JPWO2021062154A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2021062154A5
JPWO2021062154A5 JP2022515106A JP2022515106A JPWO2021062154A5 JP WO2021062154 A5 JPWO2021062154 A5 JP WO2021062154A5 JP 2022515106 A JP2022515106 A JP 2022515106A JP 2022515106 A JP2022515106 A JP 2022515106A JP WO2021062154 A5 JPWO2021062154 A5 JP WO2021062154A5
Authority
JP
Japan
Prior art keywords
coil
signal
computer
information
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022515106A
Other languages
Japanese (ja)
Other versions
JP2022548830A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2020/052717 external-priority patent/WO2021062154A1/en
Publication of JP2022548830A publication Critical patent/JP2022548830A/en
Publication of JPWO2021062154A5 publication Critical patent/JPWO2021062154A5/ja
Pending legal-status Critical Current

Links

Claims (32)

コイル感度の表現の係数と、サンプルに関連するMR情報と、を決定するための方法であって、
コンピュータによって、
測定デバイスまたはメモリから、前記サンプルに関連する磁気共鳴(MR)信号を取得することと、
コイル磁場基底ベクトルの所定のセットにアクセスすることであって、前記測定デバイス内のコイルのコイル感度が、前記係数を使用する前記コイル磁場基底ベクトルの所定のセットの加重重ね合わせによって表され、前記所定のコイル磁場基底ベクトルが、マクスウェル方程式の解である、アクセスすることと、
前記MR情報を入力として使用し、前記MR信号、前記係数、および前記コイル磁場基底ベクトルの所定のセットに対応する計算されたMR信号を出力するために前記サンプルの応答物理をシミュレートするフォワードモデルに少なくとも部分的に基づいて、前記サンプルに関連する前記MR情報および前記コイル感度の表現の前記係数の非線形最適化問題を解くことと、を含み、
前記MR情報が、前記MR信号によって指定される、前記サンプルと関連付けられたボクセル内の1つ以上のMRパラメータの定量値を含む、方法。
A method for determining coefficients of a coil sensitivity expression and MR information associated with a sample, the method comprising:
by computer,
obtaining a magnetic resonance (MR) signal associated with the sample from a measurement device or memory;
accessing a predetermined set of coil magnetic field basis vectors, wherein the coil sensitivity of a coil in the measuring device is represented by a weighted superposition of the predetermined set of coil magnetic field basis vectors using the coefficients; accessing a given coil magnetic field basis vector, which is a solution of Maxwell's equations;
a forward model that uses the MR information as input and simulates the response physics of the sample to output a calculated MR signal corresponding to a predetermined set of the MR signal , the coefficients, and the coil magnetic field basis vectors; solving a nonlinear optimization problem of the coefficients of the representation of the MR information and the coil sensitivity associated with the sample, based at least in part on
The method , wherein the MR information includes quantitative values of one or more MR parameters within voxels associated with the sample specified by the MR signal.
所与のコイル感度が、前記係数と前記コイル磁場基底ベクトルの所定のセットにおける所定のコイル磁場基底ベクトルとの積の線形重ね合わせによって表される、請求項1に記載の方法。 2. The method of claim 1, wherein a given coil sensitivity is represented by a linear superposition of the products of said coefficients and a predetermined coil field basis vector in a predetermined set of said coil field basis vectors. 前記非線形最適化問題が、前記MR信号と、前記MR情報に対応する推定MR信号との間の差の絶対値の二乗に対応する項を含み、
前記項が、前記測定デバイス内の前記コイルの前記コイル感度からの寄与を含む、請求項1に記載の方法。
the nonlinear optimization problem includes a term corresponding to the square of the absolute value of the difference between the MR signal and the estimated MR signal corresponding to the MR information;
2. The method of claim 1, wherein the term includes a contribution from the coil sensitivity of the coil within the measurement device.
前記非線形最適化問題が、前記項の低減または最小化に対する1つ以上の制約を含み、
前記1つ以上の制約は、前記MR情報の空間分布に対応する正則化子を含む、請求項1に記載の方法。
the nonlinear optimization problem includes one or more constraints on reduction or minimization of the term;
2. The method of claim 1, wherein the one or more constraints include a regularizer corresponding to a spatial distribution of the MR information.
前記MR情報が、前記MR信号によって指定される、前記サンプルと関連付けられたボクセル内の1つ以上のMRパラメータの空間分布を有する画像を含む、請求項1に記載の方法。 2. The method of claim 1, wherein the MR information comprises an image having a spatial distribution of one or more MR parameters within voxels associated with the sample as specified by the MR signal. 前記MR信号が、磁気共鳴撮像法(MRI)または別のMR測定技術に対応する、請求項1に記載の方法。 2. The method of claim 1, wherein the MR signal corresponds to magnetic resonance imaging (MRI) or another MR measurement technique. 前記MRパラメータが、核密度、外部磁場の方向に沿ったスピン-格子緩和時間、外部磁場の方向に垂直なスピン-スピン緩和時間、調整されたスピン-スピン緩和時間、拡散テンソルの成分、速度、温度、非共振周波数、電気伝導率、誘電率、磁化率、または誘電率のうちの1つ以上を含む、請求項1に記載の方法。 The MR parameters include nuclear density, spin-lattice relaxation time along the direction of the external magnetic field, spin-spin relaxation time perpendicular to the direction of the external magnetic field, tuned spin-spin relaxation time, components of the diffusion tensor, velocity, 2. The method of claim 1, comprising one or more of temperature, non-resonant frequency, electrical conductivity, dielectric constant, magnetic susceptibility, or dielectric constant . 前記測定デバイスが、テンソル場マッピング、またはMRフィンガープリント実施する、請求項1に記載の方法。 2. The method of claim 1, wherein the measurement device performs tensor field mapping or MR fingerprinting. 前記非線形最適化問題が、収束基準が達成されるまで反復して解かれる、請求項1に記載の方法。 2. The method of claim 1, wherein the nonlinear optimization problem is iteratively solved until a convergence criterion is achieved. 前記非線形最適化問題が、前記MR信号および前記コイル磁場基底ベクトルのセットを前記MR情報および前記係数にマッピングする、事前に訓練されたニューラルネットワークまたは事前に訓練された機械学習モデルを使用して解かれる、請求項1に記載の方法。 The nonlinear optimization problem is solved using a pre-trained neural network or a pre-trained machine learning model that maps the MR signal and the set of coil field basis vectors to the MR information and the coefficients. 2. The method according to claim 1, wherein: 前記非線形最適化問題を解くことが、前記測定デバイスによって実施される測定中にスキップされたMR走査線を再構成する、請求項1に記載の方法。 2. The method of claim 1, wherein solving the nonlinear optimization problem reconstructs MR scan lines skipped during measurements performed by the measurement device. 前記測定デバイスによって実施される測定のMR走査時間が、磁気共鳴撮像法(MRI)パラレル撮像技術と比較して短縮される、請求項1に記載の方法。 2. The method of claim 1, wherein the MR scanning time of measurements performed by the measurement device is reduced compared to magnetic resonance imaging (MRI) parallel imaging techniques. コンピュータであって、
測定デバイスと通信するように構成されたインターフェース回路と、
プログラム命令を記憶するように構成されたメモリと、
前記プログラム命令を実行するように構成されたプロセッサであって、前記プログラム命令が、前記プロセッサによって実行されるときに、前記コンピュータに、
前記測定デバイスまたは前記メモリから、サンプルに関連する磁気共鳴(MR)信号を取得することと、
コイル磁場基底ベクトルの所定のセットにアクセスすることであって、前記測定デバイス内のコイルのコイル感度が、前記係数を使用する前記コイル磁場基底ベクトルの所定のセットの加重重ね合わせによって表され、前記所定のコイル磁場基底ベクトルが、マクスウェル方程式の解である、アクセスすることと、
前記MR情報を入力として使用し、前記MR信号、前記係数、および前記コイル磁場基底ベクトルの所定のセットに対応する計算されたMR信号を出力するために前記サンプルの応答物理をシミュレートするフォワードモデルに少なくとも部分的に基づいて、前記サンプルに関連する前記MR情報および前記コイル感度の表現の前記係数の非線形最適化問題を解くことと、を含む動作を実施させる、プロセッサと、を備え
前記MR情報が、前記MR信号によって指定される、前記サンプルと関連付けられたボクセル内の1つ以上のMRパラメータの定量値を含む、コンピュータ。
A computer,
an interface circuit configured to communicate with the measurement device;
a memory configured to store program instructions;
a processor configured to execute the program instructions, the program instructions, when executed by the processor, causing the computer to:
obtaining a magnetic resonance (MR) signal associated with the sample from the measurement device or the memory;
accessing a predetermined set of coil magnetic field basis vectors, wherein the coil sensitivity of a coil in the measuring device is represented by a weighted superposition of the predetermined set of coil magnetic field basis vectors using the coefficients; accessing a given coil magnetic field basis vector, which is a solution of Maxwell's equations;
a forward model that uses the MR information as input and simulates the response physics of the sample to output a calculated MR signal corresponding to a predetermined set of the MR signal , the coefficients, and the coil magnetic field basis vectors; a processor for performing operations comprising: solving a nonlinear optimization problem of the coefficients of the representation of the MR information and the coil sensitivity associated with the sample based at least in part on ;
The MR information includes quantitative values of one or more MR parameters within voxels associated with the sample specified by the MR signal.
前記非線形最適化問題が、前記MR信号と、前記MR情報に対応する推定MR信号との間の差の絶対値の二乗に対応する項を含み、
前記項が、前記測定デバイス内の前記コイルの前記コイル感度からの寄与を含む、請求項13に記載のコンピュータ。
the nonlinear optimization problem includes a term corresponding to the square of the absolute value of the difference between the MR signal and the estimated MR signal corresponding to the MR information;
14. The computer of claim 13, wherein the term includes a contribution from the coil sensitivity of the coil within the measurement device.
前記MR情報が、前記MR信号によって指定される、前記サンプルと関連付けられたボクセル内の1つ以上のMRパラメータの空間分布を有する画像を含む、請求項13に記載のコンピュータ。 14. The computer of claim 13, wherein the MR information includes an image having a spatial distribution of one or more MR parameters within voxels associated with the sample as specified by the MR signal. 前記MR信号が、磁気共鳴撮像法(MRI)または別のMR測定技術に対応する、請求項13に記載のコンピュータ。 14. The computer of claim 13, wherein the MR signal corresponds to magnetic resonance imaging (MRI) or another MR measurement technique. 前記MRパラメータが、核密度、外部磁場の方向に沿ったスピン-格子緩和時間、外部磁場の方向に垂直なスピン-スピン緩和時間、調整されたスピン-スピン緩和時間、拡散テンソルの成分、速度、温度、非共振周波数、電気伝導率、誘電率、磁化率、または誘電率のうちの1つ以上を含む、請求項13に記載のコンピュータ。 The MR parameters include nuclear density, spin-lattice relaxation time along the direction of the external magnetic field, spin-spin relaxation time perpendicular to the direction of the external magnetic field, tuned spin-spin relaxation time, components of the diffusion tensor, velocity, 14. The computer of claim 13, comprising one or more of temperature, non-resonant frequency, electrical conductivity, dielectric constant, magnetic susceptibility, or dielectric constant . 前記MR信号が、テンソル場マッピング、またはMRフィンガープリント対応する、請求項13に記載のコンピュータ。 14. The computer of claim 13, wherein the MR signal corresponds to a tensor field mapping or an MR fingerprint. 前記非線形最適化問題が、収束基準が達成されるまで反復して解かれる、請求項13に記載のコンピュータ。 14. The computer of claim 13, wherein the nonlinear optimization problem is iteratively solved until a convergence criterion is achieved. 前記非線形最適化問題が、前記MR信号および前記コイル磁場基底ベクトルのセットを前記MR情報および前記係数にマッピングする、事前に訓練されたニューラルネットワークまたは事前に訓練された機械学習モデルを使用して解かれる、請求項13に記載のコンピュータ。 The nonlinear optimization problem is solved using a pre-trained neural network or a pre-trained machine learning model that maps the MR signal and the set of coil field basis vectors to the MR information and the coefficients. 14. The computer according to claim 13, wherein: 前記非線形最適化問題を解くことが、前記測定デバイスによって実施される測定中にスキップされたMR走査線を再構成する、請求項13に記載のコンピュータ。 14. The computer of claim 13, wherein solving the nonlinear optimization problem reconstructs MR scan lines skipped during measurements performed by the measurement device. 前記測定デバイスによって実施される測定のMR走査時間が、磁気共鳴撮像法(MRI)パラレル撮像技術と比較して短縮される、請求項13に記載のコンピュータ。 14. The computer of claim 13, wherein the MR scan time of measurements performed by the measurement device is reduced compared to magnetic resonance imaging (MRI) parallel imaging techniques. コンピュータと組み合わせて使用するための非一時的なコンピュータ可読記憶媒体であって、前記コンピュータ可読記憶媒体は、プログラム命令を記憶するように構成され、前記プログラム命令が、前記コンピュータによって実行されるときに、前記コンピュータに、
測定デバイスまたはメモリから、サンプルに関連する磁気共鳴(MR)信号を取得することと、
コイル磁場基底ベクトルの所定のセットにアクセスすることであって、前記測定デバイス内のコイルのコイル感度が、前記係数を使用する前記コイル磁場基底ベクトルの所定のセットの加重重ね合わせによって表され、前記所定のコイル磁場基底ベクトルが、マクスウェル方程式の解である、アクセスすることと、
前記MR情報を入力として使用し、前記MR信号、前記係数、および前記コイル磁場基底ベクトルの所定のセットに対応する計算されたMR信号を出力するために前記サンプルの応答物理をシミュレートするフォワードモデルに少なくとも部分的に基づいて、前記サンプルに関連するMR情報および前記コイル感度の表現の前記係数の非線形最適化問題を解くことと、を含む動作を実施させ
前記MR情報が、前記MR信号によって指定される、前記サンプルと関連付けられたボクセル内の1つ以上のMRパラメータの定量値を含む、非一時的なコンピュータ可読記憶媒体。
a non-transitory computer-readable storage medium for use in conjunction with a computer, the computer-readable storage medium configured to store program instructions, the program instructions, when executed by the computer; , to the computer,
obtaining a magnetic resonance (MR) signal associated with the sample from a measurement device or memory;
accessing a predetermined set of coil magnetic field basis vectors, wherein the coil sensitivity of a coil in the measuring device is represented by a weighted superposition of the predetermined set of coil magnetic field basis vectors using the coefficients; accessing a given coil magnetic field basis vector, which is a solution of Maxwell's equations;
a forward model that uses the MR information as input and simulates the response physics of the sample to output a calculated MR signal corresponding to a predetermined set of the MR signal , the coefficients, and the coil magnetic field basis vectors; solving a nonlinear optimization problem of the coefficients of the representation of the coil sensitivity and the MR information associated with the sample based at least in part on the MR information associated with the sample ;
A non-transitory computer-readable storage medium, wherein the MR information includes quantitative values of one or more MR parameters within voxels associated with the sample specified by the MR signal.
前記非線形最適化問題が、前記MR信号と、前記MR情報に対応する推定MR信号との間の差の絶対値の二乗に対応する項を含み、
前記項が、前記測定デバイス内の前記コイルの前記コイル感度からの寄与を含む、請求項23に記載の非一時的なコンピュータ可読記憶媒体。
the nonlinear optimization problem includes a term corresponding to the square of the absolute value of the difference between the MR signal and the estimated MR signal corresponding to the MR information;
24. The non-transitory computer-readable storage medium of claim 23, wherein the term includes a contribution from the coil sensitivity of the coil within the measurement device.
前記MR情報が、前記MR信号によって指定される、前記サンプルと関連付けられたボクセル内の1つ以上のMRパラメータの空間分布を有する画像を含む、請求項23に記載の非一時的なコンピュータ可読記憶媒体。 24. The non-transitory computer readable storage of claim 23, wherein the MR information comprises an image having a spatial distribution of one or more MR parameters within voxels associated with the sample as specified by the MR signal. Medium. 前記MR信号が、磁気共鳴撮像法(MRI)または別のMR測定技術に対応する、請求項23に記載の非一時的なコンピュータ可読記憶媒体。 24. The non-transitory computer-readable storage medium of claim 23, wherein the MR signal corresponds to magnetic resonance imaging (MRI) or another MR measurement technique. 前記MRパラメータが、核密度、外部磁場の方向に沿ったスピン-格子緩和時間、外部磁場の方向に垂直なスピン-スピン緩和時間、調整されたスピン-スピン緩和時間、拡散テンソルの成分、速度、温度、非共振周波数、電気伝導率、誘電率、磁化率、または誘電率のうちの1つ以上を含む、請求項23に記載の非一時的なコンピュータ可読記憶媒体。 The MR parameters include nuclear density, spin-lattice relaxation time along the direction of the external magnetic field, spin-spin relaxation time perpendicular to the direction of the external magnetic field, tuned spin-spin relaxation time, components of the diffusion tensor, velocity, 24. The non-transitory computer readable storage medium of claim 23, comprising one or more of temperature, non-resonant frequency, electrical conductivity, dielectric constant, magnetic susceptibility, or dielectric constant . 前記MR信号が、テンソル場マッピング、またはMRフィンガープリント対応する、請求項23に記載の非一時的なコンピュータ可読記憶媒体。 24. The non-transitory computer-readable storage medium of claim 23, wherein the MR signal corresponds to a tensor field mapping or an MR fingerprint. 前記非線形最適化問題が、収束基準が達成されるまで反復して解かれる、請求項23に記載の非一時的なコンピュータ可読記憶媒体。 24. The non-transitory computer-readable storage medium of claim 23, wherein the non-linear optimization problem is iteratively solved until a convergence criterion is achieved. 前記非線形最適化問題が、前記MR信号および前記コイル磁場基底ベクトルのセットを前記MR情報および前記係数にマッピングする、事前に訓練されたニューラルネットワークまたは事前に訓練された機械学習モデルを使用して解かれる、請求項23に記載の非一時的なコンピュータ可読記憶媒体。 The nonlinear optimization problem is solved using a pre-trained neural network or a pre-trained machine learning model that maps the MR signal and the set of coil field basis vectors to the MR information and the coefficients. 24. The non-transitory computer-readable storage medium of claim 23, wherein the non-transitory computer-readable storage medium is 前記非線形最適化問題を解くことが、前記測定デバイスによって実施される測定中にスキップされたMR走査線を再構成する、請求項23に記載の非一時的なコンピュータ可読記憶媒体。 24. The non-transitory computer-readable storage medium of claim 23, wherein solving the non-linear optimization problem reconstructs MR scan lines skipped during measurements performed by the measurement device. 前記測定デバイスによって実施される測定のMR走査時間が、磁気共鳴撮像法(MRI)パラレル撮像技術と比較して短縮される、請求項23に記載の非一時的なコンピュータ可読記憶媒体。 24. The non-transitory computer-readable storage medium of claim 23, wherein the MR scan time of measurements performed by the measurement device is reduced compared to magnetic resonance imaging (MRI) parallel imaging techniques.
JP2022515106A 2019-09-27 2020-09-25 Maxwell parallel imaging Pending JP2022548830A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962907516P 2019-09-27 2019-09-27
US62/907,516 2019-09-27
PCT/US2020/052717 WO2021062154A1 (en) 2019-09-27 2020-09-25 Maxwell parallel imaging

Publications (2)

Publication Number Publication Date
JP2022548830A JP2022548830A (en) 2022-11-22
JPWO2021062154A5 true JPWO2021062154A5 (en) 2023-09-22

Family

ID=75163078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022515106A Pending JP2022548830A (en) 2019-09-27 2020-09-25 Maxwell parallel imaging

Country Status (9)

Country Link
US (1) US11131735B2 (en)
EP (1) EP4034901A4 (en)
JP (1) JP2022548830A (en)
KR (1) KR102622283B1 (en)
CN (1) CN114450599B (en)
BR (1) BR112022004126A2 (en)
CA (1) CA3153503C (en)
MX (1) MX2022003462A (en)
WO (1) WO2021062154A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11354586B2 (en) 2019-02-15 2022-06-07 Q Bio, Inc. Model parameter determination using a predictive model
US11223543B1 (en) * 2020-09-29 2022-01-11 Dell Products L.P. Reconstructing time series datasets with missing values utilizing machine learning
WO2022271286A1 (en) * 2021-06-21 2022-12-29 Q Bio, Inc. Maxwell parallel imaging
CN113779818B (en) * 2021-11-15 2022-02-08 中南大学 Three-dimensional geologic body electromagnetic field numerical simulation method, device, equipment and medium thereof
WO2023096557A1 (en) * 2021-11-24 2023-06-01 Corsmed Ab A method for image parameter comparison in magnetic resonance imaging simulation

Family Cites Families (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4729892A (en) 1986-03-21 1988-03-08 Ciba-Geigy Corporation Use of cross-linked hydrogel materials as image contrast agents in proton nuclear magnetic resonance tomography and tissue phantom kits containing such materials
US5486762A (en) 1992-11-02 1996-01-23 Schlumberger Technology Corp. Apparatus including multi-wait time pulsed NMR logging method for determining accurate T2-distributions and accurate T1/T2 ratios and generating a more accurate output record using the updated T2-distributions and T1/T2 ratios
US6392409B1 (en) 2000-01-14 2002-05-21 Baker Hughes Incorporated Determination of T1 relaxation time from multiple wait time NMR logs acquired in the same or different logging passes
US6678669B2 (en) 1996-02-09 2004-01-13 Adeza Biomedical Corporation Method for selecting medical and biochemical diagnostic tests using neural network-related applications
US5793210A (en) 1996-08-13 1998-08-11 General Electric Company Low noise MRI scanner
US6084408A (en) 1998-02-13 2000-07-04 Western Atlas International, Inc. Methods for acquisition and processing of nuclear magnetic resonance signals for determining fluid properties in petroleum reservoirs having more than one fluid phase
US6148272A (en) 1998-11-12 2000-11-14 The Regents Of The University Of California System and method for radiation dose calculation within sub-volumes of a monte carlo based particle transport grid
US8781557B2 (en) 1999-08-11 2014-07-15 Osteoplastics, Llc Producing a three dimensional model of an implant
US6476606B2 (en) * 1999-12-03 2002-11-05 Johns Hopkins University Method for parallel spatial encoded MRI and apparatus, systems and other methods related thereto
US6528998B1 (en) * 2000-03-31 2003-03-04 Ge Medical Systems Global Technology Co., Llc Method and apparatus to reduce the effects of maxwell terms and other perturbation magnetic fields in MR images
EP1953580B1 (en) 2000-09-18 2014-09-17 Vincent Lauer Confocal optical scanning device
US8068893B2 (en) 2001-02-16 2011-11-29 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Real-time, interactive volumetric magnetic resonance imaging
US20020155587A1 (en) 2001-04-20 2002-10-24 Sequenom, Inc. System and method for testing a biological sample
US6838875B2 (en) 2002-05-10 2005-01-04 Schlumberger Technology Corporation Processing NMR data in the presence of coherent ringing
US7253619B2 (en) 2003-04-04 2007-08-07 Siemens Aktiengesellschaft Method for evaluating magnetic resonance spectroscopy data using a baseline model
US20050054913A1 (en) * 2003-05-05 2005-03-10 Duerk Jeffrey L. Adaptive tracking and MRI-guided catheter and stent placement
US20050096534A1 (en) 2003-10-31 2005-05-05 Yudong Zhu Systems and methods for calibrating coil sensitivity profiles
EP1689288B1 (en) 2003-11-06 2010-04-21 Grace Laboratories, Inc. Immunosorbent blood tests for assessing paroxysmal cerebral discharges
DE102004021772B4 (en) * 2004-04-30 2007-05-24 Siemens Ag Method and apparatus for enhanced radial magnetic data acquisition PPA magnetic resonance imaging and computer software product
EP1879164A1 (en) 2005-04-27 2008-01-16 Matsushita Electric Industrial Co., Ltd. Information security device and elliptic curve operating device
WO2008011112A2 (en) 2006-07-19 2008-01-24 University Of Connecticut Method and apparatus for medical imaging using combined near-infrared optical tomography, fluorescent tomography and ultrasound
US7974942B2 (en) 2006-09-08 2011-07-05 Camouflage Software Inc. Data masking system and method
US8661263B2 (en) 2006-09-29 2014-02-25 Protegrity Corporation Meta-complete data storage
EP2082218A2 (en) 2006-10-03 2009-07-29 Oklahoma Medical Research Foundation Metabolite detection using magnetic resonance
US7777487B2 (en) * 2007-02-15 2010-08-17 Uwm Research Foundation, Inc. Methods and apparatus for joint image reconstruction and coil sensitivity estimation in parallel MRI
US20100142823A1 (en) 2007-03-07 2010-06-10 Ze Wang 2d partially parallel imaging with k-space surrounding neighbors based data reconstruction
US7423430B1 (en) * 2007-04-06 2008-09-09 The Board Of Trustees Of The University Of Illinois Adaptive parallel acquisition and reconstruction of dynamic MR images
US20100189328A1 (en) 2007-05-31 2010-07-29 Koninklijke Philips Electronics N.V. Method of automatically acquiring magnetic resonance image data
WO2009067680A1 (en) 2007-11-23 2009-05-28 Mercury Computer Systems, Inc. Automatic image segmentation methods and apparartus
US7924002B2 (en) 2008-01-09 2011-04-12 The Board Of Trustees Of The Leland Stanford Junior University Magnetic resonance field map estimation for species separation
US20090240138A1 (en) 2008-03-18 2009-09-24 Steven Yi Diffuse Optical Tomography System and Method of Use
WO2009129265A1 (en) 2008-04-14 2009-10-22 Huntington Medical Research Institutes Methods and apparatus for pasadena hyperpolarization
DE102008029897B4 (en) 2008-06-24 2017-12-28 Siemens Healthcare Gmbh Method for recording MR data of a measurement object in an MR examination in a magnetic resonance system and correspondingly configured magnetic resonance system
US8078554B2 (en) 2008-09-03 2011-12-13 Siemens Medical Solutions Usa, Inc. Knowledge-based interpretable predictive model for survival analysis
US8736265B2 (en) 2008-09-17 2014-05-27 Koninklijke Philips N.V. B1-mapping and B1L-shimming for MRI
EP2165737A1 (en) 2008-09-18 2010-03-24 Koninklijke Philips Electronics N.V. Ultrasonic treatment apparatus with a protective cover
EP2189925A3 (en) 2008-11-25 2015-10-14 SafeNet, Inc. Database obfuscation system and method
JP5212122B2 (en) 2009-01-09 2013-06-19 ソニー株式会社 Biological sample image acquisition apparatus, biological sample image acquisition method, and program
DE102009014924B3 (en) 2009-03-25 2010-09-16 Bruker Biospin Mri Gmbh Reconstruction of spectral or image files with simultaneous excitation and detection in magnetic resonance
US8108311B2 (en) 2009-04-09 2012-01-31 General Electric Company Systems and methods for constructing a local electronic medical record data store using a remote personal health record server
US8645164B2 (en) 2009-05-28 2014-02-04 Indiana University Research And Technology Corporation Medical information visualization assistant system and method
US10102398B2 (en) 2009-06-01 2018-10-16 Ab Initio Technology Llc Generating obfuscated data
EP2402780A1 (en) * 2010-06-23 2012-01-04 Koninklijke Philips Electronics N.V. Method of reconstructing a magnetic resonance image of an object considering higher-order dynamic fields
RU2013104364A (en) * 2010-07-02 2014-08-10 Конинклейке Филипс Электроникс Н.В. COMPUTER SOFTWARE PRODUCED BY A COMPUTER METHOD AND MAGNETIC RESONANT VISUALIZATION SYSTEM FOR PRODUCING A MAGNETIC RESONANT IMAGE
US8686727B2 (en) 2010-07-20 2014-04-01 The Trustees Of The University Of Pennsylvania CEST MRI methods for imaging of metabolites and the use of same as biomarkers
US10148623B2 (en) 2010-11-12 2018-12-04 Time Warner Cable Enterprises Llc Apparatus and methods ensuring data privacy in a content distribution network
CN102654568A (en) 2011-03-01 2012-09-05 西门子公司 Method and device for establishing excitation parameters for mr imaging
WO2012117314A1 (en) 2011-03-01 2012-09-07 Koninklijke Philips Electronics N.V. Determination of a magnetic resonance imaging pulse sequence protocol classification
US8723518B2 (en) 2011-03-18 2014-05-13 Nicole SEIBERLICH Nuclear magnetic resonance (NMR) fingerprinting
TW201319296A (en) 2011-06-21 2013-05-16 Sumitomo Chemical Co Method for inspecting laminated film and method for manufacturing laminated film
US8861815B2 (en) 2011-08-03 2014-10-14 International Business Machines Corporation Systems and methods for modeling and processing functional magnetic resonance image data using full-brain vector auto-regressive model
CN103189837B (en) 2011-10-18 2016-12-28 松下知识产权经营株式会社 Shuffle mode generative circuit, processor, shuffle mode generate method, order
GB201121307D0 (en) 2011-12-12 2012-01-25 Univ Stavanger Probability mapping for visualisation of biomedical images
US9146293B2 (en) * 2012-02-27 2015-09-29 Ohio State Innovation Foundation Methods and apparatus for accurate characterization of signal coil receiver sensitivity in magnetic resonance imaging (MRI)
US20130294669A1 (en) 2012-05-02 2013-11-07 University Of Louisville Research Foundation, Inc. Spatial-spectral analysis by augmented modeling of 3d image appearance characteristics with application to radio frequency tagged cardiovascular magnetic resonance
US9513359B2 (en) 2012-09-04 2016-12-06 General Electric Company Systems and methods for shim current calculation
CN104780839B (en) 2012-09-19 2018-05-15 卡斯西部储备大学 Nuclear magnetic resonance (NMR) fingerprint recognition
US9965808B1 (en) 2012-12-06 2018-05-08 The Pnc Financial Services Group, Inc. Systems and methods for projecting and managing cash-in flow for financial accounts
CN105188556B (en) 2013-02-25 2017-11-07 皇家飞利浦有限公司 Determination to the concentration distribution of acoustics dispersed elements
US20160131724A1 (en) 2013-06-19 2016-05-12 Office Of Technology Transfer, National Institutes Of Health Mri scanner bore coverings
US8752178B2 (en) 2013-07-31 2014-06-10 Splunk Inc. Blacklisting and whitelisting of security-related events
DE102013218224B3 (en) * 2013-09-11 2015-01-29 Siemens Aktiengesellschaft Determination of B1 cards
US9514169B2 (en) 2013-09-23 2016-12-06 Protegrity Corporation Columnar table data protection
US10302731B2 (en) 2014-04-25 2019-05-28 Mayo Foundation For Medical Education And Research Integrated image reconstruction and gradient non-linearity correction for magnetic resonance imaging
CN106537130B (en) 2014-05-27 2020-01-14 卡斯西部储备大学 Electrochemical sensor for analyte detection
US20150370462A1 (en) 2014-06-20 2015-12-24 Microsoft Corporation Creating calendar event from timeline
US9485088B2 (en) 2014-10-31 2016-11-01 Combined Conditional Access Development And Support, Llc Systems and methods for dynamic data masking
WO2016073985A1 (en) 2014-11-07 2016-05-12 The General Hospital Corporation Deep brain source imaging with m/eeg and anatomical mri
EP3093677A1 (en) 2015-05-15 2016-11-16 UMC Utrecht Holding B.V. Time-domain mri
WO2017007663A1 (en) * 2015-07-07 2017-01-12 Tesla Health, Inc Field-invariant quantitative magnetic-resonance signatures
US10613174B2 (en) * 2015-10-29 2020-04-07 Siemens Healthcare Gmbh Method and magnetic resonance apparatus for maxwell compensation in simultaneous multislice data acquisitions
US10222441B2 (en) * 2016-04-03 2019-03-05 Q Bio, Inc. Tensor field mapping
EP3465186A4 (en) * 2016-05-31 2020-02-26 Q Bio, Inc. Tensor field mapping
WO2018136705A1 (en) * 2017-01-19 2018-07-26 Ohio State Innovation Foundation Estimating absolute phase of radio frequency fields of transmit and receive coils in a magnetic resonance
US10488352B2 (en) * 2017-01-27 2019-11-26 Saudi Arabian Oil Company High spatial resolution nuclear magnetic resonance logging
EP3457160A1 (en) * 2017-09-14 2019-03-20 Koninklijke Philips N.V. Parallel magnetic resonance imaging with archived coil sensitivity maps
US10712416B1 (en) * 2019-02-05 2020-07-14 GE Precision Healthcare, LLC Methods and systems for magnetic resonance image reconstruction using an extended sensitivity model and a deep neural network
US11143730B2 (en) * 2019-04-05 2021-10-12 University Of Cincinnati System and method for parallel magnetic resonance imaging

Similar Documents

Publication Publication Date Title
JP7438230B2 (en) Determining model parameters using a predictive model
Hernando et al. Joint estimation of water/fat images and field inhomogeneity map
US11360166B2 (en) Tensor field mapping with magnetostatic constraint
EP3093677A1 (en) Time-domain mri
US10761172B2 (en) System and method for an eddy-current field compensation in magnetic resonance imaging
CN114450599B (en) Maxwell Wei Binghang imaging
JP3064361B2 (en) Nuclear magnetic resonance equipment
US20220179026A1 (en) Machine learning based processing of magnetic resonance data, including an uncertainty quantification
JP7490003B2 (en) Parameter map determination for time domain magnetic resonance.
van der Heide et al. High‐resolution in vivo MR‐STAT using a matrix‐free and parallelized reconstruction algorithm
Kluth et al. Model uncertainty in magnetic particle imaging: Nonlinear problem formulation and model-based sparse reconstruction
US20180038928A1 (en) Magnetic resonance t2 preparatory pulses for magnetic field inhomogeneity robustness and contrast optimization
JPWO2021062154A5 (en)
Fick et al. Multi-spherical diffusion mri: Exploring diffusion time using signal sparsity
Descoteaux et al. Diffusion tensor sharpening improves white matter tractography
Feng et al. Sparse deconvolution of higher order tensor for fiber orientation distribution estimation
Alkan et al. Variational Diffusion Models for Blind MRI Inverse Problems
JP7468913B2 (en) Determining the location of magnetic resonance data relative to a magnetic field sensor.
Guryev et al. MARIE 2.0: a perturbation matrix based patient-specific MRI field simulator
US20230298230A1 (en) Simultaneous Multi-Slice Protocol and Deep-Learning Magnetic Resonance Imaging Reconstruction
Mitchell et al. Information theory optimization of acquisition parameters for improved synthetic MRI reconstruction
Liu Data Augmentation under Rician Noise Model in Diffusion MRI with Applications to Human Brain Studies
Dolui et al. Compressed sensing of diffusion MRI data using spatial regularization and positivity constraints
Graham The development and application of a simulation system for diffusion-weighted MRI
Ning et al. Diffusion Propagator Estimation Using Gaussians Scattered in q-Space