JPWO2021186163A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2021186163A5
JPWO2021186163A5 JP2022555852A JP2022555852A JPWO2021186163A5 JP WO2021186163 A5 JPWO2021186163 A5 JP WO2021186163A5 JP 2022555852 A JP2022555852 A JP 2022555852A JP 2022555852 A JP2022555852 A JP 2022555852A JP WO2021186163 A5 JPWO2021186163 A5 JP WO2021186163A5
Authority
JP
Japan
Prior art keywords
guide rna
editing
nucleic acid
sequence
acid sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022555852A
Other languages
Japanese (ja)
Other versions
JP2023518379A (en
Publication date
Priority claimed from GBGB2003814.7A external-priority patent/GB202003814D0/en
Application filed filed Critical
Publication of JP2023518379A publication Critical patent/JP2023518379A/en
Publication of JPWO2021186163A5 publication Critical patent/JPWO2021186163A5/ja
Pending legal-status Critical Current

Links

Description

加えて、発明者らは、均一な編集を創出する能力だけではなく、マイクロホモロジーの低い領域を標的化することによってマウス中に所望の大規模な欠失を創出するために本方法を使用する能力も実証した。それにより、遺伝子ノックアウトモデルを生成するための効率的な代替アプローチを提供する。
本発明の態様を以下の項にさらに記載する:
[項1]
核酸配列のCRISPR-Cas編集における使用のための1つ以上のガイドRNA配列を選択する方法であって、
- 前記核酸配列を標的化する複数のガイドRNA配列を特定すること、
- 前記複数のガイドRNA配列のそれぞれについて編集結果の頻度を決定すること、および
- 最も豊富な編集結果の頻度が、2番目に豊富な編集結果の頻度の少なくとも2倍を超えると決定される、1つ以上のガイドRNA配列を選択すること、
を含む、方法。
[項2]
前記複数のガイドRNA配列のそれぞれについての編集結果の頻度が、コンピュータモデルを使用して決定される、前記項1に記載の方法。
[項3]
前記核酸配列が遺伝子配列であり、前記方法が、前記複数のガイドRNA配列を特定する前に、遺伝子の1つまたは複数の一次転写物を特定することをさらに含む、前記項1または前記項2に記載の方法。
[項4]
遺伝子の最初の約50%に位置する領域を標的化するガイドRNA配列を選択することをさらに含む、前記項のいずれか一項に記載の方法。
[項5]
遺伝子のすべての主要な転写物中に存在しないオーファンエクソンを標的化するあらゆるガイドRNA配列を除外することをさらに含む、前記項のいずれか一項に記載の方法。
[項6]
前記方法が、フレームシフティング変異をもたらすと予測されるガイドRNA配列を選択することをさらに含む、前記項のいずれか一項に記載の方法。
[項7]
各ガイドRNA配列にオフターゲットスコアを割り当て、スコアが予め定めた閾値未満のあらゆるガイドRNA配列を除外することをさらに含む、前記項のいずれか一項に記載の方法。
[項8]
各ガイドRNA配列にオンターゲット活性スコアを割り当て、スコアが予め定めた閾値未満のあらゆるガイドRNA配列を除外することをさらに含む、前記項のいずれか一項に記載の方法。
[項9]
前記項1から8のいずれか一項に記載の方法を使用して選択されたガイドRNA配列を含むガイドRNA分子を生成することをさらに含む、前記項のいずれか一項に記載の方法。
[項10]
前記ガイドRNA分子がシングルガイドRNAである、前記項9に記載の方法。
[項11]
選択された1つ以上のガイドRNA配列を含む1つ以上のガイドRNA分子を使用して細胞の試験集団中の標的配列を編集し、前記細胞における各ガイドRNA配列と関連する編集結果を決定することをさらに含む、前記項のいずれか一項に記載の方法。
[項12]
予測される最も豊富な結果を前記試験集団の細胞中に最も一貫して引き起こすガイドRNA分子を、前記1つ以上のガイドRNA分子から選択することをさらに含む、前記項11に記載の方法。
[項13]
核酸配列のCRISPR-Cas編集における使用のための一対のガイドRNA配列を選択する方法であって、
- 前記核酸配列を囲む5’フランクと3’フランクを標的化する複数のガイドRNA配列を特定すること、
- 前記複数のガイドRNA配列のそれぞれについて編集結果の頻度を決定すること、および
- 前記5’フランクを標的化する第1のガイドRNAおよび前記3’フランクを標的化する第2のガイドRNAを含む一対のガイドRNA配列であって、それぞれのガイドRNAについて最も豊富な編集結果の頻度が2番目に豊富な編集結果の頻度の4倍未満であると決定される一対のガイドRNA配列、を選択すること、
を含む、方法。
[項14]
前記項2から12に記載のいずれかの特徴をさらに含む、前記項13に記載の方法。
[項15]
生物、細胞または細胞の集団あるいはセルフリー発現システムにおいて核酸配列を編集するための方法であって、前記方法が、前記核酸配列を含む二本鎖(dsDNA)を、Casエンドヌクレアーゼおよび前記Casエンドヌクレアーゼを前記核酸配列内の標的配列に誘導することができるガイドRNA分子に曝露することを含み、ここで、前記ガイドRNA分子は、CRISPR-Cas編集において使用された場合に、2番目に豊富な編集結果の少なくとも2倍を超える頻度を有する主要な編集結果をもたらす(またはもたらすと予測される、例えばコンピュータモデルによってもたらすと予測される)ガイドRNA配列を含む、方法。
[項16]
ガイドRNA分子が、前記項1から12のいずれか一項に記載の方法に従って選択されたガイドRNA配列を含む、前記項13に記載の方法。
[項17]
ガイドRNA分子およびDNAエンドヌクレアーゼを細胞または複数の細胞に導入することをさらに含む、前記項13または前記項14に記載の方法。
[項18]
前記Casエンドヌクレアーゼが、前記核酸配列内の標的配列を切断して二本鎖切断末端を生じさせる、前記項1から15のいずれか一項に記載の方法。
[項19]
Casエンドヌクレアーゼが、Cas9エンドヌクレアーゼである、前記項16に記載の方法。
[項20]
前記生物、細胞または細胞の集団が真核生物である、前記項13から17のいずれか一項に記載の方法。
[項21]
生物、細胞または細胞の集団が動物、真菌または植物由来であり、好ましくは前記生物、細胞または細胞の集団が哺乳動物である、前記項18に記載の方法。
[項22]
細胞が接合体または接合体を形成する細胞の集団である、前記項19に記載の方法。
[項23]
前記方法が、胚をレシピエントの雌の動物に移植して妊娠させることをさらに含み、移植前に前記胚を発生のより後期にまで適宜培養する、前記項20に記載の方法。
[項24]
非モザイクのトランスジェニック動物を生成するためのものである、前記項13から21のいずれか一項に記載の方法。
[項25]
動物が、げっ歯類、ウサギ、ヒツジ、ヤギ、ウマ、ウシ、ブタ、イヌ、ネコ、ニワトリまたは霊長類である、前記項22に記載の方法。
[項26]
生物、細胞または細胞の集団あるいはセルフリー発現システムにおいて核酸配列を編集するための方法であって、前記方法が、前記核酸配列を含む二本鎖(dsDNA)を、Casエンドヌクレアーゼおよび前記Casエンドヌクレアーゼを前記核酸配列を囲む5’フランクと3’フランクを標的化させるように誘導することができる一対のガイドRNA分子に曝露することを含み、ここで、前記一対のガイドRNA分子は、CRISPR-Cas編集において使用された場合に、2番目に豊富な編集結果の頻度の4倍未満である頻度を有する主要な編集結果をもたらす(またはもたらすと予測される、例えばコンピュータモデルによってもたらすと予測される)第1のガイドRNAおよび第2のガイドRNAを含む、方法。
[項27]
前記項16から25に記載のいずれかの特徴をさらに含む、前記項26に記載の方法。
[項28]
前記項15から27のいずれか一項に記載の方法によって取得される、細胞、細胞集団およびヒト以外の生物。
In addition, the inventors have demonstrated the ability to not only create uniform edits, but also to use the method to create desired large deletions in mice by targeting regions of low microhomology, thereby providing an efficient alternative approach for generating gene knockout models.
Aspects of the invention are further described in the following sections:
[Item 1]
1. A method for selecting one or more guide RNA sequences for use in CRISPR-Cas editing of a nucleic acid sequence, comprising:
- identifying a plurality of guide RNA sequences targeting said nucleic acid sequence;
- determining a frequency of editing outcomes for each of said plurality of guide RNA sequences; and
- selecting one or more guide RNA sequences for which the frequency of the most abundant editing outcome is determined to be at least twice as high as the frequency of the second most abundant editing outcome;
A method comprising:
[Item 2]
2. The method of claim 1, wherein the frequency of editing outcomes for each of the plurality of guide RNA sequences is determined using a computer model.
[Item 3]
3. The method of claim 1 or 2, wherein the nucleic acid sequence is a gene sequence, and the method further comprises identifying one or more primary transcripts of the gene prior to identifying the plurality of guide RNA sequences.
[Item 4]
Item 11. The method of any one of the preceding paragraphs, further comprising selecting a guide RNA sequence that targets a region located in about the first 50% of the gene.
[Item 5]
4. The method of any one of the preceding paragraphs, further comprising filtering out any guide RNA sequences targeting orphan exons that are not present in all primary transcripts of the gene.
[Item 6]
Item 11. The method of any one of the preceding paragraphs, wherein the method further comprises selecting a guide RNA sequence that is predicted to result in a frameshifting mutation.
[Item 7]
The method of any one of the preceding paragraphs, further comprising assigning an off-target score to each guide RNA sequence and filtering out any guide RNA sequences having a score below a predetermined threshold.
[Item 8]
The method of any one of the preceding paragraphs, further comprising assigning an on-target activity score to each guide RNA sequence and filtering out any guide RNA sequences with a score below a predetermined threshold.
[Item 9]
9. The method of any one of the preceding paragraphs, further comprising generating a guide RNA molecule comprising a guide RNA sequence selected using the method of any one of paragraphs 1 to 8.
[Item 10]
10. The method of claim 9, wherein the guide RNA molecule is a single guide RNA.
[Item 11]
The method of any one of the preceding paragraphs, further comprising editing target sequences in a test population of cells using one or more guide RNA molecules comprising the selected one or more guide RNA sequences, and determining an editing outcome associated with each guide RNA sequence in the cells.
[Item 12]
12. The method of claim 11, further comprising selecting from the one or more guide RNA molecules a guide RNA molecule that most consistently induces the most abundant predicted outcome in cells of the test population.
[Item 13]
1. A method for selecting a pair of guide RNA sequences for use in CRISPR-Cas editing of a nucleic acid sequence, comprising:
- identifying multiple guide RNA sequences targeting the 5' and 3' flanks surrounding said nucleic acid sequence;
- determining a frequency of editing outcomes for each of said plurality of guide RNA sequences; and
- selecting a pair of guide RNA sequences comprising a first guide RNA targeting the 5' flank and a second guide RNA targeting the 3' flank, wherein the frequency of the most abundant editing outcome for each guide RNA is determined to be less than four times the frequency of the second most abundant editing outcome;
A method comprising:
[Item 14]
14. The method according to claim 13, further comprising any one of the features according to claims 2 to 12.
[Item 15]
1. A method for editing a nucleic acid sequence in an organism, a cell or population of cells, or a cell-free expression system, the method comprising exposing a double-stranded (dsDNA) comprising the nucleic acid sequence to a Cas endonuclease and a guide RNA molecule capable of directing the Cas endonuclease to a target sequence within the nucleic acid sequence, wherein the guide RNA molecule comprises a guide RNA sequence that, when used in CRISPR-Cas editing, results (or is predicted, e.g., predicted by a computer model, to result) in a primary editing outcome having a frequency at least twice as high as a second most abundant editing outcome.
[Item 16]
14. The method according to claim 13, wherein the guide RNA molecule comprises a guide RNA sequence selected according to the method according to any one of claims 1 to 12.
[Item 17]
15. The method of claim 13 or 14, further comprising introducing a guide RNA molecule and a DNA endonuclease into the cell or cells.
[Item 18]
16. The method of any one of paragraphs 1 to 15, wherein the Cas endonuclease cleaves a target sequence within the nucleic acid sequence to generate double-stranded break ends.
[Item 19]
17. The method according to claim 16, wherein the Cas endonuclease is a Cas9 endonuclease.
[Item 20]
18. The method of any one of paragraphs 13 to 17, wherein the organism, cell or population of cells is a eukaryote.
[Item 21]
20. The method according to claim 18, wherein the organism, cell or population of cells is of animal, fungal or plant origin, preferably the organism, cell or population of cells is mammalian.
[Item 22]
20. The method according to claim 19, wherein the cell is a zygote or a population of cells that form a zygote.
[Item 23]
21. The method of claim 20, further comprising implanting the embryo into a recipient female animal to cause gestation, and suitably culturing the embryo to a later stage of development prior to implantation.
[Item 24]
22. The method according to any one of items 13 to 21, for producing a non-mosaic transgenic animal.
[Item 25]
23. The method according to claim 22, wherein the animal is a rodent, rabbit, sheep, goat, horse, cow, pig, dog, cat, chicken or primate.
[Item 26]
1. A method for editing a nucleic acid sequence in an organism, a cell or population of cells or a cell-free expression system, the method comprising exposing double-stranded (dsDNA) comprising the nucleic acid sequence to a Cas endonuclease and a pair of guide RNA molecules capable of directing the Cas endonuclease to target 5' and 3' flanks surrounding the nucleic acid sequence, wherein the pair of guide RNA molecules comprises a first guide RNA and a second guide RNA that, when used in CRISPR-Cas editing, results (or is predicted, e.g., predicted by a computer model, to result) in a predominant editing outcome having a frequency that is less than four times the frequency of a second most abundant editing outcome.
[Item 27]
27. The method of claim 26, further comprising any one of the features of claims 16 to 25.
[Item 28]
28. A cell, a cell population, or a non-human organism obtained by the method according to any one of items 15 to 27.

Claims (28)

核酸配列のCRISPR-Cas編集における使用のための1つ以上のガイドRNA配列を選択する方法であって、
- 前記核酸配列を標的化する複数のガイドRNA配列を特定すること、
- 前記複数のガイドRNA配列のそれぞれについて編集結果の頻度を決定すること、および
- 最も豊富な編集結果の頻度が、2番目に豊富な編集結果の頻度の少なくとも2倍を超えると決定される、1つ以上のガイドRNA配列を選択すること、
を含む、方法。
1. A method for selecting one or more guide RNA sequences for use in CRISPR-Cas editing of a nucleic acid sequence, comprising:
- identifying a plurality of guide RNA sequences targeting said nucleic acid sequence;
- determining a frequency of editing outcomes for each of said plurality of guide RNA sequences; and - selecting one or more guide RNA sequences in which the frequency of the most abundant editing outcome is determined to be at least twice as high as the frequency of the second most abundant editing outcome.
A method comprising:
前記複数のガイドRNA配列のそれぞれについての編集結果の頻度が、コンピュータモデルを使用して決定される、請求項1に記載の方法。 The method of claim 1, wherein the frequency of editing outcomes for each of the plurality of guide RNA sequences is determined using a computer model. 前記核酸配列が遺伝子配列であり、前記方法が、前記複数のガイドRNA配列を特定する前に、前記遺伝子の1つまたは複数の一次転写物を特定することをさらに含む、請求項1または請求項2に記載の方法。 3. The method of claim 1 or claim 2, wherein the nucleic acid sequence is a gene sequence, and the method further comprises identifying one or more primary transcripts of the gene prior to identifying the plurality of guide RNA sequences. 遺伝子の最初の約50%に位置する領域を標的化するガイドRNA配列を選択することをさらに含む、請求項1から3のいずれか一項に記載の方法。 4. The method of claim 1 , further comprising selecting a guide RNA sequence that targets a region located in about the first 50% of the gene. 遺伝子のすべての主要な転写物中に存在しないオーファンエクソンを標的化するあらゆるガイドRNA配列を除外することをさらに含む、請求項1から4のいずれか一項に記載の方法。 5. The method of any one of claims 1 to 4 , further comprising excluding any guide RNA sequences targeting orphan exons that are not present in all primary transcripts of the gene. 前記方法が、フレームシフティング変異をもたらすと予測されるガイドRNA配列を選択することをさらに含む、請求項1から5のいずれか一項に記載の方法。 6. The method of any one of claims 1 to 5 , wherein the method further comprises selecting a guide RNA sequence that is predicted to result in a frameshifting mutation. 各ガイドRNA配列にオフターゲットスコアを割り当て、スコアが予め定めた閾値未満のあらゆるガイドRNA配列を除外することをさらに含む、請求項1から6のいずれか一項に記載の方法。 7. The method of any one of claims 1 to 6 , further comprising assigning an off-target score to each guide RNA sequence and filtering out any guide RNA sequences whose score is below a predetermined threshold. 各ガイドRNA配列にオンターゲット活性スコアを割り当て、スコアが予め定めた閾値未満のあらゆるガイドRNA配列を除外することをさらに含む、請求項1から7のいずれか一項に記載の方法。 8. The method of any one of claims 1 to 7 , further comprising assigning an on-target activity score to each guide RNA sequence and filtering out any guide RNA sequences whose scores are below a predetermined threshold. 請求項1から8のいずれか一項に記載の方法を使用して選択されたガイドRNA配列を含むガイドRNA分子を生成することをさらに含む、請求項1から8のいずれか一項に記載の方法。 9. The method of any one of claims 1 to 8, further comprising generating a guide RNA molecule comprising a guide RNA sequence selected using the method of any one of claims 1 to 8 . 前記ガイドRNA分子がシングルガイドRNAである、請求項9に記載の方法。 The method of claim 9, wherein the guide RNA molecule is a single guide RNA. 選択された1つ以上のガイドRNA配列を含む1つ以上のガイドRNA分子を使用して細胞の試験集団中の標的配列を編集し、前記細胞における各ガイドRNA配列と関連する編集結果を決定することをさらに含む、請求項1から10のいずれか一項に記載の方法。 11. The method of any one of claims 1 to 10, further comprising editing a target sequence in a test population of cells using one or more guide RNA molecules comprising the selected one or more guide RNA sequences, and determining an editing outcome associated with each guide RNA sequence in the cells. 予測される最も豊富な結果を前記試験集団の細胞中に最も一貫して引き起こすガイドRNA分子を、前記1つ以上のガイドRNA分子から選択することをさらに含む、請求項11に記載の方法。 12. The method of claim 11, further comprising selecting from the one or more guide RNA molecules a guide RNA molecule that most consistently induces the most abundant predicted outcome in cells of the test population. 核酸配列のCRISPR-Cas編集における使用のための一対のガイドRNA配列を選択する方法であって、
- 前記核酸配列を囲む5’フランクと3’フランクを標的化する複数のガイドRNA配列を特定すること、
- 前記複数のガイドRNA配列のそれぞれについて編集結果の頻度を決定すること、および
- 前記5’フランクを標的化する第1のガイドRNAおよび前記3’フランクを標的化する第2のガイドRNAを含む一対のガイドRNA配列であって、それぞれのガイドRNAについて最も豊富な編集結果の頻度が2番目に豊富な編集結果の頻度の4倍未満であると決定される一対のガイドRNA配列、を選択すること、
を含む、方法。
1. A method for selecting a pair of guide RNA sequences for use in CRISPR-Cas editing of a nucleic acid sequence, comprising:
- identifying multiple guide RNA sequences targeting the 5' and 3' flanks surrounding said nucleic acid sequence;
- determining a frequency of editing outcomes for each of said plurality of guide RNA sequences; and - selecting a pair of guide RNA sequences comprising a first guide RNA targeting said 5' flank and a second guide RNA targeting said 3' flank, wherein the frequency of the most abundant editing outcome for each guide RNA is determined to be less than four times the frequency of the second most abundant editing outcome.
A method comprising:
請求項2から12に記載のいずれかの特徴をさらに含む、請求項13に記載の方法。 The method of claim 13, further comprising any of the features of claims 2 to 12. ヒト以外の生物、細胞または細胞の集団あるいはセルフリー発現システムにおいて核酸配列を編集するための方法であって、前記方法が、前記核酸配列を含む二本鎖(dsDNA)を、Casエンドヌクレアーゼおよび前記Casエンドヌクレアーゼを前記核酸配列内の標的配列に誘導することができるガイドRNA分子に曝露することを含み、ここで、前記ガイドRNA分子は、CRISPR-Cas編集において使用された場合に、2番目に豊富な編集結果の少なくとも2倍を超える頻度を有する主要な編集結果をもたらす(またはもたらすと予測される、例えばコンピュータモデルによってもたらすと予測される)ガイドRNA配列を含む、方法。 1. A method for editing a nucleic acid sequence in a non-human organism, cell or population of cells, or a cell-free expression system, the method comprising exposing a double-stranded (dsDNA) comprising the nucleic acid sequence to a Cas endonuclease and a guide RNA molecule capable of directing the Cas endonuclease to a target sequence within the nucleic acid sequence, wherein the guide RNA molecule comprises a guide RNA sequence that, when used in CRISPR-Cas editing, results (or is predicted, e.g., predicted by a computer model, to result) a primary editing outcome having a frequency at least twice as high as a second most abundant editing outcome. ガイドRNA分子が、請求項1から14のいずれか一項に記載の方法に従って選択されたガイドRNA配列を含む、請求項15に記載の方法。 16. The method of claim 15 , wherein the guide RNA molecule comprises a guide RNA sequence selected according to the method of any one of claims 1 to 14 . ガイドRNA分子およびDNAエンドヌクレアーゼを細胞または複数の細胞に導入することをさらに含む、請求項15または請求項16に記載の方法。 17. The method of claim 15 or claim 16 , further comprising introducing a guide RNA molecule and a DNA endonuclease into the cell or cells. 前記Casエンドヌクレアーゼが、前記核酸配列内の標的配列を切断して二本鎖切断末端を生じさせる、請求項15から17のいずれか一項に記載の方法。 18. The method of any one of claims 15 to 17 , wherein the Cas endonuclease cleaves a target sequence within the nucleic acid sequence to generate double-stranded break ends. Casエンドヌクレアーゼが、Cas9エンドヌクレアーゼである、請求項18に記載の方法。 19. The method of claim 18 , wherein the Cas endonuclease is a Cas9 endonuclease. 前記生物、細胞または細胞の集団が真核生物である、請求項15から19のいずれか一項に記載の方法。 20. The method of any one of claims 15 to 19 , wherein the organism, cell or population of cells is a eukaryote. 前記生物、細胞または細胞の集団が動物、真菌または植物由来であり、好ましくは前記生物、細胞または細胞の集団が哺乳動物である、請求項20に記載の方法。 21. The method of claim 20 , wherein the organism, cell or population of cells is of animal, fungal or plant origin, preferably the organism, cell or population of cells is mammalian. 前記細胞が接合体である、または前記細胞の集団が接合体を形成する、請求項21に記載の方法。 22. The method of claim 21 , wherein the cell is a zygote or the population of cells forms a zygote. 前記方法が、胚をレシピエントの雌の動物に移植して妊娠させることをさらに含み、移植前に前記胚を発生のより後期にまで適宜培養する、請求項22に記載の方法。 23. The method of claim 22 , wherein the method further comprises implanting the embryo into a recipient female animal and allowing it to gestate, optionally culturing the embryo to a later stage of development prior to implantation. 非モザイクのトランスジェニック動物を生成するためのものである、請求項15から23のいずれか一項に記載の方法。 24. The method of any one of claims 15 to 23 for generating a non-mosaic transgenic animal. 動物が、げっ歯類、ウサギ、ヒツジ、ヤギ、ウマ、ウシ、ブタ、イヌ、ネコ、ニワトリまたは霊長類である、請求項24に記載の方法。 25. The method of claim 24 , wherein the animal is a rodent, rabbit, sheep, goat, horse, cow, pig, dog, cat, chicken or primate. ヒト以外の生物、細胞または細胞の集団あるいはセルフリー発現システムにおいて核酸配列を編集するための方法であって、前記方法が、前記核酸配列を含む二本鎖(dsDNA)を、Casエンドヌクレアーゼおよび前記Casエンドヌクレアーゼを前記核酸配列を囲む5’フランクと3’フランクを標的化させるように誘導することができる一対のガイドRNA分子に曝露することを含み、ここで、前記一対のガイドRNA分子は、CRISPR-Cas編集において使用された場合に、2番目に豊富な編集結果の頻度の4倍未満である頻度を有する主要な編集結果をもたらす(またはもたらすと予測される、例えばコンピュータモデルによってもたらすと予測される)第1のガイドRNAおよび第2のガイドRNAを含む、方法。 1. A method for editing a nucleic acid sequence in a non-human organism, cell or population of cells or a cell-free expression system, the method comprising exposing a double-stranded (dsDNA) comprising the nucleic acid sequence to a Cas endonuclease and a pair of guide RNA molecules capable of directing the Cas endonuclease to target 5' and 3' flanks surrounding the nucleic acid sequence, wherein the pair of guide RNA molecules comprises a first guide RNA and a second guide RNA that, when used in CRISPR-Cas editing, results (or is predicted, e.g., predicted by a computer model, to result) in a predominant editing outcome having a frequency that is less than four times the frequency of a second most abundant editing outcome. 請求項16から25に記載のいずれかの特徴をさらに含む、請求項26に記載の方法。 The method of claim 26, further comprising any of the features of claims 16 to 25. 請求項15から27のいずれか一項に記載の方法によって取得される、細胞、細胞集団およびヒト以外の生物。 Cells, cell populations and non-human organisms obtained by the method of any one of claims 15 to 27.
JP2022555852A 2020-03-16 2021-03-16 Optimized methods for cleavage of target sequences Pending JP2023518379A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB2003814.7A GB202003814D0 (en) 2020-03-16 2020-03-16 Optimised methods for cleavage of target sequences
GB2003814.7 2020-03-16
PCT/GB2021/050650 WO2021186163A1 (en) 2020-03-16 2021-03-16 Optimised methods for cleavage of target sequences

Publications (2)

Publication Number Publication Date
JP2023518379A JP2023518379A (en) 2023-05-01
JPWO2021186163A5 true JPWO2021186163A5 (en) 2024-04-22

Family

ID=70453630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022555852A Pending JP2023518379A (en) 2020-03-16 2021-03-16 Optimized methods for cleavage of target sequences

Country Status (8)

Country Link
US (1) US20230167443A1 (en)
EP (1) EP4121524A1 (en)
JP (1) JP2023518379A (en)
CN (1) CN115279900A (en)
AU (1) AU2021238926A1 (en)
CA (1) CA3171406A1 (en)
GB (1) GB202003814D0 (en)
WO (1) WO2021186163A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023105000A1 (en) 2021-12-09 2023-06-15 Zygosity Limited Vector

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK3420080T3 (en) * 2016-02-22 2019-11-25 Caribou Biosciences Inc PROCEDURE FOR MODULATING DNA REPAIR RESULTS
WO2019232494A2 (en) * 2018-06-01 2019-12-05 Synthego Corporation Methods and systems for determining editing outcomes from repair of targeted endonuclease mediated cuts

Similar Documents

Publication Publication Date Title
Jang et al. Multiple sgRNAs with overlapping sequences enhance CRISPR/Cas9-mediated knock-in efficiency
Tribout et al. Efficiency of genomic selection in a purebred pig male line
Gim et al. Production of MSTN‐mutated cattle without exogenous gene integration using CRISPR‐Cas9
CN106459951A (en) Targeted genome editing in zygotes of domestic large animals
CN105602987A (en) High-efficiency knockout method for XBP1 gene in DC cell
CN110551759A (en) Composition and method for improving recombination efficiency of transgenic cells
Le et al. Effects of electroporation treatment using different concentrations of Cas9 protein with gRNA targeting Myostatin (MSTN) genes on the development and gene editing of porcine zygotes
o’Brien et al. Unlocking HDR-mediated nucleotide editing by identifying high-efficiency target sites using machine learning
JP2015523098A5 (en)
US20190352670A1 (en) Methods for Increasing Efficiency of Gene Editing in Cells
Yuan et al. A transgenic core facility’s experience in genome editing revolution
Hickman-Davis et al. Transgenic mice
Kondo et al. Japanese regulatory framework and approach for genome-edited foods based on latest scientific findings
JPWO2021186163A5 (en)
WO2019232494A2 (en) Methods and systems for determining editing outcomes from repair of targeted endonuclease mediated cuts
Haig Concerted evolution of ribosomal DNA: Somatic peace amid germinal strife: Intranuclear and cellular selection maintain the quality of rRNA
Huang et al. Optimisation of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9: single-guide RNA (sgRNA) delivery system in a goat model
Han et al. Population balance approach to modeling hairy root growth
Abd-Elsalam et al. Can CRISPRized crops save the global food supply?
US20170081679A1 (en) Methods of improving nuclease mediated homologous recombination
Xing et al. CRISPR/Cas9-facilitated chromosome engineering to model human chromosomal alterations
Fan et al. Reflections on the system of evaluation of gene-edited livestock
Zhao et al. Non-coding RNAs in bovine mammary glands
Strong Exploring the Role of ccdc141 in Zebrafish Heart Development
CN114958908B (en) Method for constructing Ets2 gene super-enhancer knockout animal model based on CRISPR/Cas9 and application of method