JPWO2021040932A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2021040932A5
JPWO2021040932A5 JP2022510172A JP2022510172A JPWO2021040932A5 JP WO2021040932 A5 JPWO2021040932 A5 JP WO2021040932A5 JP 2022510172 A JP2022510172 A JP 2022510172A JP 2022510172 A JP2022510172 A JP 2022510172A JP WO2021040932 A5 JPWO2021040932 A5 JP WO2021040932A5
Authority
JP
Japan
Prior art keywords
precursor particles
particles
mixture
precursor
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022510172A
Other languages
Japanese (ja)
Other versions
JP2022546264A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2020/043621 external-priority patent/WO2021040932A1/en
Publication of JP2022546264A publication Critical patent/JP2022546264A/en
Publication of JPWO2021040932A5 publication Critical patent/JPWO2021040932A5/ja
Pending legal-status Critical Current

Links

Claims (35)

1000μm未満の平均粒径を有する、ある量の前駆体粒子を得ることと、
500μm未満の平均粒径及び前記前駆体粒子の硬度より高い硬度を有する、ある量の鋳型媒体を得ることと、
前記量の前駆体粒子及び鋳型媒体を含む混合物を調製することと、
前記混合物に高剪断及び高圧力場を受けさせ、前記前駆体粒子を製品粒子へと凝集させることと
前記前駆体粒子を製品粒子へと凝集させた後、前記製品粒子を前記前駆体粒子から分離することと、
を含み、
前記混合物に高剪断及び高圧力場を受けさせることが、前記混合物を乾式メカノフュージョンに供することを含む、前駆体粒子を凝集させるミクロ粒状化法。
obtaining a quantity of precursor particles having an average particle size of less than 1000 μm;
obtaining a quantity of template media having an average particle size of less than 500 μm and a hardness greater than that of said precursor particles;
preparing a mixture comprising the amount of precursor particles and templating medium;
subjecting the mixture to a high shear and high pressure field to agglomerate the precursor particles into product particles ;
After aggregating the precursor particles into product particles, separating the product particles from the precursor particles;
including
A method of microparticulation to agglomerate precursor particles, wherein subjecting the mixture to a high shear and high pressure field comprises subjecting the mixture to dry mechanofusion.
前記混合物に高剪断及び高圧力場を受けさせるステップが、前記混合物をメカノフュージョンすることを含む、請求項1に記載の方法。 2. The method of claim 1, wherein subjecting the mixture to high shear and high pressure fields comprises mechanofusion of the mixture. 前記前駆体粒子の平均径が50μm未満である、請求項1に記載の方法。 2. The method of claim 1, wherein the precursor particles have an average particle size of less than 50 [mu]m. 前記前駆体粒子の平均径が10μm未満である、請求項3に記載の方法。 4. The method of claim 3, wherein the precursor particles have an average particle size of less than 10 [mu]m. 前記前駆体粒子が、バッテリー電極、肥料、医薬品、トナー、顔料、充填剤又は触媒での使用のための粉末である、請求項1に記載の方法。 2. The method of claim 1, wherein the precursor particles are powders for use in battery electrodes, fertilizers, pharmaceuticals, toners, pigments, fillers or catalysts. 前記前駆体粒子が、炭素質粉末、又は混合金属酸化物粉末、又は金属炭酸塩粉末である、請求項5に記載の方法。 6. The method of claim 5, wherein the precursor particles are carbonaceous powders, or mixed metal oxide powders, or metal carbonate powders. 前記前駆体粒子がカーボン又はグラファイト化可能なカーボンを含む、請求項6に記載の方法。 7. The method of claim 6, wherein the precursor particles comprise carbon or graphitizable carbon . 前記前駆体粒子が、グラファイトフレーク又はLiNi1/3Mn1/3Co1/3粉末である、請求項6に記載の方法。 7. The method of claim 6, wherein the precursor particles are graphite flakes or LiNi1 / 3Mn1 / 3Co1/ 3O2 powder. 前記前駆体粒子が混合金属酸化物粉末であり、前記量の前駆体粒子を得るステップが、
金属酸化物原材料粉末を得ることと、
前記金属酸化物原材料粉末をボールミル加工し、前記前駆体粒子を製造することと
を含む、請求項6に記載の方法。
said precursor particles being a mixed metal oxide powder and obtaining said amount of precursor particles comprising:
obtaining a metal oxide raw material powder;
7. The method of claim 6, comprising ball milling the metal oxide raw material powder to produce the precursor particles.
前記混合物を調製する前に、前記量の前駆体粒子の少なくとも一部分をボールミル加工することを含む、請求項1に記載の方法。 2. The method of claim 1, comprising ball milling at least a portion of said quantity of precursor particles prior to preparing said mixture. 前記混合物を調製する前に、前記量の前駆体粒子の少なくとも一部分を加熱することを含む、請求項1に記載の方法。 2. The method of claim 1, comprising heating at least a portion of said quantity of precursor particles prior to preparing said mixture. 前記前駆体粒子が不規則に成形された粉末である、請求項1に記載の方法。 2. The method of claim 1, wherein the precursor particles are irregularly shaped powders. 前記鋳型媒体の平均径が100μm以下である、請求項1に記載の方法。 2. The method of claim 1, wherein the templating medium has an average grain size of 100 [mu]m or less. 前記鋳型媒体が、酸化ジルコニウム、炭化タングステン、タングステン、酸化ケイ素、酸化アルミニウム、窒化ケイ素、硬化鋼、ステンレス鋼及びメノウからなる群から選択される、請求項1に記載の方法。 2. The method of claim 1, wherein the mold medium is selected from the group consisting of zirconium oxide, tungsten carbide, tungsten, silicon oxide, aluminum oxide, silicon nitride, hardened steel, stainless steel and agate. 前記鋳型媒体の表面が平滑である、請求項1に記載の方法。 2. The method of claim 1, wherein the surface of said template medium is smooth. 前記鋳型媒体が球状である、請求項15に記載の方法。 16. The method of claim 15, wherein the templating medium is spherical. 前記鋳型媒体の径分布が(D90-D10)/D50<2のように均一である、請求項1に記載の方法。 The method of claim 1, wherein the templating medium has a uniform diameter distribution such that (D90-D10)/D50<2. 前記量の鋳型媒体の容積体積が、前記量の前駆体粒子の容積体積よりも大きい、請求項1に記載の方法。 2. The method of claim 1, wherein the volumetric volume of said quantity of templating medium is greater than the volumetric volume of said quantity of precursor particles. 前記量の鋳型媒体の容積体積が、前記量の前駆体粒子の容積体積の10%よりも大きい、請求項1に記載の方法。 2. The method of claim 1, wherein the volumetric volume of said quantity of templating medium is greater than 10% of the volumetric volume of said quantity of precursor particles. 前記量の鋳型媒体の容積体積が、前記量の前駆体粒子の容積体積の約3倍以上である、請求項19に記載の方法。 20. The method of claim 19, wherein the volumetric volume of said quantity of templating medium is at least about three times the volumetric volume of said quantity of precursor particles. 前記メカノフュージョンが、チャンバー、前記チャンバー内の回転壁部、前記回転壁部内のスクレーパー及び前記回転壁部内のプレスヘッドを含むメカノフュージョンシステム中で実行される、請求項2に記載の方法。 3. The method of claim 2, wherein said mechanofusion is performed in a mechanofusion system comprising a chamber, a rotating wall within said chamber, a scraper within said rotating wall and a press head within said rotating wall. 前記メカノフュージョンが、
前記スクレーパー及び前記回転壁部の間で約0.5mmの間隔を設定することと、
前記プレスヘッド及び前記回転壁部の間で約1.4mmの間隔を設定することと、
壁部表面速度が約8m/秒以上であるように回転させることと
を含む、請求項21に記載の方法。
The mechanofusion is
setting a distance of about 0.5 mm between the scraper and the rotating wall;
setting a distance of about 1.4 mm between the press head and the rotating wall;
and rotating such that the wall surface velocity is greater than or equal to about 8 m/s.
前記製品粒子の平均径が10~100μmである、請求項1に記載の方法。 The method according to claim 1, wherein the product particles have an average particle size of 10 to 100 µm. 前記製品粒子の径分布が(D90-D10)/D50<2のように均一である、請求項1に記載の方法。 The method according to claim 1, wherein the product particles have a uniform size distribution such that (D90-D10)/D50<2. 前記製品粒子の表面が平滑である、請求項2に記載の方法。 3. The method of claim 2, wherein the surface of the product particles is smooth. 前記製品粒子の表面がキャビティを含有しない、請求項2に記載の方法。 3. The method of claim 2, wherein the surface of said product particles does not contain cavities. 前記製品粒子が変異係数0.02未満の粗さを有する、請求項2に記載の方法。 3. The method of claim 2, wherein the product particles have a roughness with a coefficient of variation of less than 0.02. 前記製品粒子が球形である、請求項25に記載の方法。 26. The method of claim 25, wherein said product particles are spherical. 前記製品粒子が四面体形である、請求項25に記載の方法。 26. The method of claim 25, wherein the product particles are tetrahedral in shape. 高温で前記製品粒子を焼き戻しすることを追加的に含む、請求項2に記載の方法。 3. The method of claim 2, additionally comprising tempering the product particles at an elevated temperature. 前記鋳型媒体が、前記前駆体粒子の存在下で破壊されないように、前記前駆体粒子の硬度よりも高い硬度を有する、請求項1に記載の方法。 2. The method of claim 1, wherein the templating medium has a hardness greater than that of the precursor particles so as not to fracture in the presence of the precursor particles. バッテリー電極、肥料、医薬品、トナー、顔料、充填剤又は触媒のための製品粒子の製造方法であって、
1000μm未満の平均粒径を有する、ある量の前駆体粒子を得ることと、
500μm未満の平均粒径及び前記前駆体粒子の硬度より高い硬度を有する、ある量の鋳型媒体を得ることと、
前記量の前駆体粒子及び鋳型媒体を含む混合物を調製することと、
前記混合物に高剪断及び高圧力場を受けさせ、前記前駆体粒子を製品粒子へと凝集させることと、
前記前駆体粒子を製品粒子へと凝集させた後、前記製品粒子を前記前駆体粒子から分離することと、
を含み、
前記混合物に高剪断及び高圧力場を受けさせることが、前記混合物を乾式メカノフュージョンに供することを含む、方法
A method for producing product particles for battery electrodes, fertilizers, pharmaceuticals, toners, pigments, fillers or catalysts, comprising:
obtaining a quantity of precursor particles having an average particle size of less than 1000 μm;
obtaining a quantity of template media having an average particle size of less than 500 μm and a hardness greater than that of said precursor particles;
preparing a mixture comprising the amount of precursor particles and templating medium;
subjecting the mixture to a high shear and high pressure field to agglomerate the precursor particles into product particles;
After aggregating the precursor particles into product particles, separating the product particles from the precursor particles;
including
A method wherein subjecting the mixture to a high shear and high pressure field comprises subjecting the mixture to dry mechanofusion .
アノード電極及びカソード電極を含む充電式バッテリーであって、前記アノード及びカソード電極の少なくとも1つが、請求項1に記載の方法に従って製造される製品粒子を含む、充電式バッテリー。 A rechargeable battery comprising an anode electrode and a cathode electrode, wherein at least one of said anode and cathode electrodes comprises product particles produced according to the method of claim 1. 前記量の前駆体粒子が第1の組成の第1の粒子及び第2の組成の第2の粒子の混合物を含み、前記第1及び第2の組成が異なる、請求項1に記載の方法。 2. The method of claim 1, wherein said quantity of precursor particles comprises a mixture of first particles of a first composition and second particles of a second composition, said first and second compositions being different. 第1の前駆体粒子の平均結晶子径が、第2の前駆体粒子の平均結晶子径と少なくとも10%異なる、請求項34に記載の方法。 35. The method of claim 34 , wherein the average crystallite size of the first precursor particles differs from the average crystallite size of the second precursor particles by at least 10%.
JP2022510172A 2019-08-29 2020-07-24 Improved microgranulation process and its product particles Pending JP2022546264A (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201962893787P 2019-08-29 2019-08-29
US62/893,787 2019-08-29
US201962946938P 2019-12-11 2019-12-11
US62/946,938 2019-12-11
US202063020526P 2020-05-05 2020-05-05
US63/020,526 2020-05-05
PCT/US2020/043621 WO2021040932A1 (en) 2019-08-29 2020-07-24 Improved microgranulation methods and product particles therefrom

Publications (2)

Publication Number Publication Date
JP2022546264A JP2022546264A (en) 2022-11-04
JPWO2021040932A5 true JPWO2021040932A5 (en) 2023-07-28

Family

ID=72087174

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2022510172A Pending JP2022546264A (en) 2019-08-29 2020-07-24 Improved microgranulation process and its product particles
JP2022509191A Pending JP2022546934A (en) 2019-08-29 2020-08-24 Lithium transition metal oxides and precursor particulate materials and methods

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022509191A Pending JP2022546934A (en) 2019-08-29 2020-08-24 Lithium transition metal oxides and precursor particulate materials and methods

Country Status (7)

Country Link
US (2) US20220298023A1 (en)
EP (2) EP4021855A1 (en)
JP (2) JP2022546264A (en)
KR (2) KR20220054822A (en)
CN (2) CN114341061A (en)
CA (2) CA3146930A1 (en)
WO (3) WO2021040932A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022200766A1 (en) * 2021-03-24 2022-09-29 Ev Metals Uk Limited Process for producing an electrochemically active oxide material
EP4095102A1 (en) * 2021-05-28 2022-11-30 Basf Se Process for making a particulate electrode active material, and electrode active material
KR20230085257A (en) * 2021-12-06 2023-06-14 오씨아이 주식회사 Anode material for secondary battery and method for manufacturing the same
KR20230096193A (en) * 2021-12-22 2023-06-30 오씨아이 주식회사 Anode material for secondary battery and method for manufacturing the same
CN114146643B (en) * 2021-12-23 2023-09-15 成都瑞德琅科技有限公司 Powder coating processingequipment
WO2023230537A1 (en) 2022-05-27 2023-11-30 Novonix Battery Technology Solutions Inc. Methods for preparing lithium nickel manganese cobalt oxide particulate
WO2024039915A1 (en) 2022-08-19 2024-02-22 Novonix Battery Technology Solutions Inc. Methods for preparing lithium transition metal oxide from elemental metal feedstocks and products thereof

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7211237B2 (en) 2003-11-26 2007-05-01 3M Innovative Properties Company Solid state synthesis of lithium ion battery cathode material
JP2007184145A (en) * 2006-01-06 2007-07-19 Hitachi Vehicle Energy Ltd Lithium secondary battery
JP2007317585A (en) * 2006-05-29 2007-12-06 Hitachi Vehicle Energy Ltd Positive electrode active material for lithium secondary battery, and the lithium secondary cell using the same
US9608266B2 (en) * 2007-01-29 2017-03-28 Umicore Cathode material for lithium-ion rechargeable batteries
JP5542694B2 (en) * 2008-12-24 2014-07-09 日本碍子株式会社 Plate-like particle for positive electrode active material of lithium secondary battery, positive electrode active material film of lithium secondary battery, production method thereof, production method of positive electrode active material of lithium secondary battery, and lithium secondary battery
EP2369661A1 (en) * 2008-12-24 2011-09-28 NGK Insulators, Ltd. Plate-shaped particles for positive electrode active material of lithium secondary batteries, and lithium secondary batteries
US9539543B2 (en) * 2009-01-29 2017-01-10 Basf Corporation Mechanically fused materials for pollution abatement in mobile and stationary sources
US8287772B2 (en) 2009-05-14 2012-10-16 3M Innovative Properties Company Low energy milling method, low crystallinity alloy, and negative electrode composition
PL2399869T3 (en) * 2010-06-25 2015-11-30 Evonik Degussa Gmbh Mixed oxide powder containing the elements lithium, manganese, nickel and cobalt and method for producing same
CN101916843A (en) * 2010-08-02 2010-12-15 中国科学院宁波材料技术与工程研究所 Method for preparing lithium battery anode material lithium transition metal composite oxide
US9142832B2 (en) 2010-08-11 2015-09-22 Jx Nippon Oil & Energy Corporation Graphite material for negative electrodes of lithium ion secondary battery, manufacturing method for said material, and lithium ion secondary battery using same
US8557438B2 (en) * 2010-08-25 2013-10-15 Uchicago Argonne, Llc Electrode materials for rechargeable battery
FR2968577B1 (en) 2010-12-10 2013-01-11 Commissariat Energie Atomique DRY GRANULATION METHOD OF PARTICLES OF NANOMETER SIZES
EP2715856B1 (en) * 2011-05-30 2015-04-29 Umicore Positive electrode material having a size dependent composition
JP5159960B2 (en) 2011-06-06 2013-03-13 神港精機株式会社 Production method of onion-like carbon
CN103855372B (en) * 2012-11-29 2017-02-22 国联汽车动力电池研究院有限责任公司 High-manganese composite cathode material and preparation method thereof
CN104201366B (en) * 2014-01-10 2017-01-04 兰州金里能源科技有限公司 A kind of preparation method of high security high compacted density nickle cobalt lithium manganate NCM523 ternary material
CN103811744B (en) * 2014-02-13 2016-09-21 北大先行科技产业有限公司 A kind of preparation method of ternary cathode material of lithium ion battery
CN106458635B (en) * 2014-05-27 2018-04-24 陶氏环球技术有限责任公司 Improved lithium metal oxide positive electrode and its manufacture method
PL3204972T3 (en) * 2014-10-08 2021-10-25 Umicore Carbonate precursors for lithium nickel manganese cobalt oxide cathode material and the method of making same
CN113394392A (en) * 2014-12-23 2021-09-14 昆腾斯科普电池公司 Lithium-rich nickel manganese cobalt oxide (LR-NMC)
CN104953199B (en) * 2015-05-13 2018-03-13 中国科学院过程工程研究所 Metal-doped nickle cobalt lithium manganate using lithium ion cell anode waste synthesis and its production and use
CN106328887A (en) * 2015-06-19 2017-01-11 宁德时代新能源科技股份有限公司 Anode material of lithium ion battery and preparation method thereof
JP7038042B2 (en) 2015-08-27 2022-03-17 ハルドール・トプサー・アクチエゼルスカベット High tap density lithium positive electrode active material, intermediate and manufacturing method
CN106531980A (en) * 2015-11-17 2017-03-22 宁波杉杉新材料科技有限公司 Negative electrode material for lithium-ion battery and preparation method and application of negative electrode material
CN105861961A (en) * 2016-04-12 2016-08-17 苏州赛福德备贸易有限公司 Carbon nanotube reinforced aluminum alloy and preparation method thereof
CN107785560B (en) * 2017-11-15 2020-07-21 国联汽车动力电池研究院有限责任公司 High-performance silicon-carbon negative electrode material and preparation method thereof
CN108172826A (en) * 2017-12-30 2018-06-15 国联汽车动力电池研究院有限责任公司 A kind of method of the nickelic ternary material of lithium iron phosphate nano particles coat
WO2019185349A1 (en) 2018-03-29 2019-10-03 Umicore Methods for preparing positive electrode material for rechargeable lithium ion batteries
CN108682840B (en) * 2018-06-08 2021-06-15 四川大学 Nanometer (Mg)0.2Co0.2Ni0.2Cu0.2Zn0.2) Preparation method and application of O
CN109802133B (en) * 2019-01-16 2021-09-21 宁德新能源科技有限公司 Lithium cobaltate precursor, preparation method thereof and lithium cobaltate compound prepared from lithium cobaltate precursor

Similar Documents

Publication Publication Date Title
TW401383B (en) Firing sol-gel alumina particles
US10173931B2 (en) Boron nitride agglomerates, method of production and use thereof
CN111164803B (en) Silicon-based negative electrode material for secondary battery, preparation method of silicon-based negative electrode material and secondary battery
CN103811758B (en) A kind of preparation method of synthetic graphite particle negative material
CN115472816A (en) Silica particles and preparation method and application thereof
JP2022546264A (en) Improved microgranulation process and its product particles
JPWO2021040932A5 (en)
CN111484050B (en) Preparation method of spheroidal alpha-phase nano-alumina
CN101172845A (en) Method for producing aluminum oxide titanium white series multiple phase fine ceramics material
JP3368507B2 (en) Zirconia powder and method for producing the same
CN109912309B (en) Novel mixing process for preparing aluminum nitride powder
JP2003238135A (en) Method for manufacturing spheroidal graphite particle
CN114853021A (en) Nano tungsten carbide powder and preparation method thereof
CN105502450B (en) Preparing method and application of subspheroidal alpha-alumina micro powder
CN113579237B (en) Preparation method for reducing apparent density of copper-tin alloy powder
JPH04325415A (en) Indium hydroxide and oxide
CN101704673A (en) Method for synthesizing and preparing nano-crystalline titanium carbide ceramic micro-powder at room temperature
CN107020372B (en) A kind of water-based spray prilling process of titanium diboride/nickel molybdenum composite granule
CN109266941A (en) Slab-shaped tungsten carbide-cobalt alloy and preparation method thereof
CN115196970A (en) Preparation method of high-fluidity AlON spherical powder
RU2258032C1 (en) Method of manufacture of structural graphite
JP2558173B2 (en) Method for producing carbon material having fine pores
CN102728846A (en) Method for preparing nanometer cobalt powders with spherical face-centered cubic structures by using mechano-chemical method
RU2409519C1 (en) Method of producing nanopowder of alpha aluminium oxide with narrow particle size distribution
JPH03218924A (en) Oxide powder and production thereof