JPWO2021124214A5 - - Google Patents
Download PDFInfo
- Publication number
- JPWO2021124214A5 JPWO2021124214A5 JP2022537310A JP2022537310A JPWO2021124214A5 JP WO2021124214 A5 JPWO2021124214 A5 JP WO2021124214A5 JP 2022537310 A JP2022537310 A JP 2022537310A JP 2022537310 A JP2022537310 A JP 2022537310A JP WO2021124214 A5 JPWO2021124214 A5 JP WO2021124214A5
- Authority
- JP
- Japan
- Prior art keywords
- light
- coating
- item
- absorbing particles
- channel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 claims description 37
- 239000011248 coating agent Substances 0.000 claims description 25
- 238000000576 coating method Methods 0.000 claims description 25
- 239000002245 particle Substances 0.000 claims description 23
- 238000004381 surface treatment Methods 0.000 claims description 10
- 238000001035 drying Methods 0.000 claims description 9
- 239000007788 liquid Substances 0.000 claims description 7
- 238000009832 plasma treatment Methods 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 4
- 238000007605 air drying Methods 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 238000003851 corona treatment Methods 0.000 claims description 3
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 238000000643 oven drying Methods 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 239000011230 binding agent Substances 0.000 description 5
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000004971 Cross linker Substances 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
Description
本発明をある特定の実施形態と関連付けて記述したが、様々な代替及び/又は等価な実施により、図示及び記載した具体的な実施形態を、本開示の範囲を逸脱することなく置き換え可能であることが、当業者により理解されるであろう。本出願は、本明細書で論じられた特定の実施形態のいずれの適応例又は変形例も包含することが意図されている。したがって、本開示は、特許請求の範囲及びその均等物によってのみ限定されることが意図されている。以下に例示的実施形態を示す。
[項目1]
光制御フィルムを製造する方法であって、
チャネルと交互になっている複数の光透過領域を備える微細構造化フィルムであって、各光透過領域の上面及び一対の側面と、各チャネルの底面と、によって画定された表面を有する、微細構造化フィルムを提供することと、
各光透過領域の前記一対の側面及び各チャネルの前記底面を、液体中に分散した光吸収粒子を含むコーティングでコーティングすることと、
前記コーティングを乾燥させて、前記光吸収粒子を各光透過領域の前記一対の側面上に選択的に堆積させることと、
を含む、方法。
[項目2]
前記コーティングは、水性コーティングであり、前記液体は、水である、項目1に記載の方法。
[項目3]
各光透過領域の前記上面及び各チャネルの前記底面は、前記光吸収粒子を含まない、項目1に記載の方法。
[項目4]
前記光吸収粒子は、少なくとも20nmの平均粒径を有する、項目1に記載の方法。
[項目5]
前記光吸収粒子は、1マイクロメートル未満の平均粒径を有する、項目1に記載の方法。
[項目6]
コーティングの前記乾燥は、空気乾燥、赤外線加熱、及びオーブン乾燥のうちの少なくとも1つを含む、項目1に記載の方法。
[項目7]
前記コーティングの前記乾燥は、少なくとも50℃の温度で達成される、項目1に記載の方法。
[項目8]
前記微細構造化フィルムの前記表面上に表面処理を実行することを更に含む、項目1に記載の方法。
[項目9]
前記表面処理は、酸素プラズマ処理、コロナ処理、及びフルオロカーボンプラズマ処理のうちの少なくとも1つを含む、項目8に記載の方法。
[項目10]
前記微細構造化フィルムは、表面処理されていない、項目1に記載の方法。
[項目11]
前記光透過領域の材料と同様の材料で前記チャネルを充填することを更に含む、項目1に記載の方法。
[項目12]
前記コーティングは、添加剤を更に含む、項目1に記載の方法。
[項目13]
前記添加剤は、バインダー、界面活性剤、及び架橋剤のうちの少なくとも1つを含む、項目12に記載の方法。
[項目14]
前記バインダーは、アニオン性バインダー、カチオン性バインダー、及び双性イオンバインダーのうちの少なくとも1つを含む、項目13に記載の方法。
[項目15]
前記光吸収粒子は、カーボンブラック粒子を含む、項目1に記載の方法。
[項目16]
前記光吸収粒子は、前記コーティングの総重量に基づいて、少なくとも1重量%の濃度で存在する、項目1に記載の方法。
[項目17]
前記微細構造化フィルムは、ベース層を更に含み、前記光透過領域は、前記ベース層から延びている、項目1に記載の方法。
[項目18]
前記微細構造化フィルムは、重合性樹脂を含む、項目1に記載の方法。
[項目19]
光制御フィルムを製造する方法であって、
チャネルと交互になっている複数の光透過領域を備える微細構造化フィルムであって、各光透過領域の上面及び一対の側面と、各チャネルの底面と、によって画定された表面を有する、微細構造化フィルムを提供することと、
前記微細構造化フィルムの前記表面上に第1の表面処理を実行することと、
各光透過領域の前記上面及び各チャネルの前記底面上に第2の表面処理を選択的に実行することと、
各光透過領域の前記一対の側面及び各チャネルの前記底面を、液体中に分散した光吸収粒子を含むコーティングでコーティングすることと、
前記コーティングを乾燥させて、前記光吸収粒子を各光透過領域の前記一対の側面上に選択的に堆積させることと、
を含む、方法。
[項目20]
前記第1の表面処理は、酸素プラズマ処理又はコロナ処理を含む、項目19に記載の方法。
[項目21]
前記第2の表面処理は、フルオロカーボンプラズマ処理を含む、項目19に記載の方法。
[項目22]
前記光吸収粒子は、少なくとも20nmの平均粒径を有する、項目19に記載の方法。
[項目23]
前記コーティングを前記乾燥させることは、空気乾燥、赤外線加熱、及びオーブン乾燥のうちの少なくとも1つを含む、項目19に記載の方法。
[項目24]
前記コーティングは、水性コーティングであり、前記液体は、水である、項目19に記載の方法。
Although the invention has been described in connection with certain specific embodiments, various alternatives and/or equivalent implementations may replace the specific embodiments shown and described without departing from the scope of the disclosure. This will be understood by those skilled in the art. This application is intended to cover any adaptations or variations of the specific embodiments discussed herein. Accordingly, it is intended that the disclosure be limited only by the claims and their equivalents. Exemplary embodiments are shown below.
[Item 1]
A method of manufacturing a light control film, the method comprising:
A microstructured film comprising a plurality of light transmissive regions alternating with channels, the microstructure having a surface defined by a top surface and a pair of side surfaces of each light transmissive region and a bottom surface of each channel. providing a chemical film;
coating the pair of side surfaces of each light-transmitting region and the bottom surface of each channel with a coating comprising light-absorbing particles dispersed in a liquid;
drying the coating to selectively deposit the light-absorbing particles on the pair of sides of each light-transmitting region;
including methods.
[Item 2]
2. The method of item 1, wherein the coating is an aqueous coating and the liquid is water.
[Item 3]
2. The method of item 1, wherein the top surface of each light-transmitting region and the bottom surface of each channel are free of the light-absorbing particles.
[Item 4]
2. The method of item 1, wherein the light-absorbing particles have an average particle size of at least 20 nm.
[Item 5]
2. The method of item 1, wherein the light-absorbing particles have an average particle size of less than 1 micrometer.
[Item 6]
2. The method of item 1, wherein said drying of the coating comprises at least one of air drying, infrared heating, and oven drying.
[Item 7]
A method according to item 1, wherein said drying of said coating is achieved at a temperature of at least 50<0>C.
[Item 8]
The method of item 1, further comprising performing a surface treatment on the surface of the microstructured film.
[Item 9]
9. The method of item 8, wherein the surface treatment includes at least one of oxygen plasma treatment, corona treatment, and fluorocarbon plasma treatment.
[Item 10]
The method of item 1, wherein the microstructured film is not surface treated.
[Item 11]
2. The method of item 1, further comprising filling the channel with a material similar to the material of the light transmissive region.
[Item 12]
2. The method of item 1, wherein the coating further comprises an additive.
[Item 13]
13. The method of item 12, wherein the additive includes at least one of a binder, a surfactant, and a crosslinker.
[Item 14]
14. The method of item 13, wherein the binder includes at least one of an anionic binder, a cationic binder, and a zwitterionic binder.
[Item 15]
The method according to item 1, wherein the light-absorbing particles include carbon black particles.
[Item 16]
2. The method of item 1, wherein the light absorbing particles are present at a concentration of at least 1% by weight, based on the total weight of the coating.
[Item 17]
2. The method of item 1, wherein the microstructured film further comprises a base layer, and the light transmissive region extends from the base layer.
[Item 18]
2. The method of item 1, wherein the microstructured film comprises a polymerizable resin.
[Item 19]
A method of manufacturing a light control film, the method comprising:
A microstructured film comprising a plurality of light transmissive regions alternating with channels, the microstructure having a surface defined by a top surface and a pair of side surfaces of each light transmissive region and a bottom surface of each channel. providing a chemical film;
performing a first surface treatment on the surface of the microstructured film;
selectively performing a second surface treatment on the top surface of each light transmissive region and the bottom surface of each channel;
coating the pair of side surfaces of each light-transmitting region and the bottom surface of each channel with a coating comprising light-absorbing particles dispersed in a liquid;
drying the coating to selectively deposit the light-absorbing particles on the pair of sides of each light-transmitting region;
including methods.
[Item 20]
20. The method according to item 19, wherein the first surface treatment includes oxygen plasma treatment or corona treatment.
[Item 21]
20. The method of item 19, wherein the second surface treatment includes fluorocarbon plasma treatment.
[Item 22]
20. The method of item 19, wherein the light-absorbing particles have an average particle size of at least 20 nm.
[Item 23]
20. The method of item 19, wherein said drying said coating comprises at least one of air drying, infrared heating, and oven drying.
[Item 24]
20. The method of item 19, wherein the coating is an aqueous coating and the liquid is water.
Claims (10)
チャネルと交互になっている複数の光透過領域を備える微細構造化フィルムであって、各光透過領域の上面及び一対の側面と、各チャネルの底面と、によって画定された表面を有する、微細構造化フィルムを提供することと、
各光透過領域の前記一対の側面及び各チャネルの前記底面を、液体中に分散した光吸収粒子を含むコーティングでコーティングすることと、
前記コーティングを乾燥させて、前記光吸収粒子を各光透過領域の前記一対の側面上に選択的に堆積させることと、
を含む、方法。 A method of manufacturing a light control film, the method comprising:
A microstructured film comprising a plurality of light transmissive regions alternating with channels, the microstructure having a surface defined by a top surface and a pair of side surfaces of each light transmissive region and a bottom surface of each channel. providing a chemical film;
coating the pair of side surfaces of each light-transmitting region and the bottom surface of each channel with a coating comprising light-absorbing particles dispersed in a liquid;
drying the coating to selectively deposit the light-absorbing particles on the pair of sides of each light-transmitting region;
including methods.
チャネルと交互になっている複数の光透過領域を備える微細構造化フィルムであって、各光透過領域の上面及び一対の側面と、各チャネルの底面と、によって画定された表面を有する、微細構造化フィルムを提供することと、
前記微細構造化フィルムの前記表面上に第1の表面処理を実行することと、
各光透過領域の前記上面及び各チャネルの前記底面上に第2の表面処理を選択的に実行することと、
各光透過領域の前記一対の側面及び各チャネルの前記底面を、液体中に分散した光吸収粒子を含むコーティングでコーティングすることと、
前記コーティングを乾燥させて、前記光吸収粒子を各光透過領域の前記一対の側面上に選択的に堆積させることと、
を含む、光制御フィルムの製造方法。 A method for producing a light control film, the method comprising:
A microstructured film comprising a plurality of light transmissive regions alternating with channels, the microstructure having a surface defined by a top surface and a pair of side surfaces of each light transmissive region and a bottom surface of each channel. providing a chemical film;
performing a first surface treatment on the surface of the microstructured film;
selectively performing a second surface treatment on the top surface of each light transmissive region and the bottom surface of each channel;
coating the pair of side surfaces of each light-transmitting region and the bottom surface of each channel with a coating comprising light-absorbing particles dispersed in a liquid;
drying the coating to selectively deposit the light-absorbing particles on the pair of sides of each light-transmitting region;
A method for producing a light control film , comprising:
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962951794P | 2019-12-20 | 2019-12-20 | |
US62/951,794 | 2019-12-20 | ||
PCT/IB2020/062133 WO2021124214A1 (en) | 2019-12-20 | 2020-12-17 | Light control film and a method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2023507407A JP2023507407A (en) | 2023-02-22 |
JPWO2021124214A5 true JPWO2021124214A5 (en) | 2023-12-21 |
Family
ID=76476547
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022537310A Pending JP2023507407A (en) | 2019-12-20 | 2020-12-17 | Light control film and its manufacturing method |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230024412A1 (en) |
JP (1) | JP2023507407A (en) |
CN (1) | CN114829991A (en) |
WO (1) | WO2021124214A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2025003854A1 (en) * | 2023-06-30 | 2025-01-02 | 3M Innovative Properties Company | Light control film |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6398370B1 (en) * | 2000-11-15 | 2002-06-04 | 3M Innovative Properties Company | Light control device |
JP4303923B2 (en) * | 2002-07-31 | 2009-07-29 | 大日本印刷株式会社 | Visibility improving sheet and display using the same |
US8234998B2 (en) * | 2006-09-08 | 2012-08-07 | Massachusetts Institute Of Technology | Automated layer by layer spray technology |
EP2715413A4 (en) * | 2011-05-25 | 2014-11-12 | 3M Innovative Properties Co | Light control film |
WO2013049088A1 (en) * | 2011-09-30 | 2013-04-04 | 3M Innovative Properties Company | Electronically switchable privacy film and display device having same |
WO2014164257A1 (en) * | 2013-03-13 | 2014-10-09 | 3M Innovative Properties Company | Electronically switchable privacy device |
US20150109674A1 (en) * | 2013-10-23 | 2015-04-23 | Ronald Steven Cok | Imprinted micro-louver structure |
CN204039531U (en) * | 2014-08-28 | 2014-12-24 | 香港生产力促进局 | A kind of electrophoretic deposition set on conductive surface |
US20160124126A1 (en) * | 2014-10-29 | 2016-05-05 | Sergiy Vasylyev | Angular selective light control sheeting and method of making the same |
US10948734B2 (en) * | 2016-10-28 | 2021-03-16 | 3M Innovative Properties Company | Light control film with varied viewing angle |
CN109121423B (en) * | 2017-04-19 | 2020-05-19 | 新电元工业株式会社 | Method for manufacturing semiconductor device |
EP3724719A4 (en) * | 2017-12-13 | 2021-08-25 | 3M Innovative Properties Company | High transmission light control film |
CN108060450A (en) * | 2017-12-19 | 2018-05-22 | 苏州中科纳福材料科技有限公司 | The preparation method of structural colour carbon fiber film transfer film |
CN108227057A (en) * | 2018-01-18 | 2018-06-29 | 重庆大学 | A kind of SERS substrates based on grating resonance and preparation method thereof |
CN109136970B (en) * | 2018-09-11 | 2019-11-15 | 太原师范学院 | A kind of Bipolar Membrane and preparation method thereof of area load graphite alkene |
-
2020
- 2020-12-17 JP JP2022537310A patent/JP2023507407A/en active Pending
- 2020-12-17 US US17/757,329 patent/US20230024412A1/en active Pending
- 2020-12-17 WO PCT/IB2020/062133 patent/WO2021124214A1/en active Application Filing
- 2020-12-17 CN CN202080088869.XA patent/CN114829991A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhong et al. | Sessile nanofluid droplet drying | |
Zahner et al. | A facile approach to superhydrophilic–superhydrophobic patterns in porous polymer films | |
Ji et al. | Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning | |
Manabe et al. | Controllable broadband optical transparency and wettability switching of temperature-activated solid/liquid-infused nanofibrous membranes | |
Bickel et al. | Flow pattern in the vicinity of self-propelling hot Janus particles | |
Kontziampasis et al. | Biomimetic, antireflective, superhydrophobic and oleophobic PMMA and PMMA-coated glass surfaces fabricated by plasma processing | |
KR102387234B1 (en) | Optical stacks for sparkle reduction | |
Schleunitz et al. | Novel 3D micro-and nanofabrication method using thermally activated selective topography equilibration (TASTE) of polymers | |
Cossio et al. | Zeta potential dependent self-assembly for very large area nanosphere lithography | |
JP2016504260A5 (en) | ||
HRP20190865T1 (en) | A method of applying a photo catalytic dispersion and a method of manufacturing a panel | |
Wooh et al. | Trilevel‐structured superhydrophobic pillar arrays with tunable optical functions | |
Han et al. | Rapid formation of transparent superhydrophobic film on glasses by He/CH4/C4F8 plasma deposition at atmospheric pressure | |
Shin et al. | Multi-functional SiO2 moth-eye pattern for photovoltaic applications | |
JPWO2021124214A5 (en) | ||
JP2012126103A (en) | Fine structure laminate | |
Piaszenski et al. | 3D structures for UV-NIL template fabrication with grayscale e-beam lithography | |
Lim et al. | Tailor-engineered plasmonic single-lattices: Harnessing localized surface plasmon resonances for visible-NIR light-enhanced photocatalysis | |
Park et al. | Fabrication and characterization of moth-eye mimicking nanostructured convex lens | |
JP2022071834A5 (en) | ||
US20120046379A1 (en) | Method of making a hard latex and a hard latex | |
Jindasuwan et al. | Surface characteristics of water-repellent polyelectrolyte multilayer films containing various silica contents | |
Wu et al. | Rapid fabrication of SiO2-PHEMA photonic crystal hydrogel composite microspheres | |
JP2015182072A (en) | Patterning method of functional film and functional film | |
JP5854397B2 (en) | Particle transfer method using nanoimprint film |