JPWO2021202552A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2021202552A5
JPWO2021202552A5 JP2022559631A JP2022559631A JPWO2021202552A5 JP WO2021202552 A5 JPWO2021202552 A5 JP WO2021202552A5 JP 2022559631 A JP2022559631 A JP 2022559631A JP 2022559631 A JP2022559631 A JP 2022559631A JP WO2021202552 A5 JPWO2021202552 A5 JP WO2021202552A5
Authority
JP
Japan
Prior art keywords
utterance
embedding
cluster
sentence
domain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022559631A
Other languages
Japanese (ja)
Other versions
JP2023520416A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2021/024917 external-priority patent/WO2021202552A1/en
Publication of JP2023520416A publication Critical patent/JP2023520416A/en
Publication of JPWO2021202552A5 publication Critical patent/JPWO2021202552A5/ja
Pending legal-status Critical Current

Links

Claims (9)

方法であって、
発話およびチャットボットのターゲットドメインを受け取るステップと、
前記発話について文埋め込みを生成するステップと、
前記ターゲットドメインに関連付けられたドメイン内発話の複数のクラスタの各クラスタについて埋め込み表現を取得するステップとを備え、各クラスタについての前記埋め込み表現は、前記クラスタ内の各ドメイン内発話についての文埋め込みの平均であり、前記方法はさらに、
前記発話についての前記文埋め込みおよび各クラスタについての前記埋め込み表現を距離学習モデルに入力するステップを備え、前記距離学習モデルは、前記発話が前記ターゲットドメインに属しているか否かに関する第1の確率を提供するように構成された学習済モデルパラメータを有し、前記方法はさらに、
前記距離学習モデルを使用して、前記発話についての前記文埋め込みと各クラスタについての各埋め込み表現との間の類似または相違を判断するステップと、
前記距離学習モデルを使用して、前記発話についての前記文埋め込みと各クラスタについての各埋め込み表現との間の前記判断された類似または相違に基づいて、前記発話が前記ターゲットドメインに属しているか否かに関する前記第1の確率を予測するステップと、
前記発話についての前記文埋め込みおよび各クラスタについての前記埋め込み表現を外れ値検出モデルに入力するステップとを備え、前記外れ値検出モデルは、外れ値検出のための距離または密度アルゴリズムで構築されており、前記方法はさらに、
前記外れ値検出モデルを使用して、前記発話についての前記文埋め込みと隣接するクラスタについての埋め込み表現との間の距離または密度偏差を求めるステップと、
前記外れ値検出モデルを使用して、前記求められた距離または密度偏差に基づいて、前記発話が前記ターゲットドメインに属しているか否かに関する第2の確率を予測するステップと、
前記第1の確率および前記第2の確率を評価して、前記発話が前記ターゲットドメインに属しているか否かに関する最終確率を求めるステップと、
前記最終確率に基づいて、前記発話を前記チャットボットにとってドメイン内またはドメイン外であるとして分類するステップとを含む、方法。
A method,
receiving an utterance and a target domain for the chatbot;
generating a sentence embedding for the utterance;
obtaining an embedding representation for each cluster of a plurality of clusters of in-domain utterances associated with the target domain, wherein the embedding representation for each cluster is a sentence embedding for each in-domain utterance in the cluster. average, and the method further comprises:
inputting the sentence embedding for the utterance and the embedding representation for each cluster into a distance learning model, the distance learning model calculating a first probability as to whether the utterance belongs to the target domain; trained model parameters configured to provide, the method further comprising:
using the distance learning model to determine similarity or difference between the sentence embedding for the utterance and each embedding representation for each cluster;
Using the distance learning model, determine whether the utterance belongs to the target domain based on the determined similarity or difference between the sentence embedding for the utterance and each embedding representation for each cluster. predicting the first probability for
inputting the sentence embedding for the utterance and the embedding representation for each cluster into an outlier detection model, the outlier detection model being constructed with a distance or density algorithm for outlier detection. , the method further comprises:
using the outlier detection model to determine a distance or density deviation between the sentence embedding for the utterance and an embedding representation for an adjacent cluster;
predicting a second probability as to whether the utterance belongs to the target domain based on the determined distance or density deviation using the outlier detection model;
evaluating the first probability and the second probability to determine a final probability as to whether the utterance belongs to the target domain;
classifying the utterance as in-domain or out-of-domain for the chatbot based on the final probability.
各クラスタについて前記埋め込み表現を取得するステップは、
前記ターゲットドメインに基づいて前記ドメイン内発話を取得するステップと、
各ドメイン内発話について文埋め込みを生成するステップと、
各ドメイン内発話についての前記文埋め込みを教師なしクラスタリングモデルに入力するステップとを備え、前記教師なしクラスタリングモデルは、前記ドメイン内発話を解釈して、前記ドメイン内発話の特徴空間内の前記複数のクラスタを識別するように構成されており、各クラスタについて前記埋め込み表現を取得するステップはさらに、
前記教師なしクラスタリングモデルを使用して、前記文埋め込みの特徴と各クラスタ内の文埋め込みの特徴との間の類似および相違に基づいて、各ドメイン内発話についての前記文埋め込みを前記複数のクラスタのうちの1つに分類するステップと、
前記複数のクラスタの各クラスタについて重心を計算するステップと、
前記埋め込み表現および前記複数のクラスタの各クラスタについての前記重心を出力するステップとを含む、請求項1に記載の方法。
Obtaining the embedded representation for each cluster comprises:
obtaining the in-domain utterance based on the target domain;
generating a sentence embedding for each in-domain utterance;
inputting the sentence embeddings for each in-domain utterance into an unsupervised clustering model, the unsupervised clustering model interpreting the in-domain utterance to configured to identify clusters of , and obtaining the embedded representation for each cluster further comprises:
Using the unsupervised clustering model, the sentence embeddings for each in-domain utterance are grouped into the plurality of clusters based on similarities and differences between the sentence embedding features and the sentence embedding features within each cluster. a step of classifying it into one of the
calculating a centroid for each cluster of the plurality of clusters;
2. The method of claim 1, comprising : outputting the embedded representation and the centroid for each cluster of the plurality of clusters.
前記発話についての前記文埋め込みと前記隣接するクラスタについての前記埋め込み表現との間の前記距離または密度偏差に基づいて、前記発話についてのzスコアを計算するステップと、
シグモイド関数を前記zスコアに適用することによって、前記発話が前記ターゲットドメインに属しているか否かに関する前記第2の確率を求めるステップとをさらに含む、請求項1または2に記載の方法。
calculating a z-score for the utterance based on the distance or density deviation between the sentence embedding for the utterance and the embedding representation for the adjacent cluster;
3. The method of claim 1 or 2 , further comprising determining the second probability as to whether the utterance belongs to the target domain by applying a sigmoid function to the z-score.
前記発話についての前記文埋め込みは、文、単語およびnグラムを含む自然言語要素を数字の配列にマッピングする埋め込みモデルを使用して生成され、前記自然言語要素の各々は、ベクトル空間では単一のポイントとして表される、請求項1~3のいずれか1項に記載の方法。 The sentence embedding for the utterance is generated using an embedding model that maps natural language elements, including sentences, words, and n-grams, to an array of numbers, where each of the natural language elements is a single digit in vector space. A method according to any one of claims 1 to 3 , expressed as points. 前記発話についての前記文埋め込みと各クラスタについての各埋め込み表現との間の前記類似または相違を判断するステップは、(i)前記発話についての前記文埋め込みと各クラスタについての各埋め込み表現との間の絶対差を計算するステップと、(ii)前記絶対差、前記発話についての前記文埋め込みおよび各クラスタについての前記埋め込み表現をワイドアンドディープラーニングネットワークに入力するステップとを備え、前記ワイドアンドディープラーニングネットワークは、線形モデルおよびディープニューラルネットワークを備え、前記発話についての前記文埋め込みと各クラスタについての各埋め込み表現との間の前記類似または相違を判断するステップはさらに、(iii)前記線形モデルおよび前記絶対差を使用して、前記発話が前記ターゲットドメインに属しているか否かに関するワイドベースの確率を予測するステップと、(iv)前記ディープニューラルネットワーク、前記発話についての前記文埋め込みおよび各クラスタについての前記埋め込み表現を使用して、前記発話についての前記文埋め込みと各クラスタについての各埋め込み表現との間の前記類似または相違を判断するステップとを含み
前記第1の確率を予測するステップは、前記ワイドアンドディープラーニングネットワークの最終層を使用して、ワイド確率および前記発話についての前記文埋め込みと各クラスタについての各埋め込み表現との間の前記類似または相違を評価するステップを含む、請求項1~4のいずれか1項に記載の方法。
The step of determining the similarity or difference between the sentence embedding for the utterance and each embedding representation for each cluster includes (i) determining the similarity or difference between the sentence embedding for the utterance and each embedding representation for each cluster; (ii) inputting the absolute difference, the sentence embedding for the utterance, and the embedding representation for each cluster into a wide and deep learning network, The network comprises a linear model and a deep neural network, and the step of determining the similarity or difference between the sentence embedding for the utterance and each embedding representation for each cluster further comprises (iii) the linear model and the deep neural network. (iv) using the absolute difference to predict a wide-based probability as to whether the utterance belongs to the target domain; using the embedding representation to determine the similarity or difference between the sentence embedding for the utterance and each embedding representation for each cluster;
Predicting the first probability uses a final layer of the wide and deep learning network to predict the wide probability and the similarity between the sentence embedding for the utterance and each embedding representation for each cluster. The method according to any one of claims 1 to 4 , comprising the step of evaluating or evaluating differences.
前記線形モデルは、訓練データのセットを使用して訓練された複数のモデルパラメータを備え、
前記訓練データのセットは、複数のドメインからのドメイン内発話についての、発話についての文埋め込みと各クラスタについての各埋め込み表現との間の絶対差を含み、
前記訓練データのセットを用いた前記線形モデルの訓練中に、仮説関数を使用して、前記発話についての前記文埋め込みと各クラスタについての各埋め込み表現との間の線形関係を学習し、
前記線形関係の学習中に、前記複数のモデルパラメータは、損失関数を最小化するように学習される、請求項5に記載の方法。
the linear model comprises a plurality of model parameters trained using a set of training data;
The set of training data includes, for in-domain utterances from multiple domains, the absolute difference between a sentence embedding for an utterance and each embedding representation for each cluster;
during training of the linear model with the set of training data, using a hypothesis function to learn a linear relationship between the sentence embedding for the utterance and each embedding representation for each cluster;
6. The method of claim 5, wherein during learning the linear relationship, the plurality of model parameters are learned to minimize a loss function.
前記ワイドアンドディープラーニングネットワークは、訓練データのセットを使用して訓練された複数のモデルパラメータを備え、
前記訓練データのセットは、複数のドメインからのドメイン内発話についての文埋め込みを含み、
前記訓練データのセットを用いた前記ワイドアンドディープラーニングネットワークの訓練中に、前記ドメイン内発話についての前記文埋め込みの高次元特徴は、低次元ベクトルに変換され、前記低次元ベクトルは、その後、前記ドメイン内発話からの特徴と連結されて、前記ディープニューラルネットワークの隠れ層に供給され、前記低次元ベクトルの値は、ランダムに初期化されて、前記複数のモデルパラメータとともに、損失関数を最小化するように学習される、請求項5に記載の方法。
The wide and deep learning network comprises a plurality of model parameters trained using a set of training data;
The set of training data includes sentence embeddings for in-domain utterances from multiple domains;
During training of the wide and deep learning network with the set of training data, the high-dimensional features of the sentence embeddings for the in-domain utterances are transformed into low-dimensional vectors, which are then transformed into Concatenated with features from in-domain utterances and fed to a hidden layer of the deep neural network, the values of the low-dimensional vector are randomly initialized to minimize a loss function along with the plurality of model parameters. The method according to claim 5, wherein the method is trained as follows.
請求項1~7のいずれか1項に記載の方法を1つまたは複数のデータプロセッサに実行させるためのコンピュータプログラム。 A computer program for causing one or more data processors to carry out the method according to any one of claims 1 to 7 . システムであって、
1つまたは複数のデータプロセッサと、
ンピュータ読取可能記憶媒体とを備え、前記コンピュータ読取可能記憶媒体は、前記1つまたは複数のデータプロセッサ上で実行されると、前記1つまたは複数のデータプロセッサにアクションを実行させる命令を含み、前記アクションは、
発話およびチャットボットのターゲットドメインを受け取ることと、
前記発話について文埋め込みを生成することと、
前記ターゲットドメインに関連付けられたドメイン内発話の複数のクラスタの各クラスタについて埋め込み表現を取得することとを含み、各クラスタについての前記埋め込み表現は、前記クラスタ内の各ドメイン内発話についての文埋め込みの平均であり、前記アクションはさらに、
前記発話についての前記文埋め込みおよび各クラスタについての前記埋め込み表現を距離学習モデルに入力することを含み、前記距離学習モデルは、前記発話が前記ターゲットドメインに属しているか否かに関する第1の確率を提供するように構成された学習済モデルパラメータを有し、前記アクションはさらに、
前記距離学習モデルを使用して、前記発話についての前記文埋め込みと各クラスタについての各埋め込み表現との間の類似または相違を判断することと、
前記距離学習モデルを使用して、前記発話についての前記文埋め込みと各クラスタについての各埋め込み表現との間の前記判断された類似または相違に基づいて、前記発話が前記ターゲットドメインに属しているか否かに関する前記第1の確率を予測することと、
前記発話についての前記文埋め込みおよび各クラスタについての前記埋め込み表現を外れ値検出モデルに入力することとを含み、前記外れ値検出モデルは、外れ値検出のための距離または密度アルゴリズムで構築されており、前記アクションはさらに、
前記外れ値検出モデルを使用して、前記発話についての前記文埋め込みと隣接するクラスタについての埋め込み表現との間の距離または密度偏差を求めることと、
前記外れ値検出モデルを使用して、前記求められた距離または密度偏差に基づいて、前記発話が前記ターゲットドメインに属しているか否かに関する第2の確率を予測することと、
前記第1の確率および前記第2の確率を評価して、前記発話が前記ターゲットドメインに属しているか否かに関する最終確率を求めることと、
前記最終確率に基づいて、前記発話を前記チャットボットにとってドメイン内またはドメイン外であるとして分類することとを含む、システム。
A system,
one or more data processors;
a computer- readable storage medium containing instructions that, when executed on the one or more data processors, cause the one or more data processors to perform actions. and the action includes:
receiving target domains for utterances and chatbots;
generating a sentence embedding for the utterance;
obtaining an embedding representation for each cluster of a plurality of clusters of in-domain utterances associated with the target domain, wherein the embedding representation for each cluster includes a sentence embedding for each in-domain utterance in the cluster. average, and said action further includes:
inputting the sentence embedding for the utterance and the embedding representation for each cluster into a distance learning model, the distance learning model calculating a first probability as to whether the utterance belongs to the target domain. the learned model parameters configured to provide, the action further comprising:
using the distance learning model to determine similarity or difference between the sentence embedding for the utterance and each embedding representation for each cluster;
Using the distance learning model, determine whether the utterance belongs to the target domain based on the determined similarity or difference between the sentence embedding for the utterance and each embedding representation for each cluster. predicting the first probability for
inputting the sentence embedding for the utterance and the embedding representation for each cluster into an outlier detection model, the outlier detection model being constructed with a distance or density algorithm for outlier detection. , said action further includes:
using the outlier detection model to determine a distance or density deviation between the sentence embedding for the utterance and an embedding representation for an adjacent cluster;
using the outlier detection model to predict a second probability as to whether the utterance belongs to the target domain based on the determined distance or density deviation;
evaluating the first probability and the second probability to determine a final probability as to whether the utterance belongs to the target domain;
and classifying the utterance as in-domain or out-of-domain for the chatbot based on the final probability.
JP2022559631A 2020-03-30 2021-03-30 Improved techniques for out-of-domain (OOD) detection Pending JP2023520416A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202063002139P 2020-03-30 2020-03-30
US63/002,139 2020-03-30
PCT/US2021/024917 WO2021202552A1 (en) 2020-03-30 2021-03-30 Improved techniques for out-of-domain (ood) detection

Publications (2)

Publication Number Publication Date
JP2023520416A JP2023520416A (en) 2023-05-17
JPWO2021202552A5 true JPWO2021202552A5 (en) 2023-10-12

Family

ID=75660312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022559631A Pending JP2023520416A (en) 2020-03-30 2021-03-30 Improved techniques for out-of-domain (OOD) detection

Country Status (4)

Country Link
US (3) US11763092B2 (en)
JP (1) JP2023520416A (en)
CN (1) CN115398437A (en)
WO (1) WO2021202552A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3631614A1 (en) * 2018-08-21 2020-04-08 Google LLC Automated assistant invocation of second interactive module using supplemental data provided by first interactive module
EP4111354A4 (en) * 2020-02-29 2024-04-03 Embodied, Inc. Systems and methods for short- and long-term dialog management between a robot computing device/digital companion and a user
US11556788B2 (en) * 2020-06-15 2023-01-17 International Business Machines Corporation Text-based response environment action selection
US11539650B2 (en) * 2020-07-16 2022-12-27 International Business Machines Corporation System and method for alerts for missing coverage of chatbot conversation messages
US11568135B1 (en) * 2020-09-23 2023-01-31 Amazon Technologies, Inc. Identifying chat correction pairs for training models to automatically correct chat inputs
US11626107B1 (en) * 2020-12-07 2023-04-11 Amazon Technologies, Inc. Natural language processing
KR102546340B1 (en) * 2021-01-15 2023-06-22 성균관대학교산학협력단 Method and apparatus for detecting out-of-distribution using noise filter
US12026471B2 (en) * 2021-04-16 2024-07-02 Accenture Global Solutions Limited Automated generation of chatbot
US20220382994A1 (en) * 2021-06-01 2022-12-01 Apple Inc. Reform input in flow execution
US20220392434A1 (en) * 2021-06-08 2022-12-08 Microsoft Technology Licensing, Llc Reducing biases of generative language models
US20230008868A1 (en) * 2021-07-08 2023-01-12 Nippon Telegraph And Telephone Corporation User authentication device, user authentication method, and user authentication computer program
US12019984B2 (en) * 2021-09-20 2024-06-25 Salesforce, Inc. Multi-lingual intent model with out-of-domain detection
US20230142339A1 (en) * 2021-11-08 2023-05-11 Nvidia Corporation Recognition of user intents and associated entities using a neural network in an interaction environment
WO2023091436A1 (en) * 2021-11-22 2023-05-25 Oracle International Corporation System and techniques for handling long text for pre-trained language models
US20230161963A1 (en) * 2021-11-22 2023-05-25 Oracle International Corporation System and techniques for handling long text for pre-trained language models
US11870651B2 (en) 2021-11-29 2024-01-09 Sap Se Landscape model verification system
US20230177075A1 (en) * 2021-12-03 2023-06-08 International Business Machines Corporation Stop word detection for qa corpus
US12057106B2 (en) * 2022-03-15 2024-08-06 Drift.com, Inc. Authoring content for a conversational bot
WO2023220426A1 (en) * 2022-05-13 2023-11-16 Apple Inc. Determining whether speech input is intended for a digital assistant
US11847565B1 (en) 2023-02-14 2023-12-19 Fmr Llc Automatic refinement of intent classification for virtual assistant applications
WO2023194848A1 (en) * 2023-03-29 2023-10-12 Lemon Artificial Intelligence Ltd Method for automated prediction of user data and features using a predictive model
CN116702473B (en) * 2023-06-08 2024-08-27 江苏国电南自海吉科技有限公司 Clustering algorithm-based transformer temperature abnormality early warning method and system
CN116776248A (en) * 2023-06-21 2023-09-19 哈尔滨工业大学 Virtual logarithm-based out-of-distribution detection method

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2522154B2 (en) * 1993-06-03 1996-08-07 日本電気株式会社 Voice recognition system
US6061652A (en) * 1994-06-13 2000-05-09 Matsushita Electric Industrial Co., Ltd. Speech recognition apparatus
JP2002041544A (en) * 2000-07-25 2002-02-08 Toshiba Corp Text information analyzing device
US9679568B1 (en) * 2012-06-01 2017-06-13 Google Inc. Training a dialog system using user feedback
US9330659B2 (en) * 2013-02-25 2016-05-03 Microsoft Technology Licensing, Llc Facilitating development of a spoken natural language interface
US10671935B2 (en) * 2016-06-06 2020-06-02 Paypal, Inc. Event based behavior prediction, classification, and service adjustment
US10832658B2 (en) * 2017-11-15 2020-11-10 International Business Machines Corporation Quantized dialog language model for dialog systems
US20200005118A1 (en) * 2018-06-28 2020-01-02 Microsoft Technology Licensing, Llc Offtrack virtual agent interaction session detection
TWI709188B (en) * 2018-09-27 2020-11-01 財團法人工業技術研究院 Fusion-based classifier, classification method, and classification system
KR102694268B1 (en) * 2018-12-10 2024-08-13 한국전자통신연구원 System and method for creating agent NPC in a game environment
US11023683B2 (en) * 2019-03-06 2021-06-01 International Business Machines Corporation Out-of-domain sentence detection
US11157479B2 (en) * 2019-04-08 2021-10-26 Microsoft Technology Licensing, Llc Leveraging a collection of training tables to accurately predict errors within a variety of tables
US11003959B1 (en) * 2019-06-13 2021-05-11 Amazon Technologies, Inc. Vector norm algorithmic subsystems for improving clustering solutions
US20230040084A1 (en) * 2019-11-19 2023-02-09 Google Llc Automatic call categorization and screening
KR102492205B1 (en) * 2020-08-26 2023-01-26 주식회사 우아한형제들 Apparatus and method for detecting delivery vehicle based on Inverse Reinforcement Learning
US11430467B1 (en) * 2020-09-21 2022-08-30 Amazon Technologies, Inc. Interaction emotion determination

Similar Documents

Publication Publication Date Title
JPWO2021202552A5 (en)
Meng et al. Aspect based sentiment analysis with feature enhanced attention CNN-BiLSTM
CN112163426B (en) Relationship extraction method based on combination of attention mechanism and graph long-time memory neural network
Pouyanfar et al. A survey on deep learning: Algorithms, techniques, and applications
Chien et al. Bayesian recurrent neural network for language modeling
US11210470B2 (en) Automatic text segmentation based on relevant context
Vaswani et al. Decoding with large-scale neural language models improves translation
Arisoy et al. Deep neural network language models
CN111291556B (en) Chinese entity relation extraction method based on character and word feature fusion of entity meaning item
Tang et al. Partially supervised speaker clustering
Albadr et al. Spoken language identification based on the enhanced self-adjusting extreme learning machine approach
Liu et al. Graph-based semi-supervised learning for phone and segment classification.
Elleuch et al. Arabic handwritten characters recognition using deep belief neural networks
Mousa et al. Morpheme-based feature-rich language models using deep neural networks for LVCSR of Egyptian Arabic
Awad et al. Deep neural networks
Agarla et al. Semi-supervised cross-lingual speech emotion recognition
Moriya et al. Evolution-strategy-based automation of system development for high-performance speech recognition
Liu et al. A Hybrid Neural Network BERT‐Cap Based on Pre‐Trained Language Model and Capsule Network for User Intent Classification
Guo et al. Transformer-based spiking neural networks for multimodal audio-visual classification
CN109948163B (en) Natural language semantic matching method for dynamic sequence reading
Shi A study on neural network language modeling
KR102449840B1 (en) Method and apparatus for user adaptive speech recognition
CN113807496A (en) Method, apparatus, device, medium and program product for constructing neural network model
CN113641854A (en) Method and system for converting characters into video
JP2001075964A (en) Information processing unit, information processing method and recording medium