JPWO2021217146A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2021217146A5
JPWO2021217146A5 JP2022564248A JP2022564248A JPWO2021217146A5 JP WO2021217146 A5 JPWO2021217146 A5 JP WO2021217146A5 JP 2022564248 A JP2022564248 A JP 2022564248A JP 2022564248 A JP2022564248 A JP 2022564248A JP WO2021217146 A5 JPWO2021217146 A5 JP WO2021217146A5
Authority
JP
Japan
Prior art keywords
item
fluorescently labeled
reaction
preceding items
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022564248A
Other languages
Japanese (ja)
Other versions
JP2023523236A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2021/029210 external-priority patent/WO2021217146A1/en
Publication of JP2023523236A publication Critical patent/JP2023523236A/en
Publication of JPWO2021217146A5 publication Critical patent/JPWO2021217146A5/ja
Pending legal-status Critical Current

Links

Description

本発明はまた、本発明の方法で使用するためのキットを提供する。
本発明の実施形態において、例えば以下の項目が提供される。
(項目1)
ポリヌクレオチドのヌクレオチド配列を決定するための方法であって、
(a)シス側およびトランス側を含むソリッドステート基材であって、前記基材が、反応容積を画定し、かつ
(i)前記基材の前記シス側と前記トランス側との間に延在する近位貫通孔と、
(ii)1またはそれを超える側壁と、
(iii)遠位開口部と、を含む、反応ウェルを含み、
前記ソリッドステート基材が、励起光が前記反応容積内に浸透すること、および前記基材の前記シス側に浸透することを実質的にブロックする不透明金属層をさらに含む、ソリッドステート基材と、
(b)担体粒子に結合した蛍光標識ポリヌクレオチド鎖を含む前記担体粒子であって、前記蛍光標識ポリヌクレオチド鎖が、
(i)前記担体粒子に結合した近位端と、
(ii)エキソヌクレアーゼによって切断可能な遠位端と、
(iii)蛍光標識を含む少なくとも1つの蛍光標識ヌクレオチドと、を含み、
前記担体粒子は、前記基材の前記シス側に位置するが、前記貫通孔を通過せず、その結果、前記蛍光標識ポリヌクレオチド鎖は、前記貫通孔を通って突出し、その結果、前記蛍光標識ポリヌクレオチド鎖の前記遠位端は、前記反応容積内にある、担体粒子と、を提供することと、
前記蛍光標識ポリヌクレオチド鎖をエキソヌクレアーゼと反応させることであって、その結果、モノヌクレオチドが前記鎖の遠位端から連続的に放出され、前記遠位開口部を通って前記反応容積から拡散することと、
前記反応中に、前記基材の前記トランス側を励起光で照射することであって、前記反応ウェルの前記遠位開口部に隣接する蛍光励起ゾーンを作製し、その結果、前記励起ゾーン内の蛍光標識モノヌクレオチドが蛍光シグナルを放出することと、
時間の関数として蛍光シグナルを検出することと
を含み、
それにより、放出された蛍光標識モノヌクレオチドから検出された蛍光シグナルの時間順序からヌクレオチド配列が決定される、方法。
(項目2)
前記反応ウェルの前記遠位開口部が、少なくとも30nmの最小直径を有する、先行する項目のいずれか一項に記載の方法。
(項目3)
前記反応ウェルの前記遠位開口部が、50~150nmの最小直径を有する、先行する項目のいずれか一項に記載の方法。
(項目4)
前記反応ウェルの前記1またはそれを超える壁がテーパーになっていない、先行する項目のいずれか一項に記載の方法。
(項目5)
前記反応ウェルの前記1またはそれを超える壁が、実質的に円筒形である、先行する項目のいずれか一項に記載の方法。
(項目6)
前記不透明金属層が、金またはアルミニウムを含む、先行する項目のいずれか一項に記載の方法。
(項目7)
前記不透明金属層が、100nm~600nmの厚さを有する、先行する項目のいずれか一項に記載の方法。
(項目8)
前記反応ウェルが、少なくとも200nmのウェル深さを有する、先行する項目のいずれか一項に記載の方法。
(項目9)
前記反応ウェルが、200nm~1000nmのウェル深さを有する、先行する項目のいずれか一項に記載の方法。
(項目10)
前記反応容積中の前記蛍光標識ポリヌクレオチド鎖が、少なくとも100個の連続ヌクレオチドを含有する蛍光標識されたポリヌクレオチドセグメントを含む、先行する項目のいずれか一項に記載の方法。
(項目11)
前記貫通孔が、少なくとも2nmの最小直径を有する、項目1に記載の方法。
(項目12)
前記貫通孔が、2nm~50nmの最小直径を有する、項目1に記載の方法。
(項目13)
前記基材が、前記近位貫通孔を含み、20nm~50nmの厚さを有する薄膜層を含む、先行する項目のいずれか一項に記載の方法。
(項目14)
前記薄膜層が、窒化ケイ素を含む、項目13に記載の方法。
(項目15)
前記励起光が380nmまたはそれを超える波長を有する、先行する項目のいずれか一項に記載の方法。
(項目16)
前記ソリッドステート基材が、前記反応容積を画定する表面部分(単数または複数)を含み、前記表面部分(単数または複数)が、少なくとも1つの表面不動態化コーティングを含む、先行する項目のいずれか一項に記載の方法。
(項目17)
前記反応ウェルの1またはそれを超える側壁が、酸化ケイ素コーティングおよび酸化アルミニウムコーティングのうちの少なくとも1つのものを含む、先行する項目のいずれか一項に記載の方法。
(項目18)
前記蛍光標識ポリヌクレオチド鎖が、少なくとも2つの異なる種類のヌクレオチドを含み、それぞれの種類が識別蛍光標識で標識されている、先行する項目のいずれか一項に記載の方法。
(項目19)
前記反応の間、前記担体粒子は、電圧バイアスによって前記近位貫通孔の隣に維持される、先行する項目のいずれか一項に記載の方法。
(項目20)
前記反応の後、前記電圧バイアスを停止して前記担体粒子を前記近位貫通孔から離れるようにし、その結果、前記残りの蛍光標識ポリヌクレオチド鎖が前記反応容積から除去され、次いで、電圧バイアスを印加して、同じまたは異なる担体粒子を前記近位貫通孔に向かって移動させ、その結果、新しい蛍光標識ポリヌクレオチド鎖がエキソヌクレアーゼと反応するために前記反応ウェルに送達される、項目19に記載の方法。
(項目21)
前記担体粒子が磁気を帯びてない、先行する項目のいずれか一項に記載の方法。
(項目22)
前記担体粒子が磁気を帯びている、先行する項目のいずれか一項に記載の方法。
(項目23)
前記反応容積中の前記蛍光標識ポリヌクレオチド鎖が二本鎖核酸を含む、先行する項目のいずれか一項に記載の方法。
(項目24)
前記反応容積中の前記蛍光標識ポリヌクレオチド鎖が一本鎖核酸を含む、項目1~22のいずれか一項に記載の方法。
(項目25)
前記担体粒子が、複数の蛍光標識ポリヌクレオチド鎖を含む、先行する項目のいずれか一項に記載の方法。
(項目26)
前記担体粒子が、互いに異なるポリヌクレオチド配列を有する複数の蛍光標識ポリヌクレオチド鎖を含む、先行する項目のいずれか一項に記載の方法。
(項目27)
前記ソリッドステート基材が複数の反応ウェルを含む、先行する項目のいずれか一項に記載の方法。
(項目28)
前記複数の反応ウェルが、一次元または二次元アレイとして構成される、項目27に記載の方法。
(項目29)
前記複数の反応ウェルのうちの2またはそれを超えるものがそれぞれ、配列決定されるべき蛍光標識ポリヌクレオチド鎖を含有する、項目27または28に記載の方法。

The invention also provides kits for use in the methods of the invention.
In an embodiment of the present invention, for example, the following items are provided:
(Item 1)
1. A method for determining the nucleotide sequence of a polynucleotide, comprising:
(a) a solid-state substrate comprising a cis side and a trans side, the substrate defining a reaction volume; and
(i) a proximal through-hole extending between the cis side and the trans side of the substrate;
(ii) one or more sidewalls;
(iii) a distal opening; and
a solid-state substrate, the solid-state substrate further comprising an opaque metal layer that substantially blocks excitation light from penetrating into the reaction volume and onto the cis side of the substrate;
(b) a carrier particle comprising a fluorescently labeled polynucleotide strand bound to the carrier particle, the fluorescently labeled polynucleotide strand comprising:
(i) a proximal end attached to the carrier particle; and
(ii) an exonuclease-cleavable distal end; and
(iii) at least one fluorescently labeled nucleotide comprising a fluorescent label;
providing a carrier particle located on the cis side of the substrate but not passing through the through-hole, such that the fluorescently labeled polynucleotide strand protrudes through the through-hole, such that the distal end of the fluorescently labeled polynucleotide strand is within the reaction volume;
reacting the fluorescently labeled polynucleotide strand with an exonuclease such that mononucleotides are continuously released from the distal end of the strand and diffuse out of the reaction volume through the distal opening;
illuminating the trans side of the substrate with excitation light during the reaction to create a fluorescent excitation zone adjacent the distal opening of the reaction well such that fluorescently labeled mononucleotides within the excitation zone emit a fluorescent signal;
Detecting a fluorescent signal as a function of time.
Including,
A method whereby the nucleotide sequence is determined from the time sequence of fluorescent signals detected from the released fluorescently labeled mononucleotides.
(Item 2)
13. The method of any one of the preceding items, wherein the distal opening of the reaction well has a minimum diameter of at least 30 nm.
(Item 3)
13. The method of any one of the preceding items, wherein the distal opening of the reaction well has a minimum diameter of 50 to 150 nm.
(Item 4)
8. The method of any one of the preceding items, wherein the one or more walls of the reaction well are not tapered.
(Item 5)
13. The method of any one of the preceding items, wherein the one or more walls of the reaction well are substantially cylindrical.
(Item 6)
13. The method of any one of the preceding items, wherein the opaque metal layer comprises gold or aluminum.
(Item 7)
13. The method of any one of the preceding items, wherein the opaque metal layer has a thickness of 100 nm to 600 nm.
(Item 8)
13. The method of any one of the preceding items, wherein the reaction wells have a well depth of at least 200 nm.
(Item 9)
13. The method of any one of the preceding items, wherein the reaction wells have a well depth of 200 nm to 1000 nm.
(Item 10)
2. The method of any one of the preceding items, wherein the fluorescently labeled polynucleotide strand in the reaction volume comprises a fluorescently labeled polynucleotide segment containing at least 100 contiguous nucleotides.
(Item 11)
2. The method of claim 1, wherein the through-holes have a minimum diameter of at least 2 nm.
(Item 12)
2. The method of claim 1, wherein the through-holes have a minimum diameter of 2 nm to 50 nm.
(Item 13)
13. The method of any one of the preceding items, wherein the substrate comprises a thin film layer comprising the proximal through-hole and having a thickness of 20 nm to 50 nm.
(Item 14)
Item 14. The method of item 13, wherein the thin film layer comprises silicon nitride.
(Item 15)
13. The method of any one of the preceding items, wherein the excitation light has a wavelength of 380 nm or greater.
(Item 16)
13. The method of any one of the preceding items, wherein the solid-state substrate comprises a surface portion(s) defining the reaction volume, the surface portion(s) comprising at least one surface passivation coating.
(Item 17)
13. The method of any one of the preceding items, wherein one or more sidewalls of the reaction well comprise at least one of a silicon oxide coating and an aluminum oxide coating.
(Item 18)
13. The method of any one of the preceding items, wherein the fluorescently labeled polynucleotide strand comprises at least two different types of nucleotides, each type labeled with a distinct fluorescent label.
(Item 19)
13. The method of any one of the preceding items, wherein during the reaction, the carrier particles are maintained adjacent the proximal through-holes by a voltage bias.
(Item 20)
20. The method of claim 19, wherein after the reaction, the voltage bias is stopped to move the carrier particles away from the proximal through-holes, so that the remaining fluorescently labeled polynucleotide strands are removed from the reaction volume, and then a voltage bias is applied to move the same or different carrier particles toward the proximal through-holes, so that new fluorescently labeled polynucleotide strands are delivered to the reaction well for reaction with an exonuclease.
(Item 21)
13. The method of any one of the preceding items, wherein the carrier particles are non-magnetic.
(Item 22)
13. The method of any one of the preceding items, wherein the carrier particles are magnetic.
(Item 23)
2. The method of any one of the preceding items, wherein the fluorescently labeled polynucleotide strands in the reaction volume comprise double-stranded nucleic acids.
(Item 24)
23. The method of any one of items 1 to 22, wherein the fluorescently labeled polynucleotide strands in the reaction volume comprise single-stranded nucleic acids.
(Item 25)
13. The method of any one of the preceding items, wherein the carrier particles comprise a plurality of fluorescently labeled polynucleotide strands.
(Item 26)
13. The method of any one of the preceding items, wherein the carrier particles comprise a plurality of fluorescently labeled polynucleotide strands having different polynucleotide sequences from each other.
(Item 27)
2. The method of any one of the preceding items, wherein the solid-state substrate comprises a plurality of reaction wells.
(Item 28)
28. The method of claim 27, wherein the plurality of reaction wells are configured as a one- or two-dimensional array.
(Item 29)
29. The method of claim 27 or 28, wherein two or more of the plurality of reaction wells each contain a fluorescently labeled polynucleotide strand to be sequenced.

反応ウェルの深さは、通常、配列情報を生成するためにエキソヌクレアーゼによって切断される蛍光標識ポリヌクレオチド鎖のセグメントの長さよりも長くなるように選択される。二本鎖DNAは比較的硬い棒状であり、単位長さは3.6オングストローム(0.36nm)あたり約一塩基対である。したがって、1000個の連続した塩基対を含むdsDNAセグメントは、約360nmの長さを有する。したがって、400nmの反応ウェル深さは、dsDNAの遠位端を望ましくない励起光に曝露することなく固定化された1000bpのdsDNAを封入するのに適切であってよく、500nmのウェル深さは、望ましくない励起光からのさらに良好な保護を提供し得る。あるいは、一本鎖DNAまたはRNA鎖の場合、一本鎖核酸は剛性が低く、二本鎖核酸よりも直径が小さいので、400nmの反応ウェル深さは、ssDNAの遠位端を望ましくない励起光に曝露することなく、1000個を超える連続塩基を有する固定化された蛍光標識された鎖を封入し得る。

The depth of the reaction well is usually selected to be longer than the length of the segment of the fluorescently labeled polynucleotide strand that is cut by the exonuclease to generate sequence information. Double-stranded DNA is a relatively rigid rod-like structure with a unit length of about one base pair per 3.6 angstroms (0.36 nm). Thus, a dsDNA segment containing 1000 consecutive base pairs has a length of about 360 nm. Thus, a reaction well depth of 400 nm may be suitable for encapsulating an immobilized 1000 bp dsDNA without exposing the distal end of the dsDNA to undesired excitation light, and a well depth of 500 nm may provide even better protection from undesired excitation light. Alternatively, in the case of single-stranded DNA or RNA strands, since single-stranded nucleic acids are less rigid and have a smaller diameter than double-stranded nucleic acids, a reaction well depth of 400 nm may encapsulate an immobilized fluorescently labeled strand with more than 1000 consecutive bases without exposing the distal end of the ssDNA to undesired excitation light.

本発明で使用するための反応ウェルを含む基材は、ケイ素(例えば、Si、SiO)、金属、金属酸化物(例えば、Al)プラスチック、ガラス、半導体材料、およびそれらの組み合わせを含むがこれらに限定されない様々な形態の固体材料で、任意の適切な方法によって製造することができる。ソリッドステート基材を作製するための製造技術は、参照により組み込まれる以下の例示的な参考文献に見出すことができる。Golovchenkoら、米国特許第6,464,842号;Sauerら、米国特許第7,001,792号;Suら、米国特許第7,744,816号;Mellerら、国際特許公開WO2009/020682号;Yanら、Nano Letters、5(6):1129-1134(2005);Wanunuら、Nano Letters、7(6):1580-1585(2007);Dekker、Nature Nanotechnology、2:209-215(2007);Stormら、Nature
Materials、2:537-540(2003);Zheら、J.Micromech.Microeng.、17:304-313(2007);などである。

Substrates containing reaction wells for use in the present invention can be manufactured by any suitable method in various forms of solid materials, including, but not limited to, silicon ( e.g. , Si3N4 , SiO2 ), metals, metal oxides (e.g., Al2O3 ), plastics, glass, semiconductor materials, and combinations thereof. Manufacturing techniques for making solid-state substrates can be found in the following exemplary references, which are incorporated by reference: Golovchenko et al., U.S. Pat. No. 6,464,842; Sauer et al., U.S. Pat. No. 7,001,792; Su et al., U.S. Pat. No. 7,744,816; Meller et al., International Patent Publication WO 2009/020682; Yan et al., Nano Letters, 5(6):1129-1134 (2005); Wanunu et al., Nano Letters, 7(6):1580-1585 (2007); Dekker, Nature Nanotechnology, 2:209-215 (2007); Storm et al., Nature
Materials, 2:537-540 (2003); Zhe et al., J. Micromech. Microeng., 17:304-313 (2007); and the like.

基材202のトランス側、特に基材202の1またはそれを超える反応ウェルの遠位開口部への励起光の衝突は、反応ウェルの遠位開口部に隣接する蛍光励起ゾーン(図1B~図1Dを参照)を生成する。

Impingement of excitation light on the trans side of substrate 202 , and in particular on the distal openings of one or more reaction wells of substrate 202 , generates a fluorescent excitation zone (see Figures 1B-1D) adjacent the distal openings of the reaction wells.

放出された各蛍光標識モノヌクレオチドは、測定された蛍光シグナルの特徴、例えば(1)各異なる種類のヌクレオチドに関連する蛍光標識の蛍光の特定の発光波長またはピーク形状、(2)反応ウェルの励起ゾーンを通過する間に同じモノヌクレオチドからの複数の光子の合計として測定され得るシグナル強度、および(3)任意の他の放出されたモノヌクレオチドからの蛍光シグナルの寄与がないことから同定され得る(例えば、A、C、GまたはTとして)。例えば、第1の反応ウェルの励起ゾーンから第2の反応ウェルの励起ゾーンに拡散する蛍光標識モノヌクレオチドは、蛍光標識モノヌクレオチドの第2のウェルに向かう移動の軌跡に基づいて、第2のウェルについて検出された蛍光シグナルから除外することができる。同様に、第1の反応ウェルの励起ゾーンから拡散し、次いで励起ゾーンに戻る蛍光標識モノヌクレオチドは、第1のウェルに向かって戻る蛍光標識モノヌクレオチドの移動の軌跡に基づいて、第1のウェルについて検出された蛍光シグナルから除外することができる。

Each emitted fluorescently labeled mononucleotide can be identified by features of the measured fluorescent signal, such as (1) the specific emission wavelength or peak shape of the fluorescence of the fluorescent label associated with each different type of nucleotide, (2) the signal intensity, which can be measured as the sum of multiple photons from the same mononucleotide while passing through the excitation zone of the reaction well, and (3) the absence of fluorescent signal contributions from any other emitted mononucleotide (e.g., as A, C, G, or T). For example, a fluorescently labeled mononucleotide that diffuses from the excitation zone of a first reaction well to the excitation zone of a second reaction well can be excluded from the fluorescent signal detected for the second well based on the trajectory of the fluorescently labeled mononucleotide's movement toward the second well. Similarly, a fluorescently labeled mononucleotide that diffuses from the excitation zone of a first reaction well and then back to the excitation zone can be excluded from the fluorescent signal detected for the first well based on the trajectory of the fluorescently labeled mononucleotide's movement back toward the first well.

実施例1
核酸の担体粒子へのコンジュゲーション
A.担体粒子への結合のためのDNAの選択および設計 DNAの金もしくは銀ナノ粒子または金もしくは銀表面への直接コンジュゲーションのために、単一または複数の(2~6)チオール基をオリゴヌクレオチドの3’または5’末端のいずれかに結合させる(5’-GCTATGTGGCGCGGTATTAT-3’)(配列番号3)。単一チオールは、市販の前駆体、3’-または5’-ジスルフィド(CH-S-S-(CH-OH(n=3または6)修飾オリゴヌクレオチド(IDT、アイオワ)から得られる。市販の3’-または5’-アミノ官能化オリゴヌクレオチド(IDT、アイオワまたはTriLink)と(±)-α-リポ酸とのコンジュゲーションを介して2つのチオール基を導入する。あるいは、複数のチオールを、オリゴヌクレオチド(IDT、アイオワ)の3’末端または5’末端のいずれかに1個、2個または3個の連続するDTPAホスホラミダイトと共に導入する。DNAを官能基化ナノ粒子にコンジュゲートさせるために、適切な相補的コンジュゲーション基(アミン、チオール、DBCO、BCN)をオリゴヌクレオチドの3’末端または5’末端のいずれかに結合させる。オリゴヌクレオチド配列への酵素のアクセス(例えば、試料核酸鎖に相補的な蛍光標識ポリヌクレオチド鎖が、担体粒子に固定化された鋳型を使用してDNAまたはRNAポリメラーゼによって合成される場合、ポリメラーゼへのアクセス)を容易にするために、コンジュゲーション部分とオリゴヌクレオチドとの間に様々な長さのリンカーが導入される。リンカーの例は、チミジン一リン酸×n(n=1~40)、PEG3、PEG4、PEG5および(PEG6-P(O)(OH)O-)×n(n=1~12)であり、PEGはポリエチレングリコールを意味し、N=3、4、5および6のPEGNはN個のエチレングリコール単位のポリマーを意味する。

Example 1
Conjugation of Nucleic Acids to Carrier Particles A. Selection and Design of DNA for Attachment to Carrier Particles For direct conjugation of DNA to gold or silver nanoparticles or surfaces, single or multiple (2-6) thiol groups are attached to either the 3' or 5' end of the oligonucleotide (5'-GCTAGTGGCGCGGTATTAT-3') (SEQ ID NO:3). Single thiols are obtained from commercially available precursors, 3'- or 5'-disulfide (CH 2 ) n -S-S-(CH 2 ) n -OH (n=3 or 6) modified oligonucleotides (IDT, Iowa). Two thiol groups are introduced via conjugation of commercially available 3'- or 5'-amino functionalized oligonucleotides (IDT, Iowa or TriLink) with (±)-α-lipoic acid. Alternatively, multiple thiols are introduced with one, two or three consecutive DTPA phosphoramidites at either the 3' or 5' end of the oligonucleotide (IDT, Iowa). To conjugate DNA to functionalized nanoparticles, suitable complementary conjugation groups (amine, thiol, DBCO, BCN) are attached to either the 3' or 5' end of the oligonucleotide. Linkers of various lengths are introduced between the conjugation moiety and the oligonucleotide to facilitate enzyme access to the oligonucleotide sequence (e.g., access to the polymerase when a fluorescently labeled polynucleotide strand complementary to a sample nucleic acid strand is synthesized by DNA or RNA polymerase using a template immobilized on a carrier particle). Examples of linkers are thymidine monophosphate xn (n=1-40), PEG3, PEG4, PEG5 and (PEG6-P(O)(OH)O-) xn (n=1-12), where PEG means polyethylene glycol and PEGN, with N=3, 4, 5 and 6, means a polymer of N ethylene glycol units.

基材の調製。ウエハの各側に低圧化学気相成長(LPCVD)によって堆積された30nmのSiN層を有する厚さ300μmの100mmの両面研磨シリコンウエハ(例えば、バージニア州FredericksburgのVirginia Semiconductor製、またはバージニア州ローグバレーのRogue Valley製)を準備する。負の電子ビームレジストが各側でスピンされ、次いで、ウエハの一方の側(「前面」側)のレジストが電子ビームリソグラフィ(EBL)装置で露光されて、その側のSiN層上に反応ウェルをパターン化する。その後、レジストを現像し、未露光のレジストを除去する。クロムまたはチタンの5nmの接着層が、eビーム蒸着によって、続いて選択された厚さの不透明金属層(例えば、200nmのAuまたはAl)のウエハの前面上へのeビーム堆積によって、ウエハの前面に堆積される。次いで、ウエハは、残っている露光レジストを前面から除去する溶液中に配置され「リフトオフ」、40~120nmの直径および100~250nmのウェル深さ、またはユーザの好みに応じた他の寸法を有する反応ウェルを金属膜層内に残す。

Substrate preparation. A 300 μm thick, 100 mm double-sided polished silicon wafer (e.g., from Virginia Semiconductor, Fredericksburg, VA, or Rogue Valley, VA) is prepared with a 30 nm SiN layer deposited by low pressure chemical vapor deposition (LPCVD) on each side of the wafer. A negative e-beam resist is spun on each side, and then the resist on one side of the wafer (the "front" side) is exposed in an electron beam lithography (EBL) machine to pattern reaction wells on the SiN layer on that side. The resist is then developed and the unexposed resist is removed. A 5 nm adhesion layer of chromium or titanium is deposited on the front side of the wafer by e-beam evaporation, followed by e-beam deposition of a selected thickness of an opaque metal layer (e.g., 200 nm Au or Al) onto the front side of the wafer. The wafer is then placed in a solution that removes the remaining exposed resist from the front side, known as "lift-off," leaving reaction wells in the metal membrane layer with diameters of 40-120 nm and well depths of 100-250 nm , or other dimensions depending on the user's preference.

担体粒子による近位貫通孔の閉塞を、約1000nAmpの開始(開栓)電流から約200nAmp未満の電流までのシス-トランス電流を、電流の変化速度が定常に達したときに測定することによって監視した。16個すべてのウェルの閉塞は約30秒で完了した。担体粒子の直径が貫通孔の直径よりも大きいため、担体粒子が基材のシス側からトランス側へ貫通孔を通過することを防止した。さらに、担体粒子には蛍光標識ポリヌクレオチド鎖がまばらにロードされていたので、各反応ウェルには1本以下の蛍光標識ポリヌクレオチド鎖がロードされた。 Blockage of the proximal through-holes by the carrier particles was monitored by measuring the cis-trans current from an onset (opening) current of about 1000 nAmp to a current of less than about 200 nAmp when the rate of change of the current reached a steady state. Blockage of all 16 wells was complete in about 30 seconds. The diameter of the carrier particles was larger than the diameter of the through-holes , preventing the carrier particles from passing through the through-holes from the cis side to the trans side of the substrate. In addition, the carrier particles were sparsely loaded with fluorescently labeled polynucleotide strands, so that each reaction well was loaded with no more than one fluorescently labeled polynucleotide strand.

JP2022564248A 2020-04-24 2021-04-26 Methods and compositions for sequencing fluorescent polynucleotides Pending JP2023523236A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202063015250P 2020-04-24 2020-04-24
US63/015,250 2020-04-24
PCT/US2021/029210 WO2021217146A1 (en) 2020-04-24 2021-04-26 Fluorescent polynucleotide sequencing methods and compositions

Publications (2)

Publication Number Publication Date
JP2023523236A JP2023523236A (en) 2023-06-02
JPWO2021217146A5 true JPWO2021217146A5 (en) 2024-04-30

Family

ID=78270099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022564248A Pending JP2023523236A (en) 2020-04-24 2021-04-26 Methods and compositions for sequencing fluorescent polynucleotides

Country Status (7)

Country Link
US (1) US20230193376A1 (en)
EP (1) EP4153779A1 (en)
JP (1) JP2023523236A (en)
CN (1) CN115461443A (en)
AU (1) AU2021259879A1 (en)
CA (1) CA3179981A1 (en)
WO (1) WO2021217146A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4962037A (en) * 1987-10-07 1990-10-09 United States Of America Method for rapid base sequencing in DNA and RNA
US11066702B2 (en) * 2016-01-15 2021-07-20 Quantapore, Inc. Optically-based nanopore analysis with reduced background
CN110621313B (en) * 2017-05-12 2023-05-30 通用测序技术公司 Methods and systems for pulling DNA, RNA, and other biomolecules through nanopores using soft magnetic structures

Similar Documents

Publication Publication Date Title
US10689412B2 (en) DNA sequencing by synthesis using Raman and infrared spectroscopy detection
JP6399610B2 (en) Analysis of nucleic acids based on nanopores using mixed FRET detection
JP6757316B2 (en) Efficient optical analysis of polymers using nanostructured arrays
KR20190075010A (en) System and method for measurement and sequencing of biomolecules
US7163658B2 (en) Rapid sequencing of polymers
US20130203050A1 (en) Hybrid nanopore device with optical detection and methods of using same
US20050026163A1 (en) Method for sequencing nucleic acids by observing the uptake of nucleotides modified with bulky groups
WO2010004695A1 (en) Sequencer
CN109562142A (en) Use the DNA synthesis order-checking of nucleotide analog and Raman detection
CN106460034B (en) Single molecule analysis with high accuracy
TW200307753A (en) Methods to increase nucleotide signals by Raman scattering
CN1950516A (en) Methods and compositions for detecting nucleic acids using scanning probe microscopy and nanocodes
CN115125100A (en) Gel-patterned surfaces
Sauer et al. Detection and identification of single dye labeled mononucleotide molecules released from an optical fiber in a microcapillary: First steps towards a new single molecule DNA sequencing technique
WO2003087388A9 (en) Bioluminescence regenerative cycle (brc) for nucleic acid quantification
US9671558B2 (en) Chemically induced optical signals and DNA sequencing
JP7332235B2 (en) Methods of sequencing polynucleotides
CN110382104B (en) Arrays comprising sequencing primers and non-sequencing entities
JP2019509039A (en) Redundant polymer analysis by transition reversal
JPWO2021217146A5 (en)
JP2023511465A (en) Kits, systems and flow cells
US20230193376A1 (en) Fluorescent polynucleotide sequencing methods and compositions
Peckys et al. End-specific strategies of attachment of long double stranded DNA onto gold-coated nanofiber arrays
WO2023023561A1 (en) Multiplex binding assays with optical nanopore readout
CA3046379A1 (en) Arrays with quality control tracers