JPWO2021207542A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2021207542A5
JPWO2021207542A5 JP2022561553A JP2022561553A JPWO2021207542A5 JP WO2021207542 A5 JPWO2021207542 A5 JP WO2021207542A5 JP 2022561553 A JP2022561553 A JP 2022561553A JP 2022561553 A JP2022561553 A JP 2022561553A JP WO2021207542 A5 JPWO2021207542 A5 JP WO2021207542A5
Authority
JP
Japan
Prior art keywords
wind turbine
turbine blade
blade structure
composite
composite wind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022561553A
Other languages
Japanese (ja)
Other versions
JP2023521386A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2021/026454 external-priority patent/WO2021207542A1/en
Publication of JP2023521386A publication Critical patent/JP2023521386A/en
Publication of JPWO2021207542A5 publication Critical patent/JPWO2021207542A5/ja
Pending legal-status Critical Current

Links

Description

開示されている主題は、本明細書において、ある特定の好ましい実施形態の点から記載されているが、当業者は、開示されている主題に対して、その範囲から逸脱することなく、様々な変更及び改善を行うことができることを認識するであろう。さらに、開示されている主題の一実施形態の個々の特徴が、本明細書において論じられている又は一実施形態の図面において示されており、他の実施形態においては示されていないことがあるが、一実施形態の個々の特徴は、別の実施形態の1つ以上の特徴又は複数の実施形態からの特徴と組み合わせることができることは明らかであるはずである。
本開示の態様として、以下のものを挙げることができる。
[1]
風力タービンブレードの製作のための方法であって、
鋳型内に複合構造体を形成するステップであって、前記複合構造体が、前記複合構造体の少なくとも第1の部分の全体にわたって分散された樹脂を含む、ステップ、
前記複合構造体の少なくとも前記第1の部分に表面処理を適用するステップ、
フーリエ変換赤外(FTIR)分光計を提供するステップ、
前記複合構造体の少なくとも前記第1の部分に赤外光を照射するステップ、
前記複合構造体の少なくとも前記第1の部分に吸収される赤外光の量を決定して、複合体製品の化学結合を測定するステップ
を含む方法。
[2]
前記表面処理がアブレージョンを含む、態様1に記載の方法。
[3]
前記表面処理がサンディング処理を含む、態様1に記載の方法。
[4]
前記アブレージョンが、様々なサイズの複数の粒子を前記複合構造体の前記第1の部分上に提供する、態様3に記載の方法。
[5]
前記表面処理が、前記複合構造体の前記第1の部分に潤滑剤を適用することを含む、態様1に記載の方法。
[6]
前記潤滑剤が鉱物油を含む、態様5に記載の方法。
[7]
前記FTIR分光計が、前記赤外光の拡散反射を測定する、態様1に記載の方法。
[8]
前記FTIR分光計が、前記赤外光の減衰全反射率を測定する、態様1に記載の方法。
[9]
前記FTIR分光計が、前記赤外光の外部反射を測定する、態様1に記載の方法。
[10]
照射が、複数のFTIR分光計によって行われる、態様1に記載の方法。
[11]
前記複数のFTIR分光計が、前記複合体製品に対して相対運動するように構成される、態様10に記載の方法。
[12]
前記複数のFTIR分光計が、互いに対して相対運動するように構成される、態様10に記載の方法。
[13]
複数の入射赤外ビームが、前記複合体製品の複数部分に向かって同時に投射される、態様10に記載の方法。
[14]
複数の入射赤外ビームが、複合体製品に向かって連続式で投射される、態様10に記載の方法。
[15]
少なくとも1つの入射赤外ビームが、およそ650cm -1 ~およそ5200cm -1 の波長で投射される、態様10に記載の方法。
[16]
前記複合構造体の前記第1の部分が、前記風力タービンブレードの前縁である、態様1に記載の方法。
[17]
前記複合構造体の前記第1の部分が、前記風力タービンブレードの後縁である、態様1に記載の方法。
[18]
前記複合構造体の前記第1の部分が、前記風力タービンブレードの先端である、態様1に記載の方法。
[19]
前記複合構造体の前記第1の部分が、前記風力タービンブレードの根元部分である、態様1に記載の方法。
[20]
前記複合構造体の前記第1の部分が、前記風力タービンブレードの外表面である、態様1に記載の方法。
Although the disclosed subject matter has been described herein in terms of certain preferred embodiments, those skilled in the art will recognize that various modifications and improvements can be made to the disclosed subject matter without departing from the scope thereof. Moreover, although individual features of one embodiment of the disclosed subject matter may be discussed herein or shown in the drawings of one embodiment and not shown in other embodiments, it should be apparent that individual features of one embodiment can be combined with one or more features of another embodiment or features from multiple embodiments.
Aspects of the present disclosure include the following.
[1]
A method for fabricating a wind turbine blade, comprising the steps of:
forming a composite structure in a mold, the composite structure including a resin dispersed throughout at least a first portion of the composite structure;
applying a surface treatment to at least the first portion of the composite structure;
providing a Fourier transform infrared (FTIR) spectrometer;
irradiating at least the first portion of the composite structure with infrared light;
determining an amount of infrared light absorbed by at least the first portion of the composite structure to measure chemical bonds in the composite product;
The method includes:
[2]
2. The method of embodiment 1, wherein the surface treatment comprises abrasion.
[3]
2. The method of embodiment 1, wherein the surface treatment comprises a sanding treatment.
[4]
4. The method of claim 3, wherein the abrasion provides a plurality of particles of various sizes on the first portion of the composite structure.
[5]
2. The method of claim 1, wherein the surface treatment comprises applying a lubricant to the first portion of the composite structure.
[6]
The method of embodiment 5, wherein the lubricant comprises a mineral oil.
[7]
2. The method of embodiment 1, wherein the FTIR spectrometer measures diffuse reflectance of the infrared light.
[8]
2. The method of embodiment 1, wherein the FTIR spectrometer measures the attenuated total reflectance of the infrared light.
[9]
2. The method of embodiment 1, wherein the FTIR spectrometer measures external reflectance of the infrared light.
[10]
The method of embodiment 1, wherein the irradiation is performed by a plurality of FTIR spectrometers.
[11]
11. The method of embodiment 10, wherein the plurality of FTIR spectrometers are configured for relative motion with respect to the composite product.
[12]
11. The method of embodiment 10, wherein the multiple FTIR spectrometers are configured for relative motion with respect to one another.
[13]
11. The method of embodiment 10, wherein a plurality of incident infrared beams are projected simultaneously toward a plurality of portions of the composite product.
[14]
11. The method of embodiment 10, wherein a plurality of incident infrared beams are projected in succession toward the composite product.
[15]
11. The method of embodiment 10 , wherein the at least one incident infrared beam is projected at a wavelength between approximately 650 cm −1 and approximately 5200 cm −1 .
[16]
2. The method of claim 1, wherein the first portion of the composite structure is a leading edge of the wind turbine blade.
[17]
2. The method of claim 1, wherein the first portion of the composite structure is a trailing edge of the wind turbine blade.
[18]
2. The method of claim 1, wherein the first portion of the composite structure is a tip of the wind turbine blade.
[19]
2. The method of claim 1, wherein the first portion of the composite structure is a root portion of the wind turbine blade.
[20]
2. The method of claim 1, wherein the first portion of the composite structure is an exterior surface of the wind turbine blade.

Claims (19)

風力タービンブレードの製作のための方法であって、
鋳型内に複合風力タービンブレード構造体を形成するステップであって、前記形成が、前記複合風力タービンブレード構造体の少なくとも第1の部分の全体にわたって樹脂を分配することを含む、ステップ、
前記複合風力タービンブレード構造体の少なくとも前記第1の部分に表面処理を適用するステップであって、前記表面処理が様々なサイズの粒子を生じさせ、前記複合風力タービンブレードの前記第1の部分の表面積を増加させるアブレージョンを含む、ステップ、
フーリエ変換赤外(FTIR)分光計を提供するステップ、
前記複合風力タービンブレード構造体の少なくとも前記第1の部分に赤外光を照射するステップであって前記照射が前記様々なサイズの粒子及び前記複合風力タービンブレードの前記第1の部分に適用される、ステップ、
前記複合風力タービンブレード構造体の少なくとも前記第1の部分に吸収される赤外光の量を決定して、前記複合風力タービンブレード構造体の化学結合を測定するステップ
を含む方法。
A method for fabricating a wind turbine blade, comprising the steps of:
forming a composite wind turbine blade structure in a mold, said forming including dispensing a resin throughout at least a first portion of the composite wind turbine blade structure;
applying a surface treatment to at least the first portion of the composite wind turbine blade structure, the surface treatment comprising abrasion to produce particles of various sizes and to increase a surface area of the first portion of the composite wind turbine blade;
providing a Fourier transform infrared (FTIR) spectrometer;
irradiating at least the first portion of the composite wind turbine blade structure with infrared light, the irradiation being applied to the various size particles and to the first portion of the composite wind turbine blade;
The method includes determining an amount of infrared light absorbed by at least the first portion of the composite wind turbine blade structure to measure chemical bonds of the composite wind turbine blade structure .
前記表面処理がサンディング処理を含む、請求項1に記載の方法。 The method of claim 1, wherein the surface treatment comprises a sanding treatment. 前記アブレージョンが、様々なサイズの複数の粒子を前記複合構造体の前記第1の部分上に提供する、請求項1に記載の方法。 The method of claim 1 , wherein the abrasion provides a plurality of particles of various sizes on the first portion of the composite structure. 前記表面処理が、前記複合風力タービンブレード構造体の前記第1の部分に潤滑剤を適用することを含む、請求項1に記載の方法。 The method of claim 1 , wherein the surface treatment comprises applying a lubricant to the first portion of the composite wind turbine blade structure. 前記潤滑剤が鉱物油を含む、請求項4に記載の方法。 The method of claim 4 , wherein the lubricant comprises a mineral oil. 前記FTIR分光計が、前記赤外光の拡散反射を測定する、請求項1に記載の方法。 The method of claim 1, wherein the FTIR spectrometer measures diffuse reflectance of the infrared light. 前記FTIR分光計が、前記赤外光の減衰全反射率を測定する、請求項1に記載の方法。 The method of claim 1, wherein the FTIR spectrometer measures the attenuated total reflectance of the infrared light. 前記FTIR分光計が、前記赤外光の外部反射を測定する、請求項1に記載の方法。 The method of claim 1, wherein the FTIR spectrometer measures the external reflection of the infrared light. 前記複合風力タービンブレード構造体の少なくとも前記第1の部分の前記照射が、複数のFTIR分光計によって行われる、請求項1に記載の方法。 The method of claim 1 , wherein the irradiating at least the first portion of the composite wind turbine blade structure is performed with a plurality of FTIR spectrometers. 前記複数のFTIR分光計が、前記複合風力タービンブレード構造体に対して相対運動するように構成される、請求項9に記載の方法。 The method of claim 9 , wherein the plurality of FTIR spectrometers are configured for relative movement with respect to the composite wind turbine blade structure . 前記複数のFTIR分光計が、互いに対して相対運動するように構成される、請求項9に記載の方法。 The method of claim 9 , wherein the multiple FTIR spectrometers are configured for relative motion with respect to one another. 複数の入射赤外ビームが、前記複合風力タービンブレード構造体の複数部分に向かって同時に投射される、請求項9に記載の方法。 The method of claim 9 , wherein multiple incident infrared beams are projected simultaneously toward multiple portions of the composite wind turbine blade structure . 複数の入射赤外ビームが、前記複合風力タービンブレード構造体に向かって連続式で投射される、請求項9に記載の方法。 The method of claim 9 , wherein a plurality of incident infrared beams are projected in succession towards the composite wind turbine blade structure . 少なくとも1つの入射赤外ビームが、およそ650cm-1~およそ5200cm-1の波長で投射される、請求項9に記載の方法。 The method of claim 9 , wherein the at least one incident infrared beam is projected at a wavelength between approximately 650 cm −1 and approximately 5200 cm −1 . 前記複合風力タービンブレード構造体の前記第1の部分が、前記風力タービンブレードの前縁である、請求項1に記載の方法。 The method of claim 1 , wherein the first portion of the composite wind turbine blade structure is a leading edge of the wind turbine blade. 前記複合風力タービンブレード構造体の前記第1の部分が、前記風力タービンブレードの後縁である、請求項1に記載の方法。 The method of claim 1 , wherein the first portion of the composite wind turbine blade structure is a trailing edge of the wind turbine blade. 前記複合風力タービンブレード構造体の前記第1の部分が、前記風力タービンブレードの先端である、請求項1に記載の方法。 The method of claim 1 , wherein the first portion of the composite wind turbine blade structure is a tip of the wind turbine blade. 前記複合風力タービンブレード構造体の前記第1の部分が、前記風力タービンブレードの根元部分である、請求項1に記載の方法。 The method of claim 1 , wherein the first portion of the composite wind turbine blade structure is a root portion of the wind turbine blade. 前記複合風力タービンブレード構造体の前記第1の部分が、前記風力タービンブレードの外表面である、請求項1に記載の方法。 The method of claim 1 , wherein the first portion of the composite wind turbine blade structure is an exterior surface of the wind turbine blade.
JP2022561553A 2020-04-08 2021-04-08 FTIR data quality optimization Pending JP2023521386A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US202063007089P 2020-04-08 2020-04-08
US202063007080P 2020-04-08 2020-04-08
US63/007,089 2020-04-08
US63/007,080 2020-04-08
PCT/US2021/026454 WO2021207542A1 (en) 2020-04-08 2021-04-08 Ftir data quality optimization

Publications (2)

Publication Number Publication Date
JP2023521386A JP2023521386A (en) 2023-05-24
JPWO2021207542A5 true JPWO2021207542A5 (en) 2024-04-18

Family

ID=78007202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022561553A Pending JP2023521386A (en) 2020-04-08 2021-04-08 FTIR data quality optimization

Country Status (7)

Country Link
US (1) US11732694B2 (en)
EP (1) EP4132773A4 (en)
JP (1) JP2023521386A (en)
CN (1) CN115551695A (en)
BR (1) BR112022020445A2 (en)
MX (1) MX2022012606A (en)
WO (1) WO2021207542A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114510850B (en) * 2022-04-20 2022-06-21 四川国蓝中天环境科技集团有限公司 Multi-model fusion calibration method and system for atmospheric six-parameter differentiation

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2447964B (en) * 2007-03-29 2012-07-18 Gurit Uk Ltd Moulding material
EP2443196A4 (en) * 2009-06-19 2015-09-30 Commw Scient Ind Res Org Self healing polymer materials
ES2435474B1 (en) * 2012-06-15 2014-10-21 Gamesa Innovation & Technology, S.L. Method of optimizing the efficiency of the blades of a wind turbine
CN106977754B (en) * 2012-09-06 2021-05-28 三菱化学株式会社 Prepreg and method for producing same
AU2013348225B2 (en) * 2012-11-26 2018-03-08 Cytec Industries Inc. Bonding of composite materials
US20140272435A1 (en) * 2013-03-15 2014-09-18 Designer Molecules, Inc. Anti-stick surface coatings
JP6533756B2 (en) * 2016-03-31 2019-06-19 積水化成品工業株式会社 Resin complex, car, wind turbine for wind power generation, robot, and medical equipment
DE102016215449A1 (en) 2016-08-18 2018-02-22 Bayerische Motoren Werke Aktiengesellschaft Method for producing fiber composite components and device for determining the degree of hardness of a cured resin

Similar Documents

Publication Publication Date Title
EP0766102B1 (en) Antireflection surface having a predetermined roughness, particularly for motor-vehicle dashboards
RU2727859C2 (en) Aerodynamic microstructures having submicrostructures
Convertino et al. Optical reflectivity from highly disordered Si nanowire films
Burley et al. Rotor broadband noise prediction with comparison to model data
EP0274777B1 (en) Profiled wing with controlled deformation, and its use in particular in flapping-wing aircraft
JP4873015B2 (en) Manufacturing method of blazed diffraction grating
JPH02229687A (en) Method for reducing resistance of article and article treated thereby
US20060039057A1 (en) Laser processing apparatus and method using polygon mirror
US20050247671A1 (en) Method of making a textured surface
CN105229796A (en) For the manufacture of the method for three-dimensional metamaterial device with photovoltaic tedge
US20150103396A1 (en) Antireflective Structures for Optics
CN104136771A (en) A wind turbine and a method for determining the presence and/or thickness of an ice layer on a blade body of a wind turbine
EP2218115B1 (en) Illumination device
JPWO2021207542A5 (en)
EP0423513A2 (en) Method of producing a laserwafer
McIntosh et al. A parameterization of light trapping in wafer-based solar cells
EP0922798B1 (en) Weaving device for making a structure for a composite article
US11209577B2 (en) Macro-scale features for optically black surfaces and straylight suppression
CN112782392A (en) Collimating array for optical sensing device
AT508274B1 (en) METHOD FOR PRODUCING A MICROSTRUCTURED FILM
AT514917A4 (en) LED light
FR2799271A1 (en) Determining shape of reflecting surface on vehicle lights by using projections from reference surface on to free surface fitting bodywork as units for individual design of actual optical shape
WO2022057258A1 (en) Thin-film-type splitter apparatus and operation system thereof
FR2563482A2 (en) Stamped assembly head of a windscreen wiper element, its method of manufacture and windscreen wiper element comprising it
JP2006138499A (en) Method and device for drying dried object