JPWO2021098940A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2021098940A5
JPWO2021098940A5 JP2022528698A JP2022528698A JPWO2021098940A5 JP WO2021098940 A5 JPWO2021098940 A5 JP WO2021098940A5 JP 2022528698 A JP2022528698 A JP 2022528698A JP 2022528698 A JP2022528698 A JP 2022528698A JP WO2021098940 A5 JPWO2021098940 A5 JP WO2021098940A5
Authority
JP
Japan
Prior art keywords
methylpolysiloxane
mixture
integer
mol
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022528698A
Other languages
Japanese (ja)
Other versions
JP7353488B2 (en
JP2023503015A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/EP2019/081642 external-priority patent/WO2021098940A1/en
Publication of JP2023503015A publication Critical patent/JP2023503015A/en
Publication of JPWO2021098940A5 publication Critical patent/JPWO2021098940A5/ja
Application granted granted Critical
Publication of JP7353488B2 publication Critical patent/JP7353488B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

プラントの所望最高運転温度に達するように、熱伝達流体の運転温度を段階的に上昇させる起動運転は、平衡相で最高運転圧力を超えことを防止する。 A start-up operation in which the operating temperature of the heat transfer fluid is stepped to reach the desired maximum operating temperature of the plant prevents exceeding the maximum operating pressure in the equilibrium phase.

Claims (13)

メチルポリシロキサン混合物の、運転温度が300~500℃である太陽熱発電所(CSP)の熱伝達流体としての使用であって、
前記メチルポリシロキサン混合物は、
(a)直鎖状メチルポリシロキサンMDM(式中、xは0~100の整数である。)を含み、混合物においてモルM:D比が1:15.5~1:30である、または、
(b)直鎖状メチルポリシロキサンMDM(式中、xは0~80の整数である。)および環状ジメチルポリシロキサンD(式中、yは3以上の整数である。)を含み、全ての環状ジメチルポリシロキサンDの含有割合の総和が10~95wt%の範囲内であり、混合物においてモルM:D比は1:10.5~1:30である、
メチルポリシロキサン混合物の使用。
Use of a methylpolysiloxane mixture as a heat transfer fluid in a solar thermal power plant (CSP) having an operating temperature of 300-500° C., comprising:
The methylpolysiloxane mixture is
(a) a linear methylpolysiloxane MD X M, where x is an integer from 0 to 100, with a molar M:D ratio in the mixture of from 1:15.5 to 1:30; or
(b) linear methylpolysiloxane MD X M (where x is an integer of 0 to 80) and cyclic dimethylpolysiloxane D y (where y is an integer of 3 or more); , the total content of all cyclic dimethylpolysiloxanes D y is in the range of 10-95 wt%, and the molar M:D ratio in the mixture is 1:10.5-1:30;
Use of methylpolysiloxane mixtures.
前記メチルポリシロキサン混合物が、
(a)混合物においてモルM:D比が1:15.5~1:25である、または、
(b)直鎖状メチルポリシロキサンMDM(式中、xは0~29の整数である。)および環状ジメチルポリシロキサンD(式中、yは3~10の整数である。)を含み、全ての環状ジメチルポリシロキサンDの含有割合の総和が60~80wt%の範囲内であり、混合物においてモルM:D比が1:11~1:20である、
請求項1に記載のメチルポリシロキサン混合物の使用。
The methylpolysiloxane mixture is
(a) the mixture has a molar M:D ratio of 1:15.5 to 1:25, or
(b) a linear methylpolysiloxane MD X M (wherein x is an integer of 0 to 29) and a cyclic dimethylpolysiloxane D y (wherein y is an integer of 3 to 10); wherein the total content of all cyclic dimethylpolysiloxanes D y is in the range of 60-80 wt%, and the molar M:D ratio in the mixture is 1:11-1:20;
Use of the methylpolysiloxane mixture according to claim 1.
前記メチルポリシロキサン混合物が
(a)すべての環状ジメチルポリシロキサンDの含有割合の総和が0~1wt%の範囲内であり、混合物の数平均Mnが400~3000g/molの範囲であり、重量平均Mwが1000~5000g/molの範囲である、または
(b)直鎖状メチルポリシロキサンMDM(式中、xは0~29の整数である。)および環状ジメチルポリシロキサンD(式中、yは3~10の整数である。)を含み、すべての環状ジメチルポリシロキサンDの含有割合の総和が60~80wt%の範囲内であり、混合物においてモルM:D比が1:11~1:20であり、混合物の数平均Mnが100~2000g/molの範囲であり、重量平均Mwが100~6000g/molの範囲である、
請求項1または2に記載のメチルポリシロキサン混合物の使用。
The methylpolysiloxane mixture (a) has a total content of all cyclic dimethylpolysiloxanes D y in the range of 0 to 1 wt%, the number average Mn of the mixture is in the range of 400 to 3000 g / mol, and the weight (b) linear methylpolysiloxane MD X M (where x is an integer from 0 to 29) and cyclic dimethylpolysiloxane D y (formula in which y is an integer of 3 to 10), the total content of all cyclic dimethylpolysiloxanes D y is within the range of 60 to 80 wt%, and the molar M:D ratio in the mixture is 1: 11 to 1:20, the mixture has a number average Mn ranging from 100 to 2000 g/mol and a weight average Mw ranging from 100 to 6000 g/mol.
Use of the methylpolysiloxane mixture according to claim 1 or 2.
前記メチルポリシロキサン混合物が、最大150ppmのT基および最大100ppmのQ基を含む、請求項1~3のいずれかの1項に記載のメチルポリシロキサン混合物の使用。 Use of a methylpolysiloxane mixture according to any one of the preceding claims, wherein the methylpolysiloxane mixture contains up to 150 ppm T groups and up to 100 ppm Q groups. 前記メチルポリシロキサン混合物が、最大100ppmのT基を含み、Q基を含まない、請求項4に記載のメチルポリシロキサン混合物の使用。 5. Use of a methylpolysiloxane mixture according to claim 4, wherein the methylpolysiloxane mixture contains up to 100 ppm of T groups and no Q groups. 直鎖状メチルポリシロキサンMDM(式中、xは0~80の整数である。)および環状ジメチルポリシロキサンD(式中、yは3以上の整数である。)を含み、すべての環状ジメチルポリシロキサンDの含有割合の総和が10~95wt%の範囲内であり、混合物においてモルM:D比が1:10.5~1:30である、メチルポリシロキサン混合物。 Including linear methylpolysiloxane MD X M (where x is an integer of 0 to 80) and cyclic dimethylpolysiloxane D y (where y is an integer of 3 or more), and all A methylpolysiloxane mixture having a total content of cyclic dimethylpolysiloxanes D y in the range of 10 to 95 wt % and a molar M:D ratio in the mixture of 1:10.5 to 1:30. 前記直鎖状メチルポリシロキサンMDM(式中、xは0~29の整数である。)および環状ジメチルポリシロキサンD(式中、yは3~10の整数である。)を含み、すべての前記環状ジメチルポリシロキサンDの含有割合の総和が60~80wt%の範囲内であり、モルM:D比が1:11~1:20であり、数平均Mnが100~2000g/molの範囲であり、重量平均Mwが100~6000g/molの範囲である、請求項6に記載のメチルポリシロキサン混合物。 The linear methylpolysiloxane MD X M (wherein x is an integer of 0 to 29) and cyclic dimethylpolysiloxane D y (wherein y is an integer of 3 to 10), The total content of all the cyclic dimethylpolysiloxane Dy is in the range of 60 to 80 wt%, the molar M:D ratio is 1:11 to 1:20, and the number average Mn is 100 to 2000 g/mol. and having a weight average Mw in the range from 100 to 6000 g/mol. 数平均Mnが200~1600g/molの範囲であり、重量平均Mwが200~2200g/molの範囲である、請求項7に記載のメチルポリシロキサン混合物。 8. The methylpolysiloxane mixture of claim 7, wherein the number average Mn ranges from 200 to 1600 g/mol and the weight average Mw ranges from 200 to 2200 g/mol. 数平均Mnが250~1400g/molの範囲であり、重量平均Mwが250~2000g/molの範囲である、請求項8に記載のメチルポリシロキサン混合物。 9. The methylpolysiloxane mixture of claim 8, wherein the number average Mn ranges from 250 to 1400 g/mol and the weight average Mw ranges from 250 to 2000 g/mol. T基を最大150ppm、Q基を最大100ppm含む、請求項~9のいずれかに記載のメチルポリシロキサン混合物。 A methylpolysiloxane mixture according to any one of claims 6 to 9, comprising up to 150 ppm of T groups and up to 100 ppm of Q groups. T基を最大100ppm含み、Q基を含まない、請求項10に記載のメチルポリシロキサン混合物。 11. The methylpolysiloxane mixture of claim 10, containing up to 100 ppm of T groups and no Q groups. CSPプラントの運転方法であって、
請求項6~11のいずれかに記載のメチルポリシロキサン混合物を熱伝達流体として使用すること、および
プラントの起動中に運転温度に達するまで段階的に温度を上昇させること、
を含む、CSPプラントの運転方法。
A method of operating a CSP plant, comprising:
using the methylpolysiloxane mixture according to any one of claims 6 to 11 as a heat transfer fluid, and increasing the temperature stepwise during start-up of the plant until the operating temperature is reached;
A method of operating a CSP plant, comprising:
前記段階的に温度を上昇させる工程は、
a)最高運転温度より100~200℃低いが、少なくとも100℃である開始温度を設定し、
b)一定の運転圧力が維持されるまで、開始温度を少なくとも3時間保持し、
c)運転温度を5~150℃の範囲で上昇させ、
d)一定の運転圧力が維持されるまで、温度を少なくとも3時間保持し、
e)最高運転温度に達するまで、手順c)とd)を繰り返す、
ことを含む、請求項12に記載のCSPプラントの運転方法。
The step of stepwise increasing the temperature includes:
a) setting a starting temperature that is 100-200°C below the maximum operating temperature, but at least 100°C;
b) holding the starting temperature for at least 3 hours until a constant operating pressure is maintained;
c) increasing the operating temperature between 5 and 150°C,
d) holding the temperature for at least 3 hours until a constant operating pressure is maintained;
e) repeating steps c) and d) until the maximum operating temperature is reached;
13. The method of operating a CSP plant according to claim 12, comprising:
JP2022528698A 2019-11-18 2019-11-18 Methylpolysiloxane mixtures as heat transfer fluids Active JP7353488B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2019/081642 WO2021098940A1 (en) 2019-11-18 2019-11-18 Methyl polysiloxane mixtures as a heat-carrier fluid

Publications (3)

Publication Number Publication Date
JP2023503015A JP2023503015A (en) 2023-01-26
JPWO2021098940A5 true JPWO2021098940A5 (en) 2023-08-16
JP7353488B2 JP7353488B2 (en) 2023-09-29

Family

ID=68583442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022528698A Active JP7353488B2 (en) 2019-11-18 2019-11-18 Methylpolysiloxane mixtures as heat transfer fluids

Country Status (6)

Country Link
US (1) US20230357619A1 (en)
EP (1) EP4021981B1 (en)
JP (1) JP7353488B2 (en)
KR (1) KR20220103136A (en)
CN (1) CN114630869B (en)
WO (1) WO2021098940A1 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1087577B (en) * 1976-12-09 1985-06-04 Dow Corning SOLAR ENERGY COLLECTION SYSTEM USING AN IMPROVED FLUID FOR HEAT TRANSFER
US4193885A (en) * 1977-08-02 1980-03-18 Dow Corning Corporation Method for preparing a thermal-stability additive and a thermally stabilized methylpolysiloxane and compositions therefrom
JP4493007B2 (en) * 2003-04-28 2010-06-30 信越化学工業株式会社 Dimethylpolysiloxane composition
DE602004000946T2 (en) * 2003-04-28 2007-01-04 Shin-Etsu Chemical Co., Ltd. Dimethylpolysiloxane composition
DE102009012665A1 (en) 2009-03-13 2010-09-16 Momentive Performance Materials Gmbh New polyorganosiloxanes and their uses
WO2012050788A2 (en) * 2010-09-30 2012-04-19 Dow Global Technologies Llc Process for producing superheated steam from a concentrating solar power plant
DE102012211258A1 (en) 2012-06-29 2014-01-02 Wacker Chemie Ag Siloxane mixtures
DE102015202158A1 (en) * 2015-02-06 2016-08-11 Technische Universität München Branched organosiloxanes as heat transfer fluid
WO2019029829A1 (en) * 2017-08-11 2019-02-14 Wacker Chemie Ag Cyclic processes with supercritical siloxanes
US20210189210A1 (en) * 2017-10-13 2021-06-24 Wacker Chemie Ag Mixtures of md-methylpolysiloxanes as heat carrier fluid

Similar Documents

Publication Publication Date Title
CN104251143B (en) Start control unit for steam turbine plant
KR20080038233A (en) Steam turbine cycle
AU2006247764B2 (en) Gland leakage seal system
AU707447B2 (en) Method and system of converting thermal energy into a useful form
US20110162366A1 (en) Working Fluid For An ORC Process, ORC Process and ORC Apparatus
US20130014509A1 (en) Plant for the production of energy based upon the organic rankine cycle
JP2012527599A5 (en)
US9862869B2 (en) Siloxane mixtures
US7658906B2 (en) Sulfur recovery plant
JPWO2021098940A5 (en)
AU760916B2 (en) Multistep steam power operating method for generating electric power in a cycle and device for the implementation thereof
JPH09203304A (en) Compound power generating system using waste as fuel
CN108875248A (en) A kind of back pressure turbine fair curve calculation method
SA99200694B1 (en) preparation of ethylen oxide by direct oxedation of ethylen with air or oxygen
CN109844058B (en) Cyclic process for supercritical siloxanes
AU2011200325B2 (en) Methods and apparatus for diluent nitrogen saturation
JPS61201831A (en) Power generation method
AU2015413548B2 (en) A system for high efficiency energy conversion cycle by recycling latent heat of vaporization
EP2963252A1 (en) Method and apparatus for improving the efficiency of electricity production in a steam power plant
KR101162660B1 (en) Transcritical Rankine power cycle system by using a mixture working fluids
CN106747469A (en) A kind of high-performance silicon nitride ceramic material and preparation method thereof
Szargut et al. Influence of BladeCooling on the Efficiency of Humid Air Turbine
WO2002014664A1 (en) Gas turbine engine having improved efficiency
Shukla et al. A heat recovery study: Application of intercooler as a feed-water heater of heat recovery steam generator
Cicconardi et al. Parametric analysis of a steam cycle with a quasi-isothermal expansion