JPWO2021097447A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2021097447A5
JPWO2021097447A5 JP2022528556A JP2022528556A JPWO2021097447A5 JP WO2021097447 A5 JPWO2021097447 A5 JP WO2021097447A5 JP 2022528556 A JP2022528556 A JP 2022528556A JP 2022528556 A JP2022528556 A JP 2022528556A JP WO2021097447 A5 JPWO2021097447 A5 JP WO2021097447A5
Authority
JP
Japan
Prior art keywords
microneedles
mea
cells
conductive
length dimension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022528556A
Other languages
Japanese (ja)
Other versions
JP2023502982A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2020/060779 external-priority patent/WO2021097447A1/en
Publication of JP2023502982A publication Critical patent/JP2023502982A/en
Publication of JPWO2021097447A5 publication Critical patent/JPWO2021097447A5/ja
Pending legal-status Critical Current

Links

Description

本出願は、2019年11月15日に出願された米国特許仮出願第62/935,987号及び2020年9月27日に出願された米国特許仮出願第62/083,976号の利益を主張し、その全体が参照により本明細書に組み込まれる。
政府支援条項
本発明は、米国国立科学財団によって授与されたNSF REU助成金番号 NSF-EEC 1560007、米国国立科学財団によって授与されたNSF IUCRC MISTセンター助成金番号 NSF-IIP 1439680、および米国国立衛生研究所によって授与されたSBIR資金調達1R43 ES029886-01の下で政府支援を受けてなされた。政府は、本発明において一定の権利を有する。
This application has the benefit of U.S. Provisional Patent Application No. 62/935,987, filed on November 15, 2019, and U.S. Provisional Patent Application No. 62/083,976, filed on September 27, 2020. and is incorporated herein by reference in its entirety.
Government support clause
This invention is supported by NSF REU Grant No. NSF-EEC 1560007 awarded by the National Science Foundation, NSF IUCRC MIST Center Grant No. NSF-IIP 1439680 awarded by the National Science Foundation, and the National Institutes of Health. Made with government support under SBIR funding 1R43 ES029886-01. The Government has certain rights in this invention.

Claims (96)

3次元マイクロ電極アレイ(3D MEA)を製造する方法であって、
平面導電性シートに複数の切り欠きを形成することと、
複数のマイクロニードルが前記平面導電性シートに対して直角に延びるように、前記複数の切り欠きで材料を移行させることと、
前記平面導体シートを切断し、前記複数のマイクロニードルを前記平面シートから切り離し、切り離された複数のマイクロニードルを製造することと、
前記切り離された複数のマイクロニードルを上面、下面、及び前記上面と下面の間にある縁面を備える透明な平面基板体に固定することと、
を含み、
一又は複数の導電性トレースが前記縁面と、前記下面又は上面の一方又は双方に蒸着され、
前記切り離された複数のマイクロニードルが前記導体トレース上に固定されることにより、前記複数のマイクロニードルのうち少なくとも一つのマイクロニードルと前記複数一又は複数の導電性トレースのうち少なくとも一つのトレースが導電的に接続される、
ことを特徴とする方法。
A method of manufacturing a three-dimensional microelectrode array (3D MEA), the method comprising:
Forming a plurality of notches in a planar conductive sheet;
transferring material in the plurality of cutouts such that the plurality of microneedles extend perpendicularly to the planar conductive sheet;
Cutting the planar conductor sheet and separating the plurality of microneedles from the planar sheet to produce a plurality of separated microneedles;
fixing the plurality of separated microneedles to a transparent flat substrate body having an upper surface, a lower surface, and an edge surface between the upper surface and the lower surface;
including;
one or more conductive traces are deposited on the edge surface and one or both of the bottom or top surface;
By fixing the plurality of separated microneedles on the conductor trace, at least one microneedle among the plurality of microneedles and at least one trace among the one or more conductive traces are connected. conductively connected,
A method characterized by:
前記平面導電性基板は、金属、ポリマー-金属複合体、導電性シリコン複合体又は導電性ガラスで構成される、
ことを特徴とする請求項1記載の方法。
The planar conductive substrate is composed of a metal, a polymer-metal composite, a conductive silicon composite, or a conductive glass.
2. A method according to claim 1, characterized in that:
前記金属は、ステンレス鋼、チタン、亜鉛、マグネシウムニチノール、バナジウム又はそれらの組み合わせ及びそれらの合金を含む、
ことを特徴とする請求項2記載の方法。
The metal includes stainless steel, titanium, zinc, magnesium nitinol, vanadium or combinations and alloys thereof.
3. A method according to claim 2, characterized in that:
前記透明な平面基板は、ガラス又は透明なポリマーを含む、
ことを特徴とする請求項1~3のいずれかに記載の方法。
the transparent planar substrate comprises glass or a transparent polymer;
The method according to any one of claims 1 to 3, characterized in that:
前記マイクロニードルは、前記平面導電性シートに対して60°以上、70°又は80°の角度となっている、
ことを特徴とする請求項1~4のいずれかに記載の方法。
The microneedles are at an angle of 60° or more, 70° or 80° with respect to the planar conductive sheet.
The method according to any one of claims 1 to 4, characterized in that:
前記マイクロニードルは、80°以上の角度となっている、
ことを特徴とする請求項5記載の方法。
The microneedle has an angle of 80° or more,
6. The method according to claim 5, characterized in that:
絶縁層を前記複数のマイクロニードルに蒸着することを更に含む、
ことを特徴とする請求項1~6のいずれかに記載の方法。
further comprising depositing an insulating layer on the plurality of microneedles;
The method according to any one of claims 1 to 6, characterized in that:
前記絶縁層は、パリレン、ポリジメチルシロキサン(PDMS)、SU-8、二酸化ケイ素、ポリイミド、ポリウレタン、ポリ乳酸、ポリグリコール酸、ポリ乳酸グリコール酸、ポリビニルアルコール、ポリスチレン、ポリエチレングリコール、ポリエチレンテレフタレート、ポリエチレンテレフタレートグリコール、ポリエチレンナフタレート、又はこれらの組み合わせを含むとともに、前記複数のマイクロ電極の一部が露出するように蒸着され、前記マイクロ電極の一部が前記絶縁層で覆われる、
ことを特徴とする請求項7記載の方法。
The insulating layer is made of parylene, polydimethylsiloxane (PDMS), SU-8, silicon dioxide, polyimide, polyurethane, polylactic acid, polyglycolic acid, polylactic acid glycolic acid, polyvinyl alcohol, polystyrene, polyethylene glycol, polyethylene terephthalate, polyethylene terephthalate. containing glycol, polyethylene naphthalate, or a combination thereof, and is deposited so that a portion of the plurality of microelectrodes is exposed, and a portion of the microelectrode is covered with the insulating layer.
8. The method according to claim 7, characterized in that:
前記絶縁層は、狭域精密ドロップキャスティングによって蒸着される、
ことを特徴とする請求項7又は8記載の方法。
the insulating layer is deposited by narrow area precision drop casting;
The method according to claim 7 or 8, characterized in that.
前記固定ステップに続けて、細胞を前記複数のマイクロニードルの上に配置することを更に含む、
ことを特徴とする請求項1~9のいずれかに記載の方法。
Following the fixing step, the method further comprises placing cells on the plurality of microneedles.
The method according to any one of claims 1 to 9, characterized in that:
前記細胞は、起電性細胞を含む、
ことを特徴とする請求項10記載の方法。
The cells include electrogenic cells.
11. The method according to claim 10.
前記起電性細胞から電気生理学的信号を検知することを更に含む、
ことを特徴とする請求項11記載の方法。
further comprising sensing electrophysiological signals from the electrogenic cells.
12. The method according to claim 11, characterized in that:
前記切り離された複数のマイクロニードルを前記透明な平面基板体に固定する前に、前記マスクが少なくとも前記上面又は下面のいずれか一方と前記縁面の一部とを覆うように、少なくとも一つの開口部を備えるマスクを前記透明な平面基板体に当ること、
導電性材料を前記少なくとも一つの開口部を通して前記透明な平面基板体に蒸着することと、
を更に備える、
ことを特徴とする請求項1~11のいずれかに記載の方法。
Before fixing the plurality of separated microneedles to the transparent flat substrate, at least one opening is formed so that the mask covers at least one of the upper surface or the lower surface and a part of the edge surface. applying a mask comprising a portion to the transparent planar substrate;
depositing a conductive material onto the transparent planar substrate through the at least one opening;
further comprising;
The method according to any one of claims 1 to 11, characterized in that:
前記蒸着は、電子ビーム蒸着、抵抗蒸着、レーザー蒸着、スクリーン印刷、又は電気メッキによって行われる、
ことを特徴とする請求項13記載の方法。
The deposition is performed by electron beam deposition, resistance deposition, laser deposition, screen printing, or electroplating.
14. The method according to claim 13, characterized in that:
マスクを当てられた状態の前記透明な平面基板体は、前記導電性材料が前記縁面に蒸着されるように蒸着中に角度を付けて保持される、
ことを特徴とする請求項13又は14記載の方法。
the masked transparent planar substrate body is held at an angle during deposition such that the conductive material is deposited on the edge surface;
The method according to claim 13 or 14, characterized in that.
前記透明な平面基板体は、基部と、前記基部に対して直角に固定されたブラケット部とを備える角度付き蒸着リグによって角度をつけて保持される、
ことを特徴とする請求項15記載の方法。
the transparent planar substrate body is held at an angle by an angled deposition rig comprising a base and a bracket portion fixed at right angles to the base;
16. The method according to claim 15, characterized in that:
請求項1~16のいずれかに記載の方法によって製造された3D MEA。 3D MEA manufactured by the method according to any one of claims 1 to 16. 透明な平面基板体を少なくとも一つの開口部を備えたマスクで覆うことであって、前記透明な平面基板体は上面、下面、及び前記上面と下面の間にある少なくとも一つの縁面を備え、前記少なくとも一つの開口部は前記縁面に重なることと、
導電性材料を前記少なくとも一つの開口部を通して前記透明な平面基板体に蒸着することであって、前記導電性材料は前記縁面に蒸着され、前記透明な平面基板は蒸着の方向に対して角度をつけて保持されることと、を備える、
ことを特徴とする方法。
covering a transparent planar substrate with a mask having at least one opening, the transparent planar substrate having a top surface, a bottom surface, and at least one edge surface between the top surface and the bottom surface; the at least one opening overlaps the edge surface;
depositing a conductive material onto the transparent planar substrate body through the at least one opening, the conductive material being deposited on the edge surface, and the transparent planar substrate being oriented at an angle relative to the direction of deposition; and being held with a
A method characterized by:
前記透明な平面基板の保持は、前記透明な平面基板を斜角蒸着と関連付けることを備える、
ことを特徴とする請求項18記載の方法。
holding the transparent planar substrate comprises associating the transparent planar substrate with an angle deposition;
19. The method according to claim 18, characterized in that:
前記斜角蒸着は、基部と、前記基部に対して直角に固定されたブラケット部とを備える角度付き蒸着リグを使用する、
ことを特徴とする請求項19記載の方法。
The angled deposition uses an angled deposition rig comprising a base and a bracket fixed at right angles to the base.
20. The method according to claim 19, characterized in that:
3次元マイクロ電極アレイ(3D MEA)を製造する方法であって、
複数のマイクロニードルを上面、下面、及び前記上面と下面の間にある縁面を備え、前記下面又は上面の一方又は双方に一又は複数の導電性トレースが蒸着された透明な平面基板体に固定することと、
少なくとも一つのフレーム部材を前記透明な平面基板に取り付けることであって、前記少なくとも一つのフレーム部材は、前記縁面が挿入される少なくとも一つの溝と、その中に画定され前記上面から前記下面に広がる少なくとも一つのチャネルを備えることと、
導電性材料を前記少なくとも一つのチャネルに蒸着し、前記導電性材料が前記少なくとも一つのトレースと導電的に接続するようにすることと、を備える、
ことを特徴とする方法。
A method of manufacturing a three-dimensional microelectrode array (3D MEA), the method comprising:
A plurality of microneedles are fixed to a transparent planar substrate body having an upper surface, a lower surface, and an edge surface between the upper surface and the lower surface, and having one or more conductive traces deposited on one or both of the lower surface and the upper surface. to do and
attaching at least one frame member to the transparent planar substrate, the at least one frame member having at least one groove defined therein into which the edge surface is inserted and extending from the upper surface to the lower surface; comprising at least one channel extending;
depositing a conductive material in the at least one channel such that the conductive material is in conductive connection with the at least one trace;
A method characterized by:
前記複数のマイクロニードルは、金属ポリマー金属複合体、シリコン及び/又は導電性ガラスで構成される、
ことを特徴とする請求項21記載の方法。
The plurality of microneedles are composed of a metal polymer metal composite, silicon and/or conductive glass,
22. A method according to claim 21, characterized in that.
前記透明な平面基板は、ガラスを含む、
ことを特徴とする請求項21又は22記載の方法。
The transparent planar substrate includes glass.
23. The method according to claim 21 or 22, characterized in that:
平面導電性シートに複数の切り欠きを形成することと、
前記平面導電性シートに対して直角に延びるように、前記複数の切り欠きで材料を移行させることと、
前記平面導体シートを切断し、前期複数のマイクロニードルを前期平面シートから切り離し、切り離された複数のマイクロニードルを製造することと、
によって、前記固定ステップの前に前記複数のマイクロニードルを製造する、
ことを特徴とする請求項21~23のいずれかに記載の方法。
Forming a plurality of notches in a planar conductive sheet;
transferring material in the plurality of cutouts so as to extend perpendicularly to the planar conductive sheet;
Cutting the planar conductor sheet and separating the plurality of microneedles from the planar sheet to produce a plurality of separated microneedles;
manufacturing the plurality of microneedles before the fixing step, by
The method according to any one of claims 21 to 23, characterized in that:
前記複数のマイクロニードルは、前記平面導電性シートに対して60°以上、70°又は80°の角度となっている、
ことを特徴とする請求項24記載の方法。
The plurality of microneedles are at an angle of 60° or more, 70° or 80° with respect to the planar conductive sheet.
25. The method according to claim 24, characterized in that:
前記複数のマイクロニードルは、80°以上の角度となっている、
ことを特徴とする請求項24記載の方法。
The plurality of microneedles are at an angle of 80° or more,
25. A method according to claim 24, characterized in that:
絶縁層を前記複数のマイクロニードルに蒸着することを更に備える、
ことを特徴とする請求項21~26のいずれかに記載の方法。
further comprising depositing an insulating layer on the plurality of microneedles;
The method according to any one of claims 21 to 26, characterized in that:
前記絶縁層は、パリレン、ポリジメチルシロキサン(PDMS)、SU-8、二酸化ケイ素、ポリイミド、ポリウレタン、ポリ乳酸、ポリグリコール酸、ポリ乳酸グリコール酸、ポリビニルアルコール、ポリスチレン、ポリエチレングリコール、ポリエチレンテレフタレート、ポリエチレンテレフタレートグリコール、ポリエチレンナフタレート又はこれらの組み合わせを含むとともに、前記複数のマイクロ電極の一部が露出するように蒸着され、前記マイクロ電極の一部が前記絶縁層で覆われる、
ことを特徴とする請求項27記載の方法。
The insulating layer is made of parylene, polydimethylsiloxane (PDMS), SU-8, silicon dioxide, polyimide, polyurethane, polylactic acid, polyglycolic acid, polylactic acid glycolic acid, polyvinyl alcohol, polystyrene, polyethylene glycol, polyethylene terephthalate, polyethylene terephthalate. contains glycol, polyethylene naphthalate, or a combination thereof, and is deposited so that a portion of the plurality of microelectrodes is exposed, and a portion of the microelectrode is covered with the insulating layer.
28. A method according to claim 27, characterized in that.
前記絶縁層は、狭域精密ドロップキャスティングによって蒸着される、
ことを特徴とする請求項27又は28記載の方法。
the insulating layer is deposited by narrow area precision drop casting;
29. A method according to claim 27 or 28, characterized in that.
前記固定ステップに続けて、細胞を前記複数のマイクロニードルの上に配置することを更に備える、
ことを特徴とする請求項21~29のいずれかに記載の方法。
Following the fixing step, the method further comprises placing cells on the plurality of microneedles.
The method according to any one of claims 21 to 29, characterized in that:
前記細胞は、起電性細胞である、
ことを特徴とする請求項30記載の方法。
the cell is an electrogenic cell,
31. The method of claim 30.
前記起電性細胞から電気生理学的信号を検知することを更に含む、
ことを特徴とする請求項31記載の方法。
further comprising sensing electrophysiological signals from the electrogenic cells.
32. A method according to claim 31, characterized in that.
請求項21~32のいずれかに記載の方法によって製造された3D MEA。 3D MEA manufactured by the method according to any of claims 21 to 32. 上面、下面、及び前記上面と下面の間にある縁面を備える透明な平面基板体と、
前記透明な平面基板体に蒸着される複数の導電性トレースと、
ステンレス鋼で構成される複数の微細加工3Dマイクロニードルであって、前記複数の3Dマイクロニードルのうち少なくとも一つのマイクロニードルが前記複数の導電性トレースのうち少なくとも一つと導電的に接続するように前記透明な平面基板体に取り付けられる複数の微細加工3Dマイクロニードルと、
を備え、
任意で、前記透明な平面基板体と関連付けられた少なくとも一つのフレーム部材であって、前記少なくとも一つのフレーム部材は、前記縁面が挿入される少なくとも一つの溝と、その中に画定され前記上面から前記下面に広がる少なくとも一つのチャネルと、前記少なくとも一つのチャネル内に蒸着されることで、前記複数の導電性トレースのうち少なくとも一つとの導電的な接続を提供する導電性材料と、を備える少なくとも一つのフレーム部材を備える、
ことを特徴とする3D MEA。
a transparent planar substrate body comprising an upper surface, a lower surface, and an edge surface between the upper surface and the lower surface;
a plurality of conductive traces deposited on the transparent planar substrate;
a plurality of microfabricated 3D microneedles constructed of stainless steel, wherein at least one microneedle of the plurality of 3D microneedles is in conductive connection with at least one of the plurality of conductive traces; a plurality of microfabricated 3D microneedles attached to a transparent flat substrate;
Equipped with
Optionally, at least one frame member associated with the transparent planar substrate body, the at least one frame member having at least one groove defined therein into which the edge surface is inserted and the upper surface a conductive material deposited within the at least one channel to provide conductive connection with at least one of the plurality of conductive traces. comprising at least one frame member;
3D MEA is characterized by:
平面導電性シートに複数の切り欠きを形成することと、
複数のマイクロニードルが前記平面導電性シートに対して直角に延びるように、前記複数の切り欠きで材料を移行させることと、
前記平面導体シートを切断し、前期複数のマイクロニードルを前記平面シートから切り離し、切り離された複数のマイクロニードルを製造することと、
によって、前記複数の微細加工3Dマイクロニードルが製造される、
ことを特徴とする請求項34記載の3D MEA。
Forming a plurality of notches in a planar conductive sheet;
transferring material in the plurality of cutouts such that the plurality of microneedles extend perpendicularly to the planar conductive sheet;
Cutting the planar conductor sheet and separating the plurality of microneedles from the planar sheet to produce a plurality of separated microneedles;
The plurality of microfabricated 3D microneedles are manufactured by,
35. The 3D MEA according to claim 34.
前記複数のマイクロニードル上に、前記複数のマイクロニードルの一部が露出し、かつそれにより前記マイクロニードルの一部が覆われるような絶縁層を更に備える、
ことを特徴とする請求項34又は35記載の3D MEA。
Further comprising an insulating layer on the plurality of microneedles so that a portion of the plurality of microneedles is exposed and a portion of the microneedle is covered thereby.
36. The 3D MEA according to claim 34 or 35.
前記絶縁層は、パリレン、ポリジメチルシロキサン(PDMS)、SU-8、二酸化ケイ素、ポリイミド、ポリウレタン、ポリ乳酸、ポリグリコール酸、ポリ乳酸グリコール酸、ポリビニルアルコール、ポリスチレン、ポリエチレングリコール、ポリエチレンテレフタレート、ポリエチレンテレフタレートグリコール、ポリエチレンナフタレート、又はこれらの組み合わせによって構成される、
ことを特徴とする請求項36記載の3D MEA。
The insulating layer is made of parylene, polydimethylsiloxane (PDMS), SU-8, silicon dioxide, polyimide, polyurethane, polylactic acid, polyglycolic acid, polylactic acid glycolic acid, polyvinyl alcohol, polystyrene, polyethylene glycol, polyethylene terephthalate, polyethylene terephthalate. composed of glycol, polyethylene naphthalate, or a combination thereof;
37. The 3D MEA according to claim 36.
前記絶縁層は、狭域精密ドロップキャスティングによって蒸着される、
ことを特徴とする請求項36又は37記載の3D MEA。
the insulating layer is deposited by narrow area precision drop casting;
38. The 3D MEA according to claim 36 or 37.
前記複数のマイクロニードルの上に配置された細胞を更に備える、
ことを特徴とする請求項34~38のいずれかに記載の3D MEA。
further comprising cells disposed on the plurality of microneedles;
39. The 3D MEA according to any one of claims 34 to 38.
前記細胞は、起電性細胞である、
ことを特徴とする請求項39記載の3D MEA。
the cell is an electrogenic cell,
40. The 3D MEA according to claim 39.
前記導電性材料は、銀、金、グラフェン又はカーボンナノチューブを含む、
ことを特徴とする請求項39記載の3D MEA。
The conductive material includes silver, gold, graphene or carbon nanotubes.
40. The 3D MEA according to claim 39.
上面、下面、及び前記上面と下面の間にある縁面を備える透明な平面基板体と、
前記透明な平面基板体の前記縁面と、前記上面又は下面の一方又は双方に蒸着される複数の導電性トレースと、
ステンレス鋼で構成される複数の微細加工3Dマイクロニードルであって、前記複数の3Dマイクロニードルのうち少なくとも一つのマイクロニードルが前記複数の導電性トレースのうち少なくとも一つと導電的に接続するように前記透明な平面基板体に取り付けられる複数の微細加工3Dマイクロニードルと、
を備える、
ことを特徴とする3D MEA。
a transparent planar substrate body comprising an upper surface, a lower surface, and an edge surface between the upper surface and the lower surface;
a plurality of conductive traces deposited on the edge surface and one or both of the top or bottom surface of the transparent planar substrate body;
a plurality of microfabricated 3D microneedles constructed of stainless steel, wherein at least one microneedle of the plurality of 3D microneedles is in conductive connection with at least one of the plurality of conductive traces; a plurality of microfabricated 3D microneedles attached to a transparent flat substrate;
Equipped with
3D MEA is characterized by:
平面導電性シートに複数の切り欠きを形成することと、
複数のマイクロニードルが前記平面導電性シートに対して直角に延びるように、前記複数の切り欠きで材料を移行させることと、
前記平面導体シートを切断し、前期複数のマイクロニードルを前記平面シートから切り離し、切り離された複数のマイクロニードルを製造することと、
によって、前記複数の微細加工3Dマイクロニードルが製造される、
ことを特徴とする請求項42記載の3D MEA。
Forming a plurality of notches in a planar conductive sheet;
transferring material in the plurality of cutouts such that the plurality of microneedles extend perpendicularly to the planar conductive sheet;
Cutting the planar conductor sheet and separating the plurality of microneedles from the planar sheet to produce a plurality of separated microneedles;
The plurality of microfabricated 3D microneedles are manufactured by,
43. The 3D MEA according to claim 42.
前記複数のマイクロニードル上に、前記複数のマイクロニードルの一部が露出し、かつそれにより前記マイクロニードルの一部が覆われるような絶縁層を更に備える、
ことを特徴とする請求項42又は43記載の3D MEA。
Further comprising an insulating layer on the plurality of microneedles so that a portion of the plurality of microneedles is exposed and a portion of the microneedle is covered thereby.
44. The 3D MEA according to claim 42 or 43.
前記絶縁層は、パリレン、ポリジメチルシロキサン(PDMS)、SU-8、二酸化ケイ素、ポリイミド、ポリウレタン、ポリ乳酸、ポリグリコール酸、ポリ乳酸グリコール酸、ポリビニルアルコール、ポリスチレン、ポリエチレングリコール、ポリエチレンテレフタレート、ポリエチレンテレフタレートグリコール、ポリエチレンナフタレート、又はこれらの組み合わせを含む、
ことを特徴とする請求項44記載の3D MEA。
The insulating layer is made of parylene, polydimethylsiloxane (PDMS), SU-8, silicon dioxide, polyimide, polyurethane, polylactic acid, polyglycolic acid, polylactic acid glycolic acid, polyvinyl alcohol, polystyrene, polyethylene glycol, polyethylene terephthalate, polyethylene terephthalate. containing glycol, polyethylene naphthalate, or a combination thereof;
45. The 3D MEA according to claim 44.
前記絶縁層は、狭域精密ドロップキャスティングによって蒸着される、
ことを特徴とする請求項44又は45記載の3D MEA。
the insulating layer is deposited by narrow area precision drop casting;
46. The 3D MEA according to claim 44 or 45.
前記複数のマイクロニードルの上に配置された細胞を更に備える、
ことを特徴とする請求項42~46のいずれかに記載の3D MEA。
further comprising cells disposed on the plurality of microneedles;
47. The 3D MEA according to any one of claims 42 to 46.
前記細胞は、起電性細胞である、
ことを特徴とする請求項47記載の3D MEA。
the cell is an electrogenic cell,
48. The 3D MEA according to claim 47.
前記導電性材料は、銀、金、グラフェン又はカーボンナノチューブを含む、
ことを特徴とする請求項34記載の3D MEA。
The conductive material includes silver, gold, graphene or carbon nanotubes.
35. The 3D MEA according to claim 34.
前記透明な平面基板体は、ガラスを含む、
ことを特徴とする請求項42~49のいずれかに記載の3D MEA。
The transparent planar substrate body includes glass.
50. The 3D MEA according to any one of claims 42 to 49.
透明な平面基板体に、液体溶液が複数のマイクロニードルの上に保持されてもよいように関連付けられた培養ウェルを更に含む、
ことを特徴とする請求項42~50のいずれかに記載の3D MEA。
further comprising a culture well associated with the transparent planar substrate such that a liquid solution may be retained over the plurality of microneedles;
51. The 3D MEA according to any one of claims 42 to 50.
透明な平面基板体に、液体溶液が複数のマイクロニードルの上に保持されてもよいように関連付けられた培養ウェルを更に含む、
ことを特徴とする請求項34~41のいずれかに記載の3D MEA。
further comprising a culture well associated with the transparent planar substrate such that a liquid solution may be retained over the plurality of microneedles;
42. The 3D MEA according to any one of claims 34 to 41.
請求項48記載の3D MEAを取得することと、
起電性細胞から電気生理学的信号を検知することと、
を備える、
ことを特徴とする方法。
Obtaining the 3D MEA according to claim 48;
detecting electrophysiological signals from electrogenic cells;
Equipped with
A method characterized by:
請求項40記載の3D MEAを取得することと、
起電性細胞から電気生理学的信号を検知することと、
を含む、
ことを特徴とする方法。
Obtaining the 3D MEA according to claim 40;
detecting electrophysiological signals from electrogenic cells;
including,
A method characterized by:
上面、下面、及び前記上面と下面の間にある縁面を備える透明な平面基板体と、
前記縁面、前記上面又は下面、もしくはその組み合わせに蒸着される複数の導電性トレースと、
複数の微細加工3Dマイクロニードルであって、前記複数の3Dマイクロニードルのうち少なくとも一つのマイクロニードルが前記複数の導電性トレースのうち少なくとも一つと導電的に接続するように前記透明な平面基板体に取り付けられ、前記複数の微細加工3Dマイクロニードルは、3Dマイクロニードルの第1のセットを備え、第1の幅寸法と第1の長さ寸法を有する第1部分と、3Dマイクロニードルの第2のセットを備え、第2の幅寸法と第2の長さ寸法を有する第2部分とを備える組立体において提供され、前記第2の幅寸法は前記第1の幅寸法より大きく、前記第1の長さ寸法は前記第2の長さ寸法より大きく、そして、任意で、前記複数の微細加工3Dマイクロニードルは、導電的に分離されている複数の微細加工3Dマイクロニードルと、
を備える、
ことを特徴とする3D MEA。
a transparent planar substrate body comprising an upper surface, a lower surface, and an edge surface between the upper surface and the lower surface;
a plurality of conductive traces deposited on the edge surface, the top or bottom surface, or a combination thereof;
a plurality of microfabricated 3D microneedles on the transparent planar substrate body such that at least one microneedle of the plurality of 3D microneedles is in conductive connection with at least one of the plurality of conductive traces; attached, the plurality of microfabricated 3D microneedles comprising a first set of 3D microneedles, a first portion having a first width dimension and a first length dimension, and a second portion of the 3D microneedles. a second portion having a second width dimension and a second length dimension, the second width dimension being greater than the first width dimension; a length dimension is greater than the second length dimension, and optionally, the plurality of microfabricated 3D microneedles are electrically conductively separated;
Equipped with
3D MEA is characterized by:
前記第1のセットは、約8個の3Dマイクロ電極を備え、前記第2のセットは、約2個の3Dマイクロ電極を備える、
ことを特徴とする請求項55記載の3D MEA。
The first set comprises about 8 3D microelectrodes and the second set comprises about 2 3D microelectrodes.
56. The 3D MEA according to claim 55.
前記第1の幅寸法は約10~500μmであり、前記第1の長さ寸法は約10~500μmであり、前記第2の幅寸法は約10~500μmであり、前記第2の長さ寸法は約10~500μmである、
ことを特徴とする請求項55記載の3D MEA。
The first width dimension is about 10-500 μm, the first length dimension is about 10-500 μm, the second width dimension is about 10-500 μm, and the second length dimension is about 10-500 μm. is about 10 to 500 μm,
56. The 3D MEA according to claim 55.
前記第1部分と前記第2部分は、前記第1部分が神経細胞の神経管と一致し、前記第2部分が神経細胞の神経節と一致する幾何学形状を形成する、
ことを特徴とする請求項55~57のいずれかに記載の3D MEA。
The first portion and the second portion form a geometric shape in which the first portion corresponds to a neural tube of a neuron and the second portion corresponds to a ganglion of a neuron.
58. The 3D MEA according to any one of claims 55 to 57.
前記複数のマイクロニードルの上に配置された一又は複数の細胞を更に備える、
ことを特徴とする請求項55~58のいずれかに記載の3D MEA。
further comprising one or more cells arranged on the plurality of microneedles,
59. The 3D MEA according to any one of claims 55 to 58.
前記一又は複数の細胞は、一又は複数の神経細胞を含む、
ことを特徴とする請求項59記載の3D MEA。
The one or more cells include one or more nerve cells,
60. The 3D MEA according to claim 59.
前記一又は複数の神経細胞は、末梢神経系ニューロン、中枢神経系ニューロン、シュワン細胞、オリゴデンドロサイト、ミクログリア細胞、グリア細胞、他の末梢又は中枢神経支持細胞、もしくはそれらの組み合わせを含む、
ことを特徴とする請求項60記載の3D MEA。
The one or more neural cells include peripheral nervous system neurons, central nervous system neurons, Schwann cells, oligodendrocytes, microglial cells, glial cells, other peripheral or central nervous support cells, or combinations thereof.
61. The 3D MEA according to claim 60.
前記切り離された複数のマイクロニードルは、3Dマイクロニードルの第1のセットを備え、第1の幅寸法と第1の長さ寸法を有する第1部分と、3Dマイクロニードルの第2のセットを備え、第2の幅寸法と第2の長さ寸法を有する第2部分とを備え、前記第2の幅寸法は前記第1の幅寸法より大きく、前記第1の長さ寸法は前記第2の長さ寸法より大きく、そして、任意で、前記複数の3Dマイクロニードルを導電的に分離することを更に備える、
ことを特徴とする請求項1記載の方法。
The plurality of detached microneedles comprises a first set of 3D microneedles, a first portion having a first width dimension and a first length dimension, and a second set of 3D microneedles. , a second portion having a second width dimension and a second length dimension, the second width dimension being greater than the first width dimension, and the first length dimension being larger than the second length dimension. greater than a length dimension, and optionally further comprising conductively separating the plurality of 3D microneedles.
2. A method according to claim 1, characterized in that:
前記複数の3Dマイクロニードルは、3Dマイクロニードルの第1のセットを備え、第1の幅寸法と第1の長さ寸法を有する第1部分と、3Dマイクロニードルの第2のセットを備え、第2の幅寸法と第2の長さ寸法を有する第2部分とを備え、前記第2の幅寸法は前記第1の幅寸法より大きく、前記第1の長さ寸法は前記第2の長さ寸法より大きく、そして、任意で、前記複数の3Dマイクロニードルを導電的に分離することを更に備える、
ことを特徴とする請求項21記載の方法。
The plurality of 3D microneedles comprises a first set of 3D microneedles, the first portion having a first width dimension and a first length dimension, a second set of 3D microneedles, and a first portion having a first width dimension and a first length dimension. a second portion having a second width dimension and a second length dimension, the second width dimension being greater than the first width dimension, and the first length dimension being the second length dimension; larger than the dimension, and optionally further comprising conductively separating the plurality of 3D microneedles.
22. A method according to claim 21, characterized in that.
前記複数の3Dマイクロニードルは、3Dマイクロニードルの第1のセットを備え、第1の幅寸法と第1の長さ寸法を有する第1部分と、3Dマイクロニードルの第2のセットを備え、第2の幅寸法と第2の長さ寸法を有する第2部分とを備え、前記第2の幅寸法は前記第1の幅寸法より大きく、前記第1の長さ寸法は前記第2の長さ寸法より大きく、そして、任意で、前記複数の微細加工3Dマイクロニードルを導電的に分離することを更に備える、
ことを特徴とする請求項34~52のいずれかに記載の3D MEA。
The plurality of 3D microneedles comprises a first set of 3D microneedles, the first portion having a first width dimension and a first length dimension, a second set of 3D microneedles, and a first portion having a first width dimension and a first length dimension. a second portion having a second width dimension and a second length dimension, the second width dimension being greater than the first width dimension, and the first length dimension being the second length dimension; the plurality of microfabricated 3D microneedles, and optionally further comprising conductively separating the plurality of micromachined 3D microneedles;
53. The 3D MEA according to any one of claims 34 to 52.
前記第1部分と前記第2部分は、前記第1部分が神経細胞の神経管と一致し、前記第2部分が神経細胞の神経節と一致する幾何学形状を形成する、
ことを特徴とする請求項64記載の3D MEA。
The first portion and the second portion form a geometric shape in which the first portion corresponds to a neural tube of a neuron and the second portion corresponds to a ganglion of a neuron.
65. The 3D MEA according to claim 64.
前記3D MEAは、伝導速度、振幅、積分、化合物投与後の興奮性、閾値、感度、CAP時間幅、CAP波形形状、又はそれらの組み合わせを推定するために複合活動電位を測定するように構成される、
ことを特徴とする請求項34~52、64又は65のいずれかに記載の3D MEA。
The 3D MEA is configured to measure compound action potentials to estimate conduction velocity, amplitude, integral, excitability after compound administration, threshold, sensitivity, CAP duration, CAP waveform shape, or a combination thereof. Ru,
66. The 3D MEA according to any one of claims 34 to 52, 64, or 65.
前記複数の細胞は、一又は複数の神経細胞を含む、
ことを特徴とする請求項10~12及び30~32のいずれかに記載の方法。
The plurality of cells include one or more nerve cells,
The method according to any one of claims 10 to 12 and 30 to 32, characterized in that:
前記一又は複数の神経細胞は、末梢神経系ニューロン、中枢神経系ニューロン、シュワン細胞、オリゴデンドロサイト、ミクログリア細胞、グリア細胞、他の末梢又は中枢神経支持細胞、もしくはそれらの組み合わせを含む、
ことを特徴とする請求項67記載の方法。
The one or more neural cells include peripheral nervous system neurons, central nervous system neurons, Schwann cells, oligodendrocytes, microglial cells, glial cells, other peripheral or central nervous support cells, or combinations thereof.
68. The method of claim 67.
前記細胞は、一又は複数の神経細胞を含む、
ことを特徴とする請求項39、40、47、48のいずれかに記載の3D MEA。
The cells include one or more nerve cells,
49. The 3D MEA according to any one of claims 39, 40, 47, and 48.
前記一又は複数の神経細胞は、末梢神経系ニューロン、中枢神経系ニューロン、シュワン細胞、オリゴデンドロサイト、ミクログリア細胞、グリア細胞、他の末梢又は中枢神経支持細胞もしくはそれらの組み合わせを含む、
ことを特徴とする請求項69記載の3D MEA。
The one or more neural cells include peripheral nervous system neurons, central nervous system neurons, Schwann cells, oligodendrocytes, microglial cells, glial cells, other peripheral or central nervous system supporting cells, or combinations thereof.
70. The 3D MEA according to claim 69 .
前記複数のマイクロニードルのうち少なくとも一つは、最大約1000μmの高さを備える、
ことを特徴とする請求項39~52、55~61、64~66、69又は70のいずれかに記載の3D MEA。
At least one of the plurality of microneedles has a maximum height of about 1000 μm.
71. The 3D MEA according to any one of claims 39 to 52, 55 to 61, 64 to 66, 69 , or 70 .
前記少なくとも一つの3次元電極は、約300μm~約1000μmの間の高さを備える、
ことを特徴とする請求項71記載のマイクロ電極アレイ。
the at least one three-dimensional electrode has a height between about 300 μm and about 1000 μm;
72. The microelectrode array according to claim 71 .
前記少なくとも一つの3次元電極は、最大約150μmの高さを備える、
ことを特徴とする請求項71記載のマイクロ電極アレイ。
the at least one three-dimensional electrode has a height of up to about 150 μm;
72. The microelectrode array according to claim 71 .
前記少なくとも一つの3次元電極は、約50μm~約150μmの間の高さを備える、
ことを特徴とする請求項71記載のマイクロ電極アレイ。
the at least one three-dimensional electrode has a height between about 50 μm and about 150 μm;
72. The microelectrode array according to claim 71 .
前記3D MEAは、マイクロエンジニアリング生理学的システムにおける一又は複数の生体電気信号の、リアルタイムで信頼性の高い検知を行う、
ことを特徴とする請求項55又は64記載の3D MEA。
The 3D MEA provides real-time and reliable sensing of one or more bioelectrical signals in a microengineered physiological system.
65. The 3D MEA according to claim 55 or 64.
前記マイクロエンジニアリング生理学的システムは、組織移植片、細胞懸濁液、又はそれらの組み合わせを備える、
ことを特徴とする請求項75記載の3D MEA。
The microengineered physiological system comprises a tissue graft, a cell suspension, or a combination thereof.
76. The 3D MEA according to claim 75 .
前記マイクロエンジニアリングされた生理学的システムは、マイクロパターン化プラットフォーム上で培養された神経細胞又はマイクロパターン化プラットフォーム上に播種された組織移植片を備え、前記マイクロパターン化プラットフォームは、神経構造物の形成を可能にし、前記神経構造物は、軸索成長領域、神経節領域、樹状突起領域、シナプス領域、スフェロイド領域、又はそれらの組み合わせを備える、
ことを特徴とする請求項75記載の3D MEA。
The microengineered physiological system comprises neural cells cultured on a micropatterned platform or tissue grafts seeded on a micropatterned platform, and the micropatterned platform facilitates the formation of neural constructs. the neural structure comprises an axonal growth region, a ganglion region, a dendritic region, a synaptic region, a spheroid region, or a combination thereof;
76. The 3D MEA according to claim 75 .
前記第2部分は、前記神経節領域又はスフェロイド領域に配置され、前記第1部分は、軸索成長領域の下に規定された間隔で配置された複数のマイクロニードルを備える、
ことを特徴とする請求項77記載の3D MEA。
The second part is arranged in the ganglion region or the spheroid region, and the first part comprises a plurality of microneedles arranged at defined intervals below the axon growth region.
78. The 3D MEA according to claim 77 .
前記3Dマイクロニードルの第1のセット、前記3Dマイクロニードルの第2のセット、又は双方は、記録電極、刺激電極、又はそれらの組み合わせを備える、
ことを特徴とする請求項78記載の3D MEA。
the first set of 3D microneedles, the second set of 3D microneedles, or both comprise recording electrodes, stimulation electrodes, or a combination thereof;
79. The 3D MEA according to claim 78 .
前記規定された間隔は、最大約50μmの間隔を含む、
ことを特徴とする請求項78記載の3D MEA。
the defined spacing includes a spacing of up to about 50 μm;
79. The 3D MEA according to claim 78 .
前記マイクロ電極アレイは、最大1年間、前記マイクロエンジニアリング生理学的システムにおける一又は複数の生体電気信号の検知を行う、
ことを特徴とする請求項75記載の3D MEA。
the microelectrode array provides sensing of one or more bioelectrical signals in the microengineered physiological system for up to one year;
76. The 3D MEA according to claim 75 .
前記マイクロ電極アレイは、最大約8週間、前記マイクロエンジニアリング生理学的システムにおける一又は複数の生体電気信号の検知を行う、
ことを特徴とする請求項81記載の3D MEA。
the microelectrode array provides sensing of one or more bioelectrical signals in the microengineered physiological system for up to about 8 weeks;
82. The 3D MEA according to claim 81 .
前記3D MEAは、前記マイクロエンジニアリング生理学的システムが成熟している間、前記マイクロエンジニアリング生理学的システムの電気生理学的及び光学的な追跡を同時に行うことができるように構成される、
ことを特徴とする請求項81又は82記載の3D MEA。
The 3D MEA is configured to allow simultaneous electrophysiological and optical tracking of the microengineered physiological system while the microengineered physiological system is maturing.
83. The 3D MEA according to claim 81 or 82 .
ニューロン細胞を前記第2部分の少なくとも一部の上に配置するか、又は組織移植片を前記第2部分の少なくとも一部の上に播種することと、軸索を前記第1部分の少なくとも一部の上で成長させること、とによってマイクロエンジニアリング生理学的システムを形成することと、
前記マイクロエンジニアリング生理学的システムにおける一又は複数の生体電気信号の検知をリアルタイムで行うこと、
を更に備える、
ことを特徴とする請求項62又は63記載の方法。
placing neuronal cells on at least a portion of the second portion or seeding a tissue graft on at least a portion of the second portion; forming a microengineered physiological system by growing it on;
sensing one or more bioelectrical signals in the microengineered physiological system in real time;
further comprising;
64. A method according to claim 62 or 63, characterized in that.
前記第1の複数の電極、前記第2の複数の電極、又は双方は、記録電極、刺激電極、又はそれらの組み合わせを備える、
ことを特徴とする請求項84記載の方法。
the first plurality of electrodes, the second plurality of electrodes, or both comprise recording electrodes, stimulation electrodes, or a combination thereof;
85. The method of claim 84 .
形成の間、前記マイクロエンジニアリング生理学的システム内の生体電気信号を検知し、かつ前記マイクロエンジニアリング生理学的システムを光学的に追跡することと、前記マイクロエンジニアリング生理学的システム内の生体電気信号を検知し、かつ前記マイクロエンジニアリング生理学的システムを光学的に追跡することとを最大1年間続けること、
を更に備える、
ことを特徴とする請求項84記載の方法。
sensing a bioelectrical signal within the microengineered physiological system during formation and optically tracking the microengineered physiological system; and sensing a bioelectrical signal within the microengineering physiological system; and optically tracking said microengineered physiological system for up to one year;
further comprising;
85. The method of claim 84 .
マイクロエンジニアリング生理学的システムにおいて複合活動電位を再現可能に検知するためのシステムであって、前記システムは、請求項75記載の3D MEAを備え、前記マイクロエンジニアリング生理学的システムは、一又は複数のニューロン細胞を備える、
ことを特徴とするシステム。
76. A system for reproducibly sensing compound action potentials in a microengineered physiological system, the system comprising the 3D MEA of claim 75 , wherein the microengineered physiological system comprises one or more neuronal cells. Equipped with
A system characterized by:
前記複数の3Dマイクロニードルを導電的に分離することを更に備える、
ことを特徴とする請求項1~16又は21~31のいずれかに記載の方法。
further comprising conductively separating the plurality of 3D microneedles;
The method according to any one of claims 1 to 16 or 21 to 31, characterized in that:
3次元マイクロ電極アレイ(3D MEA)を製造する方法であって、
平面導電性シートに複数の切り欠きを形成することと、
複数のマイクロニードルが前記平面導電性シートに対して直角に延びるように、前記複数の切り欠きで材料を移行させることと、
前記平面導体シートを切断し、前期複数のマイクロニードルを前期平面シートから切り離し、切り離された複数のマイクロニードルを製造することと、
前記切り離された複数のマイクロニードルを上面、下面、及び前記上面と下面の間にある縁面を備える透明な平面基板体に固定することと、
を備える方法。
A method of manufacturing a three-dimensional microelectrode array (3D MEA), the method comprising:
Forming a plurality of notches in a planar conductive sheet;
transferring material in the plurality of cutouts such that the plurality of microneedles extend perpendicularly to the planar conductive sheet;
Cutting the planar conductor sheet and separating the plurality of microneedles from the planar sheet to produce a plurality of separated microneedles;
fixing the plurality of separated microneedles to a transparent flat substrate body having an upper surface, a lower surface, and an edge surface between the upper surface and the lower surface;
How to prepare.
一又は複数の導電性トレースが前記縁面と、前記下面又は上面の一方又は双方に蒸着されている、
ことを特徴とする請求項89記載の方法。
one or more conductive traces are deposited on the edge surface and/or on the bottom or top surface;
90. The method of claim 89 .
前記縁面が挿入される少なくとも一つの溝と、その中に画定され前記上面から前記下面に広がる少なくとも一つのチャネルとを備える少なくとも一つのフレーム部材を前記透明な平面基板体に取り付けることと、
導電性材料を前記少なくとも一つのチャネルに蒸着し、前記導電性材料が前記少なくとも一つのトレースと導電的に接続するようにすることと、
を更に備える、
ことを特徴とする請求項89記載の方法。
attaching to the transparent planar substrate body at least one frame member having at least one groove into which the edge surface is inserted and at least one channel defined therein extending from the upper surface to the lower surface;
depositing a conductive material in the at least one channel such that the conductive material is in conductive connection with the at least one trace;
further comprising;
90. The method of claim 89 .
前記切り離された複数のマイクロニードルは、3Dマイクロニードルの第1のセットを備え、第1の幅寸法と第1の長さ寸法を有する第1部分と、3Dマイクロニードルの第2のセットを備え、第2の幅寸法と第2の長さ寸法を有する第2部分とを備え、前記第2の幅寸法は前記第1の幅寸法より大きく、前記第1の長さ寸法は前記第2の長さ寸法より大きく、そして、任意で、前記複数の3Dマイクロニードルを導電的に分離することを更に備える、
ことを特徴とする請求項89記載の方法。
The plurality of detached microneedles comprises a first set of 3D microneedles, a first portion having a first width dimension and a first length dimension, and a second set of 3D microneedles. , a second portion having a second width dimension and a second length dimension, the second width dimension being greater than the first width dimension, and the first length dimension being larger than the second length dimension. greater than a length dimension, and optionally further comprising conductively separating the plurality of 3D microneedles.
90. The method of claim 89 .
前記角度は、約60°~90°、約70°~90°又は約80°~90°となっている、
ことを特徴とする請求項5記載の方法。
The angle is about 60° to 90°, about 70° to 90°, or about 80° to 90°,
6. The method according to claim 5, characterized in that:
前記基板体の前記角度は、前記蒸着の方向に対して約25°~85°となっている、
ことを特徴とする請求項15又は18~20のいずれかに記載の方法。
The angle of the substrate body is about 25° to 85° with respect to the direction of the vapor deposition.
The method according to claim 15 or any one of claims 18 to 20.
前記基板の前記角度は、前記蒸着の角度に対して約40°~50°となっている、
ことを特徴とする請求項94記載の方法。
the angle of the substrate is about 40° to 50° with respect to the angle of deposition;
95. The method of claim 94.
前記蒸着は、電子ビームを使用して行われる、
ことを特徴とする請求項94又は95記載の方法。
said vapor deposition is performed using an electron beam;
96. The method according to claim 94 or 95 .
JP2022528556A 2019-11-15 2020-11-16 Three-dimensional microelectrode array (MEA) for optical and electrical probing of electrogenic cells Pending JP2023502982A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201962935987P 2019-11-15 2019-11-15
US62/935,987 2019-11-15
US202063083976P 2020-09-27 2020-09-27
US63/083,976 2020-09-27
PCT/US2020/060779 WO2021097447A1 (en) 2019-11-15 2020-11-16 3d microelectrode array (mea) for optical and electrical probing of electrogenic cells

Publications (2)

Publication Number Publication Date
JP2023502982A JP2023502982A (en) 2023-01-26
JPWO2021097447A5 true JPWO2021097447A5 (en) 2023-11-22

Family

ID=75912493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022528556A Pending JP2023502982A (en) 2019-11-15 2020-11-16 Three-dimensional microelectrode array (MEA) for optical and electrical probing of electrogenic cells

Country Status (6)

Country Link
US (1) US20220402755A1 (en)
EP (1) EP4058402A4 (en)
JP (1) JP2023502982A (en)
CA (1) CA3158455A1 (en)
IL (1) IL292976A (en)
WO (1) WO2021097447A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019113080A1 (en) * 2017-12-04 2019-06-13 The Administrators Of The Tulane Educational Fund Cell systems using spheroids and methods of making and using the same
CN113941378B (en) * 2021-10-14 2023-03-03 浙江大学 Nerve organoid chip based on multi-cavity electrophysiological micro-nano detection and detection method
DE102023102460A1 (en) * 2023-02-01 2024-08-01 Forschungszentrum Jülich GmbH PRODUCTION OF THREE-DIMENSIONAL ELECTRODES USING TEMPLATE-ASSISTED ELECTROCHEMICAL DEPOSITION

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8261428B2 (en) * 2009-11-25 2012-09-11 National Tsing Hua University Method for assembling a 3-dimensional microelectrode structure
WO2013192083A2 (en) * 2012-06-18 2013-12-27 Axion Biosystems, Inc. 3d microelectrode device for live tissue applications
US9700221B2 (en) * 2013-03-06 2017-07-11 Axion Biosystems, Inc. Non-invasive segmentable three-dimensional microelectrode array patch for neurophysiological diagnostics and therapeutic stimulation
WO2015143443A1 (en) * 2014-03-21 2015-09-24 University Of Utah Research Foundation Multi-site electrode arrays and methods of making the same
EP3191108A4 (en) * 2014-09-12 2018-06-27 The Administrators of the Tulane Educational Fund Neural microphysiological systems and methods of using the same
WO2018191556A1 (en) * 2017-04-12 2018-10-18 The Administrators Of The Tulane Educational Fund Integrated microelectrodes and methods for producing the same
US11351537B2 (en) * 2018-02-02 2022-06-07 University Of Central Florida Research Foundation, Inc. System and method for forming a biological microdevice

Similar Documents

Publication Publication Date Title
IL292976A (en) 3d microelectrode array (mea) for optical and electrical probing of electrogenic cells
Cheung Implantable microscale neural interfaces
Cho et al. 3D electrodes for bioelectronics
Fattahi et al. A review of organic and inorganic biomaterials for neural interfaces
Sung et al. Multimaterial and multifunctional neural interfaces: from surface-type and implantable electrodes to fiber-based devices
Hai et al. Long-term, multisite, parallel, in-cell recording and stimulation by an array of extracellular microelectrodes
Didier et al. Development of in vitro 2D and 3D microelectrode arrays and their role in advancing biomedical research
US20100114272A1 (en) Multiple micro-wire electrode device and methods
US11668698B2 (en) Apparatus and method for capturing neural recordings
Park et al. Optogenetic mapping of functional connectivity in freely moving mice via insertable wrapping electrode array beneath the skull
US20100145216A1 (en) Neural Interface Assembly and Method For Making and Implanting The Same
CN110623655A (en) Implantable micro-nano electrode array chip for simulating weightless rat and preparation method thereof
KR100466954B1 (en) Apparatus and method for screening, olfactory mucosa stimulating compound found by the screening method, and therapeutic apparatus and electrode section for measurement
Kato et al. Photosensitive-polyimide based method for fabricating various neural electrode architectures
Rousche et al. Examination of the spatial and temporal distribution of sensory cortical activity using a 100-electrode array
Khudhair et al. Microelectrode arrays: Architecture, challenges and engineering solutions
CN112617749A (en) Physiological and biochemical monitoring device
CN112717273A (en) Nerve electrical stimulation electrode with micro-columnar structure and preparation method thereof
Shan et al. Recent progress of electroactive interface in neural engineering
JPWO2021097447A5 (en)
Kato et al. Preliminary study of multichannel flexible neural probes coated with hybrid biodegradable polymer
Ejserholm et al. ${\mbi {\mu}} $-Foil Polymer Electrode Array for Intracortical Neural Recordings
Myllymaa et al. Flexible implantable thin film neural electrodes
Tsang et al. Flexible electrode for implantable neural devices
Castagnola Implantable microelectrodes on soft substrate with nanostructured active surface for stimulation and recording of brain activities