publications (2)

Publication Number Publication Date
JPWO2022004536A1 JPWO2022004536A1 (en) 2022-01-06
JPWO2022004536A5 true JPWO2022004536A5 (en) 2023-08-30

Family

ID=79316176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022533924A Pending JPWO2022004536A1 (en) 2020-06-30 2021-06-23

Country Status (5)

Country Link
JP (1) JPWO2022004536A1 (en)
KR (1) KR20230029609A (en)
CN (1) CN115996974A (en)
TW (1) TW202212433A (en)
WO (1) WO2022004536A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116571421B (en) * 2023-04-26 2024-05-24 安徽皖维先进功能膜材料研究院有限公司 Preparation method of anti-warping polarizer

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68906410T2 (en) * 1988-02-10 1993-12-23 Kuraray Co Polyvinyl alcohol and process for the production of polyvinyl alcohol by hydrolysis using acid catalysts.
JP3478533B2 (en) * 2000-05-12 2003-12-15 株式会社クラレ Method for producing polyvinyl alcohol-based polymer film
JP3976220B2 (en) * 2000-08-21 2007-09-12 日本合成化学工業株式会社 Polyvinyl alcohol film for polarizing film
JP4906308B2 (en) 2004-11-02 2012-03-28 日本合成化学工業株式会社 Polyvinyl alcohol film and method for producing the same
JP2006225496A (en) * 2005-02-17 2006-08-31 Nitto Denko Corp Water-soluble resin film and method for producing the same, polarizer and method for producing the same, polarizing plate, optical film, and image display
JP2006224430A (en) * 2005-02-17 2006-08-31 Nitto Denko Corp Microregion dispersing type polyvinyl alcohol film, its manufacturing method, manufacturing method of polarizer, polarizer, polarizing plate, optical film and image display device
JP2006307058A (en) * 2005-04-28 2006-11-09 Nippon Synthetic Chem Ind Co Ltd:The Polyvinyl alcohol-based film, and its polarizing film, polarizing plate
JP5649820B2 (en) * 2007-08-24 2015-01-07 株式会社クラレ Polyvinyl alcohol film and method for producing the same
CN103442871B (en) * 2011-03-29 2015-10-21 可乐丽股份有限公司 Polymer film of polyvinyl alcohol and manufacture method thereof
KR20140130363A (en) 2012-03-30 2014-11-10 가부시키가이샤 구라레 Polyvinyl alcohol-type polymer film and method for producing same
KR102387497B1 (en) * 2014-12-12 2022-04-15 주식회사 쿠라레 Polyvinyl alcohol film
WO2016190235A1 (en) * 2015-05-28 2016-12-01 株式会社クラレ Polyvinyl alcohol polymer film and method for producing same
JP2017142347A (en) 2016-02-09 2017-08-17 株式会社クラレ Polarizing film with small contraction stress and production method of the same

Similar Documents

Publication Publication Date Title
Zhang et al. Stretch-induced complexation reaction between poly (vinyl alcohol) and iodine: an in situ synchrotron radiation small-and wide-angle X-ray scattering study
JPWO2022004536A5 (en)
JP2559073B2 (en) Method for producing cellulose triacetate film
Ding et al. Effects of annealing on structure and deformation mechanism of isotactic polypropylene film with row‐nucleated lamellar structure
Liu et al. Effect of annealing on phase structure and mechanical behaviors of polypropylene hard elastic films
Furuhashi et al. Higher order structures and mechanical properties of bacterial homo poly (3-hydroxybutyrate) fibers prepared by cold-drawing and annealing processes
WO2015146894A1 (en) Biaxially oriented polypropylene film
Kissin Orientation of isotactic polypropylene in crystalline and amorphous phases: IR methods
Takechi et al. Improvement of dielectric properties of cyanoethyl cellulose via esterification and film stretching
JP6786935B2 (en) Biaxially oriented polypropylene film
TWI769938B (en) Polyvinyl alcohol film, optical film comprising the same, and manufacturing method thereof
Li et al. Preparation of highly oriented polyethylene precursor film with fibril and its influence on microporous membrane formation
Anandakumaran et al. Drawing-induced changes in the properties of polyethylene fibers prepared by gelation/crystallization
JP7447055B2 (en) Polyvinyl alcohol film and optical film using it
JPS59140028A (en) Preparation of polyester film
Fukui et al. Rheo-optical studies of high polymers. XX. Time and temperature dependences of crystalline and amorphous orientation in low-density polyethylene
KR101144595B1 (en) Cellulose acetate film
Debili et al. Synergistic effects of stretching/polarization temperature and electric field on phase transformation and piezoelectric properties of polyvinylidene fluoride nanofilms
WO2019189319A1 (en) Molded article
Sawatari et al. Temperature dependence of crystal lattice modulus and dynamic mechanical properties of ultradrawn polypropylene films
Hedesiu et al. Study of Uniaxially Stretched Isotactic Poly (propylene) by 1H Solid‐State NMR and IR Spectroscopy
WO2022004536A1 (en) Polyvinyl alcohol film and method for manufacturing optical film in which same is used
Samon et al. Morphological changes during the annealing of polybutene-1 fiber
Xie et al. Influence of material characteristics on the structure and properties of high-density polyethylene microporous membranes
Pakhomov et al. The structure of high-strength ultrahigh-molecular-weight polyethylene fibres fabricated by the gel-spinning method