JPWO2021081128A5 - - Google Patents
Download PDFInfo
- Publication number
- JPWO2021081128A5 JPWO2021081128A5 JP2022523692A JP2022523692A JPWO2021081128A5 JP WO2021081128 A5 JPWO2021081128 A5 JP WO2021081128A5 JP 2022523692 A JP2022523692 A JP 2022523692A JP 2022523692 A JP2022523692 A JP 2022523692A JP WO2021081128 A5 JPWO2021081128 A5 JP WO2021081128A5
- Authority
- JP
- Japan
- Prior art keywords
- spacing
- angular
- subtiles
- subtile
- structured illumination
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005286 illumination Methods 0.000 claims 16
- 238000006073 displacement reaction Methods 0.000 claims 14
- 238000000034 method Methods 0.000 claims 10
- 230000003287 optical effect Effects 0.000 claims 7
- 238000012937 correction Methods 0.000 claims 2
- 238000003384 imaging method Methods 0.000 claims 2
- 238000005259 measurement Methods 0.000 claims 2
- 230000006399 behavior Effects 0.000 claims 1
Claims (15)
前記スキャナ内の光学センサ上にレンズによって投影された実質的に全視野を使用して、前記スキャナを較正することであって、
構造化照明の複数の角度及び位相変位において前記構造化照明下で少なくとも1つの画像タイルを撮像することと、
中心付近サブタイルを含む、前記画像タイルの少なくとも9つのサブタイルにおいて強度ピーク間の間隔及び前記強度ピークによって示される投影された照明パターンの角度を測定することと、間隔表面及び角度表面を前記測定された間隔及び角度にそれぞれフィッティングさせることであって、前記間隔表面及び前記角度表面の両方が、前記画像タイルの前記サブタイルにわたる歪みの補正を表す、フィッティングさせることと、を含む、前記画像タイルにわたる光学歪みを計算し、フィッティング結果を保存することと、
前記サブタイル内の前記複数の角度及び位相変位における前記構造化照明の位相変位を測定し、前記中心付近サブタイルにおける前記位相変位と前記画像タイルの他のサブタイルにおける位相変位との差を表す係数のルックアップテーブルを保存することと、を含む、較正することと、
前記複数の周期にわたって、前記構造化照明の前記複数の角度及び位相変位で撮像された、前記フローセルにわたる位置をカバーする撮像された画像タイルを処理することであって、
各撮像された画像タイルの前記中心付近サブタイルのための、強度ピーク間の前記間隔、前記投影された照明パターンの前記角度、及び前記構造化照明の前記位相変位の前記測定値から外挿するために、前記保存されたフィッティング結果及び前記保存されたルックアップテーブルからの係数を使用して、前記中心付近サブタイル及び前記少なくとも8つの追加のサブタイルについてパラメータを再構成することと、
前記アッベ回折限界よりも良好な解像能力で、前記サブタイルについて、前記複数の周期にわたって、改善された解像度画像を生成するために、前記決定された再構成パラメータを適用することと、を含む、処理することと、
前記サブタイルの前記改善された解像度画像を使用して、前記複数の周期にわたって前記試料を順序付けることと、を含む、方法。 A method for improving the performance of a scanner for detecting fluorescence of millions of samples distributed across a flow cell in images collected over multiple cycles, the sample comprising at least some neighbors of the sample. located closer together than the Abbe diffraction limit for optical resolution between the pair,
calibrating the scanner using substantially the entire field of view projected by a lens onto an optical sensor in the scanner;
imaging at least one image tile under the structured illumination at a plurality of angular and phase displacements of structured illumination;
measuring the spacing between intensity peaks and the angle of a projected illumination pattern indicated by the intensity peaks in at least nine subtiles of said image tile, including a near-center subtile; and forming a spacing surface and an angular surface in said measured fitting a spacing and an angle, respectively, wherein both the spacing surface and the angular surface represent corrections for distortion across the subtiles of the image tile. and save the fitting results.
measuring the phase displacement of the structured illumination at the plurality of angular and phase displacements within the subtile, and looking for a coefficient representing the difference between the phase displacement in the near-center subtile and the phase displacement in other subtiles of the image tile; calibrating, including storing an up-table;
processing imaged image tiles covering positions across the flow cell imaged at the plurality of angular and phase displacements of the structured illumination over the plurality of periods;
extrapolating from the measurements of the spacing between intensity peaks, the angle of the projected illumination pattern, and the phase displacement of the structured illumination for the near-center subtile of each imaged image tile; reconfiguring parameters for the near-center subtile and the at least eight additional subtiles using the stored fitting results and coefficients from the stored lookup table;
applying the determined reconstruction parameters to generate improved resolution images for the subtiles over the plurality of periods with resolution better than the Abbe diffraction limit; processing and
ordering the sample over the plurality of periods using the improved resolution image of the subtile.
前記スキャナ内の光学センサ上にレンズによって投影された実質的に全視野を使用して、前記スキャナを較正することであって、
構造化照明の複数の角度及び位相変位において前記構造化照明下で少なくとも1つの画像タイルを撮像することと、
中心付近サブタイルを含む、前記画像タイルの少なくとも9つのサブタイルにおいて強度ピーク間の間隔及び前記強度ピークによって示される投影された照明パターンの角度を測定することと、間隔表面及び角度表面を前記測定された間隔及び角度にそれぞれフィッティングさせることであって、前記間隔表面及び角度表面の両方が、前記画像タイルの前記サブタイルにわたる歪みの補正を表す、フィッティングさせることと、を含む、前記画像タイルにわたって光学歪みを計算し、フィッティング結果を保存することと、
前記サブタイル内の前記複数の角度及び位相変位における前記構造化照明の位相変位を測定し、前記中心付近サブタイルにおける前記位相変位と前記画像タイルの他のサブタイルにおける位相変位との差を表す係数のルックアップテーブルを保存することと、を含む、較正することと、
前記複数の周期にわたって、前記構造化照明の前記複数の角度及び位相変位で撮像された、前記フローセルにわたる位置をカバーする撮像された画像タイルを処理することであって、
各撮像された画像タイルの前記中心付近サブタイルのための、強度ピーク間の前記間隔、前記投影された照明パターンの前記角度、及び前記構造化照明の前記位相変位の前記測定値から外挿するために、前記保存されたフィッティング結果及び前記保存されたルックアップテーブルからの係数を使用して、前記中心付近サブタイル及び前記少なくとも8つの追加のサブタイルについてパラメータを再構成することと、
前記アッベ回折限界よりも良好な解像能力で、前記サブタイルについて、前記複数の周期にわたって、改善された解像度画像を生成するために、前記決定された再構成パラメータを適用することと、を含む、処理することと、
前記サブタイルの前記改善された解像度画像を使用して、前記複数の周期にわたって前記試料を順序付けすることと、
を含む動作を実装する、システム。 A system comprising one or more processors coupled to a memory , the memory determining the ability of a scanner to detect fluorescence of millions of samples distributed across a flow cell in images collected over a plurality of cycles. loaded with computer instructions for improving said samples, said samples being positioned closer together than the Abbe diffraction limit for optical resolution between at least some adjacent pairs of said samples; When executed on more than one processor,
calibrating the scanner using substantially the entire field of view projected by a lens onto an optical sensor in the scanner;
imaging at least one image tile under the structured illumination at a plurality of angular and phase displacements of structured illumination;
measuring the spacing between intensity peaks and the angle of a projected illumination pattern indicated by the intensity peaks in at least nine subtiles of said image tile, including a near-center subtile; and forming a spacing surface and an angular surface in said measured fitting an optical distortion across the image tile, respectively fitting a spacing and an angle, wherein both the spacing surface and the angular surface represent corrections for distortion across the subtiles of the image tile. calculate and save fitting results;
measuring the phase displacement of the structured illumination at the plurality of angular and phase displacements within the subtile, and looking for a coefficient representing the difference between the phase displacement in the near-center subtile and the phase displacement in other subtiles of the image tile; calibrating, including storing an up-table;
processing imaged image tiles covering positions across the flow cell imaged at the plurality of angular and phase displacements of the structured illumination over the plurality of periods;
extrapolating from the measurements of the spacing between intensity peaks, the angle of the projected illumination pattern, and the phase displacement of the structured illumination for the near-center subtile of each imaged image tile; reconfiguring parameters for the near-center subtile and the at least eight additional subtiles using the stored fitting results and coefficients from the stored lookup table;
applying the determined reconstruction parameters to generate improved resolution images for the subtiles over the plurality of periods with resolution better than the Abbe diffraction limit; processing and
using the improved resolution images of the subtiles to order the sample over the plurality of periods;
A system that implements behaviors that include.
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962924130P | 2019-10-21 | 2019-10-21 | |
US201962924138P | 2019-10-21 | 2019-10-21 | |
US62/924,138 | 2019-10-21 | ||
US62/924,130 | 2019-10-21 | ||
US17/075,692 US11525990B2 (en) | 2019-10-21 | 2020-10-21 | Systems and methods for structured illumination microscopy |
US17/075,694 US11340437B2 (en) | 2019-10-21 | 2020-10-21 | Increased calculation efficiency for structured illumination microscopy |
US17/075,692 | 2020-10-21 | ||
PCT/US2020/056717 WO2021081128A1 (en) | 2019-10-21 | 2020-10-21 | Systems and methods for structured illumination microscopy |
US17/075,694 | 2020-10-21 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2022553713A JP2022553713A (en) | 2022-12-26 |
JPWO2021081128A5 true JPWO2021081128A5 (en) | 2023-10-31 |
JP7554824B2 JP7554824B2 (en) | 2024-09-20 |
Family
ID=75491505
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022523693A Pending JP2022553714A (en) | 2019-10-21 | 2020-10-21 | Increased Computational Efficiency for Structured Illumination Microscopy |
JP2022523692A Active JP7554824B2 (en) | 2019-10-21 | 2020-10-21 | Systems and methods for structured illumination microscopy - Patents.com |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022523693A Pending JP2022553714A (en) | 2019-10-21 | 2020-10-21 | Increased Computational Efficiency for Structured Illumination Microscopy |
Country Status (12)
Country | Link |
---|---|
US (4) | US11340437B2 (en) |
EP (2) | EP4049232B1 (en) |
JP (2) | JP2022553714A (en) |
KR (2) | KR20220085781A (en) |
CN (3) | CN114829906B (en) |
AU (2) | AU2020371626A1 (en) |
BR (2) | BR112022007292A2 (en) |
CA (1) | CA3155485A1 (en) |
IL (2) | IL292170B2 (en) |
MX (2) | MX2022004773A (en) |
WO (2) | WO2021081129A1 (en) |
ZA (2) | ZA202204436B (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11340437B2 (en) * | 2019-10-21 | 2022-05-24 | Illumina, Inc. | Increased calculation efficiency for structured illumination microscopy |
US11408032B2 (en) * | 2020-01-17 | 2022-08-09 | Element Biosciences, Inc. | Tube lens design for improved depth-of-field |
US11188778B1 (en) * | 2020-05-05 | 2021-11-30 | Illumina, Inc. | Equalization-based image processing and spatial crosstalk attenuator |
DE102020211380A1 (en) * | 2020-09-10 | 2022-03-10 | Carl Zeiss Microscopy Gmbh | Process for super-resolution evaluation of structured illuminated microscope images and microscope with structured illumination |
DE102020123668A1 (en) * | 2020-09-10 | 2022-03-10 | Carl Zeiss Microscopy Gmbh | Methods for image evaluation for SIM microscopy and SIM microscopy methods |
US20220101494A1 (en) * | 2020-09-30 | 2022-03-31 | Nvidia Corporation | Fourier transform-based image synthesis using neural networks |
US11361194B2 (en) | 2020-10-27 | 2022-06-14 | Illumina, Inc. | Systems and methods for per-cluster intensity correction and base calling |
US20220383470A1 (en) * | 2021-05-21 | 2022-12-01 | Kla Corporation | System and method for optical wafer characterization with image up-sampling |
CN113160096B (en) * | 2021-05-27 | 2023-12-08 | 山东中医药大学 | Low-light image enhancement method based on retina model |
US11455487B1 (en) | 2021-10-26 | 2022-09-27 | Illumina Software, Inc. | Intensity extraction and crosstalk attenuation using interpolation and adaptation for base calling |
CN113917677B (en) * | 2021-09-09 | 2023-05-05 | 北京纳析光电科技有限公司 | Three-dimensional super-resolution light sheet microscopic imaging method and microscope |
WO2023081568A1 (en) * | 2021-11-04 | 2023-05-11 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Systems and methods for three-dimensional structured illumination microscopy with isotropic spatial resolution |
TWI783896B (en) * | 2022-04-08 | 2022-11-11 | 國立清華大學 | Three-dimensional image reconstruction method and system for light element thin films |
CN114998161A (en) * | 2022-06-02 | 2022-09-02 | 中国科学院西安光学精密机械研究所 | Fourier stack microscopy high-precision image reconstruction method based on perfect Fourier transform |
CN115541550A (en) * | 2022-10-21 | 2022-12-30 | 南京理工大学 | Structured light illumination microscopic imaging method based on principal component analysis |
WO2024144454A1 (en) * | 2022-12-27 | 2024-07-04 | National University Of Singapore | System and method for image reconstruction using structured illumination microscopy |
CN117635506B (en) * | 2024-01-24 | 2024-04-05 | 成都航天凯特机电科技有限公司 | Image enhancement method and device based on AI-energized Mean Shift algorithm |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6169723B1 (en) | 1997-07-02 | 2001-01-02 | Telefonaktiebolaget Lm Ericsson | Computationally efficient analysis and synthesis of real signals using discrete fourier transforms and inverse discrete fourier transforms |
US7054504B2 (en) * | 1999-02-25 | 2006-05-30 | Ludwig Lester F | Relative optical path phase reconstruction in the correction of misfocused images using fractional powers of the fourier transform |
US7803609B2 (en) * | 2006-07-21 | 2010-09-28 | Affymetrix, Inc. | System, method, and product for generating patterned illumination |
CA2687062C (en) * | 2007-05-10 | 2016-04-12 | Pacific Biosciences Of California, Inc. | Methods and systems for analyzing fluorescent materials with reduced autofluorescence |
DE102008009216A1 (en) * | 2008-02-13 | 2009-08-20 | Carl Zeiss Microimaging Gmbh | Apparatus and method for spatially high resolution imaging of a structure of a sample |
WO2011004378A1 (en) * | 2009-07-08 | 2011-01-13 | Technion Research And Development Foundation Ltd. | Method and system for super-resolution signal reconstruction |
WO2012083438A1 (en) | 2010-12-24 | 2012-06-28 | Huron Technologies International Inc. | Pathology slide scanner |
CA2854675C (en) * | 2011-11-08 | 2017-08-22 | Universite Laval | Method and system for improving resolution in laser imaging microscopy |
EP3306827B1 (en) * | 2013-04-15 | 2019-09-11 | Huawei Technologies Co., Ltd. | Method for reporting channel state information, user equipment, and base station |
CA2991920C (en) * | 2015-04-23 | 2024-05-14 | The University Of British Columbia | Multifocal method and apparatus for stabilization of optical systems |
WO2017081540A1 (en) * | 2015-11-11 | 2017-05-18 | Scopio Lab Ltd. | Scanning microscope with real time response |
CN109313328A (en) * | 2016-06-21 | 2019-02-05 | 伊鲁米那股份有限公司 | Super-resolution microscopy |
GB201620744D0 (en) | 2016-12-06 | 2017-01-18 | Roadmap Systems Ltd | Multimode fibre optical switching systems |
US10983059B2 (en) * | 2017-02-09 | 2021-04-20 | Technion Research & Development Foundation Ltd. | Sparsity-based super-resolution correlation microscopy |
CN106770147B (en) * | 2017-03-15 | 2019-07-19 | 北京大学 | A kind of Structured Illumination super-resolution micro imaging method |
DE102017119531A1 (en) * | 2017-08-25 | 2019-02-28 | Carl Zeiss Microscopy Gmbh | High-resolution 2D microscopy with improved slice thickness |
NL2020622B1 (en) | 2018-01-24 | 2019-07-30 | Lllumina Cambridge Ltd | Reduced dimensionality structured illumination microscopy with patterned arrays of nanowells |
NL2020623B1 (en) | 2018-01-24 | 2019-07-30 | Illumina Inc | Structured illumination microscopy with line scanning |
US11340437B2 (en) * | 2019-10-21 | 2022-05-24 | Illumina, Inc. | Increased calculation efficiency for structured illumination microscopy |
TW202138867A (en) * | 2019-12-06 | 2021-10-16 | 美商伊路米納有限公司 | Apparatus and method of providing parameter estimation |
-
2020
- 2020-10-21 US US17/075,694 patent/US11340437B2/en active Active
- 2020-10-21 JP JP2022523693A patent/JP2022553714A/en active Pending
- 2020-10-21 IL IL292170A patent/IL292170B2/en unknown
- 2020-10-21 KR KR1020227013332A patent/KR20220085781A/en unknown
- 2020-10-21 CN CN202080072888.3A patent/CN114829906B/en active Active
- 2020-10-21 WO PCT/US2020/056718 patent/WO2021081129A1/en active Application Filing
- 2020-10-21 EP EP20807576.2A patent/EP4049232B1/en active Active
- 2020-10-21 CN CN202310395344.6A patent/CN116360086A/en active Pending
- 2020-10-21 BR BR112022007292A patent/BR112022007292A2/en unknown
- 2020-10-21 AU AU2020371626A patent/AU2020371626A1/en active Pending
- 2020-10-21 JP JP2022523692A patent/JP7554824B2/en active Active
- 2020-10-21 BR BR112022007283A patent/BR112022007283A2/en unknown
- 2020-10-21 AU AU2020370160A patent/AU2020370160A1/en active Pending
- 2020-10-21 MX MX2022004773A patent/MX2022004773A/en unknown
- 2020-10-21 MX MX2022004774A patent/MX2022004774A/en unknown
- 2020-10-21 CA CA3155485A patent/CA3155485A1/en active Pending
- 2020-10-21 US US17/075,692 patent/US11525990B2/en active Active
- 2020-10-21 IL IL292169A patent/IL292169B2/en unknown
- 2020-10-21 KR KR1020227013331A patent/KR20220090510A/en unknown
- 2020-10-21 EP EP20807575.4A patent/EP4049234B1/en active Active
- 2020-10-21 WO PCT/US2020/056717 patent/WO2021081128A1/en active Application Filing
- 2020-10-21 CN CN202080073255.4A patent/CN114600152A/en active Pending
-
2022
- 2022-04-20 ZA ZA2022/04436A patent/ZA202204436B/en unknown
- 2022-04-20 ZA ZA2022/04449A patent/ZA202204449B/en unknown
- 2022-05-20 US US17/750,149 patent/US11698518B2/en active Active
- 2022-11-21 US US17/990,958 patent/US11828924B2/en active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPWO2021081128A5 (en) | ||
IL292169B2 (en) | Systems and methods for structured illumination microscopy | |
JP5044269B2 (en) | Scanner-side heterogeneity correction method | |
Cheng et al. | Automation of axisymmetric drop shape analysis for measurements of interfacial tensions and contact angles | |
US6181376B1 (en) | Method of determining missing color values for pixels in a color filter array | |
EP1754191A1 (en) | Method for characterizing a digital imaging system | |
KR20010021298A (en) | Image demosaicing method | |
JP2007524289A (en) | Techniques for correcting image field data | |
JPWO2008099589A1 (en) | Image processing system, method and apparatus | |
WO2010090025A1 (en) | Imaging processor | |
JP2010500544A (en) | Optical image of a physical object | |
KR20230137937A (en) | Device and method for correspondence analysis in images | |
US5565914A (en) | Detector with a non-uniform spatial sensitivity | |
US8589104B2 (en) | Device and method for compensating color shifts in fiber-optic imaging systems | |
WO2024183742A1 (en) | Differential imaging system, method and apparatus, and medium | |
JP2005520142A5 (en) | ||
US11035989B2 (en) | Systems and methods for improving resolution in lensless imaging | |
US8035703B2 (en) | Device and method for measuring noise characteristics | |
CN112634375B (en) | Plane calibration and three-dimensional reconstruction method in AI intelligent detection | |
US20050074144A1 (en) | Image processing method and contactless image input apparatus utilizing the method | |
CN115619878B (en) | Laser line extraction fusion and online ice shape measurement method for ice shape measurement | |
JP2014066538A (en) | Target for photogrammetry, and photogrammetry method | |
JP3727758B2 (en) | Anti-reflection imaging device | |
JP2007034411A (en) | Linewidth measuring method and apparatus | |
van Hengstum et al. | Development of a high resolution topography and color scanner to capture crack patterns of paintings |