JPWO2021034712A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2021034712A5
JPWO2021034712A5 JP2022509680A JP2022509680A JPWO2021034712A5 JP WO2021034712 A5 JPWO2021034712 A5 JP WO2021034712A5 JP 2022509680 A JP2022509680 A JP 2022509680A JP 2022509680 A JP2022509680 A JP 2022509680A JP WO2021034712 A5 JPWO2021034712 A5 JP WO2021034712A5
Authority
JP
Japan
Prior art keywords
trained
pathway
model
disruption
dysregulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022509680A
Other languages
Japanese (ja)
Other versions
JP2022544604A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2020/046513 external-priority patent/WO2021034712A1/en
Publication of JP2022544604A publication Critical patent/JP2022544604A/en
Publication of JPWO2021034712A5 publication Critical patent/JPWO2021034712A5/ja
Pending legal-status Critical Current

Links

Claims (24)

患者サンプルのトランスクリプトームデータにおいて、細胞経路における調節不全を検出するためのコンピュータ実装方法であって、
(a)複数の訓練された機械学習モデルを含む1つ又は複数の訓練された経路破壊エンジンに対して、識別子と、前記トランスクリプトームデータにおける1つ又は複数の遺伝子についての発現レベルとを含むトランスクリプトーム値セットの形態で、前記トランスクリプトームデータを準備する工程であって、
前記複数の訓練された機械学習モデルは、
1)細胞経路と関連する入力トランスクリプトーム値セットにおいて調節不全を同定するように訓練された少なくとも1つの経路レベルの機械学習モデル;
2)モジュールと関連する入力トランスクリプトーム値セットにおいて調節不全を同定するように訓練された少なくとも1つのモジュールレベルの機械学習モデル;
3)遺伝子と関連する入力トランスクリプトーム値セットにおいて調節不全を同定するように訓練された少なくとも1つの遺伝子レベルの機械学習モデル;及び
4)バリアントと関連する、又は、意義不明のバリアントと関連する入力トランスクリプトーム値セットにおいて調節不全を同定するように訓練された少なくとも1つのバリアントレベルの機械学習モデル
を含む、工程;
(b)少なくとも1つの経路破壊エンジンから、複数の訓練された機械学習モデルを選択し、前記トランスクリプトーム値セットに適用する工程;
(c)前記トランスクリプトーム値セットに、選択された複数の訓練された機械学習モデルを適用し、細胞経路における調節不全の指標となる少なくとも1つの経路破壊スコアを生成する工程
を含む、方法。
1. A computer-implemented method for detecting dysregulation in cellular pathways in patient sample transcriptomic data, comprising:
(a) for one or more trained pathway disruption engines comprising a plurality of trained machine learning models, including identifiers and expression levels for one or more genes in said transcriptome data; preparing the transcriptome data in the form of a transcriptome value set, comprising:
The plurality of trained machine learning models comprising:
1) at least one pathway-level machine learning model trained to identify dysregulation in an input transcriptome value set associated with a cellular pathway;
2) at least one module-level machine learning model trained to identify dysregulation in the input transcriptome value set associated with the module;
3) at least one gene-level machine learning model trained to identify dysregulation in the input transcriptome value set associated with the gene; and 4) associated with variants or associated with variants of unknown significance. comprising at least one variant-level machine learning model trained to identify dysregulation in the input transcriptome value set;
(b) selecting a plurality of trained machine learning models from at least one path breaking engine to apply to said transcriptome value set;
(c) applying a selected plurality of trained machine learning models to said transcriptome value set to generate at least one pathway disruption score indicative of dysregulation in a cellular pathway.
それぞれの経路レベルの訓練された機械学習モデルが、複数の陽性対照検体及び複数の陰性対照検体を含む訓練データに基づいて訓練されており、それぞれの陽性対照検体が、遺伝子データを含み、陽性対照遺伝子データが、細胞経路内に含まれる少なくとも1つの遺伝子において少なくとも1つの検出可能な病原性バリアントを含み、それぞれの陰性対照検体が、遺伝子データを含み、陰性対照遺伝子データが、細胞経路内に含まれるいずれの遺伝子においても病原性バリアントを含まない;
それぞれのモジュールレベルの訓練された機械学習モデルが、複数の陽性対照検体及び複数の陰性対照検体を含む訓練データに基づいて訓練されており、それぞれの陽性対照検体が、遺伝子データを含み、陽性対照遺伝子データが、モジュール内に含まれる少なくとも1つの遺伝子において少なくとも1つの検出可能な病原性バリアントを含み、それぞれの陰性対照検体が、遺伝子データを含み、陰性対照遺伝子データが、モジュール内に含まれるいずれの遺伝子においても病原性バリアントを含まない;
それぞれの遺伝子レベルの訓練された機械学習モデルが、複数の陽性対照検体及び複数の陰性対照検体を含む訓練データに基づいて訓練されており、それぞれの陽性対照検体が、遺伝子データを含み、陽性対照遺伝子データが、遺伝子において少なくとも1つの検出可能な病原性バリアントを含み、それぞれの陰性対照検体が、遺伝子データを含み、陰性対照遺伝子データが、遺伝子において病原性バリアントを含まない;
それぞれのバリアントレベルの訓練された機械学習モデルが、複数の陽性対照検体及び複数の陰性対照検体を含む訓練データに基づいて訓練されており、それぞれの陽性対照検体が、遺伝子データを含み、陽性対照遺伝子データが、バリアントを含み、それぞれの陰性対照検体が、遺伝子データを含み、陰性対照遺伝子データが、病原性バリアントを含まない、
請求項1に記載の方法。
Each pathway level trained machine learning model is trained based on training data comprising a plurality of positive control specimens and a plurality of negative control specimens, each positive control specimen comprising genetic data and a positive control the genetic data comprises at least one detectable pathogenic variant in at least one gene comprised within the cellular pathway, each negative control specimen comprising genetic data, the negative control genetic data comprised within the cellular pathway does not contain a pathogenic variant in any of the genes
each module-level trained machine learning model is trained based on training data comprising a plurality of positive control specimens and a plurality of negative control specimens, each positive control specimen comprising genetic data; the genetic data comprises at least one detectable pathogenic variant in at least one gene contained within the module, each negative control specimen comprising the genetic data, and the negative control genetic data contained within the module; does not contain a pathogenic variant in any of the genes of
Each gene-level trained machine learning model is trained based on training data comprising a plurality of positive control samples and a plurality of negative control samples, each positive control sample comprising genetic data, a positive control the genetic data contains at least one detectable pathogenic variant in the gene, each negative control specimen contains genetic data, and the negative control genetic data contains no pathogenic variant in the gene;
each variant-level trained machine learning model is trained on training data comprising a plurality of positive control specimens and a plurality of negative control specimens, each positive control specimen comprising genetic data; the genetic data contains the variant, each negative control specimen contains genetic data, the negative control genetic data does not contain the pathogenic variant;
The method of Claim 1.
少なくとも1つの訓練された経路レベルのモデル、少なくとも1つの訓練されたモジュールレベルのモデル、少なくとも1つの訓練された遺伝子レベルのモデル、又は少なくとも1つの訓練されたバリアントレベルのモデルが、複数の陽性対照検体及び複数の陰性対照検体を含む訓練データに基づいて訓練されており、
前記訓練が、陽性対照検体と陰性対照検体との間の複数の差次的メトリック値を計算する工程であって、それぞれの差次的メトリック値が、前記経路又は前記モジュール内に含まれる少なくとも1つの遺伝子と関連している、あるいは前記遺伝子又は前記バリアントと関連している、工程、並びに前記モデルに含めるための閾値で又は閾値未満で、差次的メトリックスコアを有する遺伝子を選択する工程を含む、請求項2に記載の方法。
at least one trained pathway-level model, at least one trained module-level model, at least one trained gene-level model, or at least one trained variant-level model combined with multiple positive controls trained on training data containing the specimen and multiple negative control specimens,
at least one of said training comprises calculating a plurality of differential metric values between positive control specimens and negative control specimens, each differential metric value being included in said pathway or said module; and selecting genes with differential metric scores at or below a threshold for inclusion in the model. , the method of claim 2.
陽性対照遺伝子データ及び陰性対照遺伝子データの少なくとも一部分が、DNAデータを含む、請求項2に記載の方法。 3. The method of claim 2, wherein at least a portion of the positive control gene data and the negative control gene data comprises DNA data. 陽性対照遺伝子データ及び陰性対照遺伝子データの少なくとも一部分が、RNAデータを含む、請求項2に記載の方法。 3. The method of claim 2, wherein at least a portion of the positive control gene data and the negative control gene data comprises RNA data. RNAデータが、トランスクリプトームデータを含む、請求項5に記載の方法。 6. The method of claim 5, wherein the RNA data comprises transcriptome data. 検出可能な病原性バリアントが、RNA発現レベルを含む、請求項5に記載の方法。 6. The method of claim 5, wherein detectable pathogenic variants comprise RNA expression levels. 陰性対照RNAトランスクリプトームデータが、発現されるRNAについて、1つ又は複数の野生型サンプルと比較して、発現レベルに有意な変動を含まない、請求項5に記載の方法。 6. The method of claim 5, wherein the negative control RNA transcriptome data does not contain significant variation in expression levels for expressed RNA compared to one or more wild-type samples. 少なくとも1つの経路破壊スコアに基づいて、経路破壊レポートを生成すること、及び
経路破壊レポートを、ディスプレイ又はメモリのうちの少なくとも1つに提示すること
を含む、請求項1に記載の方法。
2. The method of claim 1, comprising generating a path disruption report based on at least one path disruption score, and presenting the path disruption report to at least one of a display or memory.
経路破壊レポートが、少なくとも1つの経路破壊スコアと関連する情報を含み、情報が、a)原因となる可能性のある変異、b)意義不明の1つ又は複数のバリアントの特定、c)1つ又は複数の推奨される治療法、d)経路破壊スコアに基づいて、処置への曝露後にオルガノイドをモニタリングする提案、e)経路破壊スコアに基づいて、検体と関連する患者に、少なくとも1つの臨床試験を適合させること、及びd)参照医学文献のうちの少なくとも1つを含む、請求項9に記載の方法。 The pathway disruption report includes at least one pathway disruption score and associated information, wherein the information is a) the likely causative mutation, b) the identification of one or more variants of unknown significance, c) one or multiple recommended therapies, d) proposals for monitoring organoids after exposure to treatment based on pathway disruption scores, e) subject and associated patients based on pathway disruption scores, at least one clinical trial and d) including at least one of the reference medical literature. 第1の訓練された経路破壊エンジンから、細胞経路における細胞経路調節不全を示す第1の経路破壊スコアを受信すること、
第2の訓練された経路破壊エンジンから、細胞経路における細胞経路調節不全を示す第2の経路破壊スコアを受信すること、
細胞経路、第1の経路破壊スコア、及び第2の経路破壊スコアに基づいて、メタ経路描写を生成すること、並びに
メタ経路描写をディスプレイに提示すること
を含む、請求項1に記載の方法。
receiving a first pathway disruption score indicative of cellular pathway dysregulation in a cellular pathway from a first trained pathway disruption engine;
receiving a second pathway disruption score indicative of cellular pathway dysregulation in a cellular pathway from a second trained pathway disruption engine;
2. The method of claim 1, comprising generating a metapathway depiction based on the cellular pathway, the first pathway disruption score, and the second pathway disruption score, and presenting the metapathway representation on a display.
少なくとも1つの訓練された経路破壊エンジンが、破壊モデルスコアを出力するように構成される訓練されたモデルを含み、所定の閾値を下回るモデルスコアが、非調節不全を示し、所定の閾値を上回るモデルスコアが、調節不全を示す、請求項1に記載の方法。 at least one trained path disruption engine including a trained model configured to output a disruption model score, wherein a model score below a predetermined threshold indicates dysregulation and a model above the predetermined threshold 2. The method of claim 1, wherein the score indicates dysregulation. 少なくとも1つの訓練された経路破壊エンジンが、複数の訓練されたモデルを含み、細胞経路が、1つまたは複数の遺伝子モジュールを含み、複数の訓練されたモデルに含まれるそれぞれの訓練されたモデルが、細胞経路内に含まれる異なる遺伝子モジュールと関連するモデルスコアを出力するように構成される、請求項1に記載の方法。 at least one trained pathway disruption engine comprising a plurality of trained models, a cellular pathway comprising one or more gene modules, and each trained model comprised in the plurality of trained models , configured to output model scores associated with different genetic modules contained within a cellular pathway. 訓練されたモデルのそれぞれによって出力されるモデルスコアに基づいて、グローバル調節不全スコアを計算する工程
を更に含む、請求項13に記載の方法。
14. The method of claim 13, further comprising calculating a global dysregulation score based on model scores output by each of the trained models.
複数の機械学習モデルが、1つ又は複数の線形回帰の機械学習アルゴリズム、又は非線形のモデルを含む、請求項1に記載の方法。 2. The method of claim 1, wherein the plurality of machine learning models comprises one or more linear regression machine learning algorithms or non-linear models. 細胞経路が、1~5個の遺伝子、6~10個の遺伝子、10~20個の遺伝子、又は20~100個の遺伝子を含む、請求項1に記載の方法。 2. The method of claim 1, wherein the cellular pathway comprises 1-5 genes, 6-10 genes, 10-20 genes, or 20-100 genes. 細胞経路内に含まれるいくつかのモジュール、及び細胞経路内に含まれるモジュールのうちの少なくとも1つにおける調節不全の指標を含む、細胞経路の描写を含む経路破壊レポートを生成すること、並びに
経路破壊レポートを、ディスプレイ又はメモリのうちの少なくとも1つに提示すること
を含む、請求項1に記載の方法。
generating a pathway disruption report comprising a depiction of a cellular pathway including a number of modules contained within the cellular pathway and an indication of dysregulation in at least one of the modules contained within the cellular pathway; 2. The method of claim 1, comprising presenting the report on at least one of a display or memory.
細胞経路が、ラット肉腫/受容体チロシンキナーゼ(RAS/RTK)経路レベルの機械学習モデルである、請求項1に記載の方法。 2. The method of claim 1, wherein the cellular pathway is a rat sarcoma/receptor tyrosine kinase (RAS/RTK) pathway level machine learning model. 少なくとも1つの訓練された経路破壊エンジンが、(a)、(b)または(a)と(b)の両方:
(a)少なくとも以下のモジュール:RASモジュール、RAFモジュール、MEKモジュール及びERKモジュールについてのモジュールレベルの機械学習モデルであって、
RASモデルは、KRAS、NRAS及びHRAS遺伝子の少なくとも1つの変化と関連する入力トランスクリプトーム値セットにおける調節不全を同定するように訓練され、RAFモデルは、RAF1、BRAF及びARAF遺伝子のうちの少なくとも1つの変化と関連する入力トランスクリプトーム値セットにおける調節不全を同定するように訓練され、MEKモデルは、MAP2K1遺伝子の変化と関連する入力トランスクリプトーム値セットにおける調節不全を同定するように訓練され、ERKモデルは、MAPK3及びMAPK1遺伝子の少なくとも1つの変化と関連する入力トランスクリプトーム値セットにおける調節不全を同定するように訓練され、
それぞれの訓練されたモデルは、訓練された経路破壊エンジンにモデルスコアを出力し、経路破壊エンジンは、細胞経路における調節不全の指標となる経路破壊スコアを生成する;
(b)少なくとも1つの訓練された経路破壊エンジンは、以下の遺伝子:KRAS、NRAS、HRAS、RAF1、BRAF、ARAF、MAP2K1、MAPK3及びMAPK1の少なくとも1つの遺伝子レベルの機械学習モデルを含み、
それぞれの訓練されたモデルは、訓練された経路破壊エンジンにモデルスコアを出力し、訓練された経路破壊エンジンは、細胞経路における調節不全の指標となる経路破壊スコアを生成する
を含む、請求項18に記載の方法。
At least one trained path breaking engine has (a), (b) or both (a) and (b):
(a) module-level machine learning models for at least the following modules: RAS module, RAF module, MEK module and ERK module,
The RAS model is trained to identify dysregulation in the input transcriptome value set associated with alterations in at least one of the KRAS, NRAS and HRAS genes, and the RAF model is trained to identify at least one of the RAF1, BRAF and ARAF genes. A MEK model was trained to identify dysregulation in the input transcriptome value set associated with a change in the MAP2K1 gene, and a MEK model was trained to identify dysregulation in the input transcriptome value set associated with a change in the MAP2K1 gene; an ERK model trained to identify dysregulation in an input transcriptome value set associated with alterations in at least one of the MAPK3 and MAPK1 genes;
Each trained model outputs a model score to a trained pathway disruption engine, which produces a pathway disruption score indicative of dysregulation in cellular pathways;
(b) the at least one trained pathway disruption engine comprises a gene-level machine learning model of at least one of the following genes: KRAS, NRAS, HRAS, RAF1, BRAF, ARAF, MAP2K1, MAPK3 and MAPK1;
19. Each trained model outputs a model score to a trained pathway disruption engine, wherein the trained pathway disruption engine produces a pathway disruption score indicative of dysregulation in cellular pathways. The method described in .
少なくとも1つの訓練された経路破壊エンジンが、ホスファチジルイノシトール■3キナーゼ(PI3K)経路レベルの機械学習モデルを含む、請求項1に記載の方法。 2. The method of claim 1, wherein the at least one trained pathway disruption engine comprises a phosphatidylinositol-3-kinase (PI3K) pathway-level machine learning model. 少なくとも1つの訓練された経路破壊エンジンが、(a)、(b)または(a)と(b)の両方:
(a)少なくとも以下のモジュール:PI3Kモジュール、AKT1モジュール、TORモジュール及びPTENモジュールの少なくとも1つについてのモジュールレベルの機械学習モデルであって、
PI3Kモデルは、PIK3CAおよびPICKCB遺伝子の少なくとも1つの変化と関連する入力トランスクリプトーム値セットにおける調節不全を検出するように訓練され、AKT1モデルは、AKT1、AKT2及びAKT3遺伝子の少なくとも1つの変化と関連する入力トランスクリプトーム値セットにおける調節不全を検出するように訓練され、TORモデルは、RICTOR、RPTOR及びMTOR遺伝子の少なくとも1つの変化と関連する入力トランスクリプトーム値セットにおける調節不全を検出するように訓練され、PTENモデルは、PTEN、PIK3R1、PIK3R2及びPIK3R3遺伝子の少なくとも1つの変化と関連する入力トランスクリプトーム値セットの調節不全を検出するように訓練され、
それぞれの訓練されたモデルは、訓練された経路破壊エンジンにモデルスコアを出力し、経路破壊エンジンは、細胞経路における調節不全の指標となる経路破壊スコアを生成する;
(b)以下の遺伝子:PIK3CA、PICKCB、AKT1、AKT2、AKT3、RICTOR、RPTOR、MTOR、PTEN、PIK3R1、PIK3R2及びPIK3R3の少なくとも1つについての遺伝子レベルの機械学習モデルであって、
それぞれの訓練されたモデルは、訓練された経路破壊エンジンにモデルスコアを出力し、経路破壊エンジンは、細胞経路における調節不全の指標となる経路破壊スコアを生成する
を含む、請求項20に記載の方法。
At least one trained path breaking engine has (a), (b) or both (a) and (b):
(a) a module-level machine learning model for at least one of the following modules: PI3K module, AKT1 module, TOR module and PTEN module;
The PI3K model was trained to detect dysregulation in the input transcriptome value set associated with alterations in at least one of the PIK3CA and PICKCB genes, and the AKT1 model was associated with alterations in at least one of the AKT1, AKT2 and AKT3 genes. and the TOR model is trained to detect dysregulation in the input transcriptome value set associated with alterations in at least one of the RICTOR, RPTOR and MTOR genes. a PTEN model trained to detect dysregulation of an input transcriptome value set associated with alterations in at least one of the PTEN, PIK3R1, PIK3R2 and PIK3R3 genes;
Each trained model outputs a model score to a trained pathway disruption engine, which produces a pathway disruption score indicative of dysregulation in cellular pathways;
(b) a gene-level machine learning model for at least one of the following genes: PIK3CA, PICKCB, AKT1, AKT2, AKT3, RICTOR, RPTOR, MTOR, PTEN, PIK3R1, PIK3R2 and PIK3R3,
21. The method of claim 20, wherein each trained model outputs a model score to a trained pathway disruption engine, the pathway disruption engine generating a pathway disruption score indicative of dysregulation in cellular pathways. Method.
複数のモデルが、ユーザによって選択される、請求項1に記載の方法。 2. The method of claim 1, wherein multiple models are selected by the user. 少なくとも1つの訓練された経路破壊エンジンが、カスタム経路レベルの機械学習モデルを含む、請求項1に記載の方法。 2. The method of claim 1, wherein at least one trained path breaking engine comprises a custom path-level machine learning model. 経路レベルのモデルを訓練するために使用される1つまたは複数の検出可能な病原性バリアント陽性対照を選択する工程を含み、任意選択で、選択された陽性対照がそれぞれ、1つより多い検出可能な病原性バリアントを含み、及び/又は選択する工程が、臨床特徴に関して陽性及び陰性対照をフィルタリングすることを含み、及び/又は陽性対照の検出可能な病原性バリアントが、1つまたは複数の挿入、欠失、再配置、コピー数変異又は置換を含む、請求項2に記載の方法。 selecting one or more detectable pathogenic variant positive controls to be used to train a pathway level model, optionally wherein each of the selected positive controls is more than one detectable and/or the step of selecting comprises filtering the positive and negative controls for clinical characteristics, and/or the positive control detectable pathogenic variants comprise one or more insertions, 3. The method of claim 2, comprising deletions, rearrangements, copy number alterations or substitutions.
JP2022509680A 2019-08-16 2020-08-14 Systems and methods for detecting cellular pathway dysregulation in cancer specimens Pending JP2022544604A (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201962888163P 2019-08-16 2019-08-16
US62/888,163 2019-08-16
US201962904300P 2019-09-23 2019-09-23
US62/904,300 2019-09-23
US202062986201P 2020-03-06 2020-03-06
US62/986,201 2020-03-06
PCT/US2020/046513 WO2021034712A1 (en) 2019-08-16 2020-08-14 Systems and methods for detecting cellular pathway dysregulation in cancer specimens

Publications (2)

Publication Number Publication Date
JP2022544604A JP2022544604A (en) 2022-10-19
JPWO2021034712A5 true JPWO2021034712A5 (en) 2023-08-18

Family

ID=74646007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022509680A Pending JP2022544604A (en) 2019-08-16 2020-08-14 Systems and methods for detecting cellular pathway dysregulation in cancer specimens

Country Status (6)

Country Link
US (2) US11367508B2 (en)
EP (1) EP4013866A4 (en)
JP (1) JP2022544604A (en)
AU (1) AU2020334901A1 (en)
CA (1) CA3148023A1 (en)
WO (2) WO2021034712A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022544604A (en) * 2019-08-16 2022-10-19 テンパス・ラボズ・インコーポレイテッド Systems and methods for detecting cellular pathway dysregulation in cancer specimens
US11373760B2 (en) * 2019-10-12 2022-06-28 International Business Machines Corporation False detection rate control with null-hypothesis
US11645555B2 (en) 2019-10-12 2023-05-09 International Business Machines Corporation Feature selection using Sobolev Independence Criterion
CA3174332A1 (en) 2020-04-21 2021-10-28 Jason PERERA Tcr/bcr profiling
US11613783B2 (en) 2020-12-31 2023-03-28 Tempus Labs, Inc. Systems and methods for detecting multi-molecule biomarkers
CA3204451A1 (en) 2021-01-07 2022-07-14 Francisco M. De La Vega Systems and methods for joint low-coverage whole genome sequencing and whole exome sequencing inference of copy number variation for clinical diagnostics
US11481235B2 (en) * 2021-01-11 2022-10-25 Evicore Healthcare MSI, LLC Database framework model transformation for pathway identification
WO2022159774A2 (en) 2021-01-21 2022-07-28 Tempus Labs, Inc. METHODS AND SYSTEMS FOR mRNA BOUNDARY ANALYSIS IN NEXT GENERATION SEQUENCING
CN113421613A (en) * 2021-06-08 2021-09-21 吴安华 System and analysis method for evaluating immunotherapy reactivity of glioblastoma patient based on iron death level
CA3234439A1 (en) 2021-10-11 2023-04-20 Alessandra Breschi Methods and systems for detecting alternative splicing in sequencing data
WO2023086474A1 (en) * 2021-11-10 2023-05-19 Albert Einstein College Of Medicine Method for measuring somatic dna mutation and dna damage profiles and a diagnostic kit suitable therefore
WO2023091316A1 (en) 2021-11-19 2023-05-25 Tempus Labs, Inc. Methods and systems for accurate genotyping of repeat polymorphisms
WO2023100181A1 (en) * 2021-12-01 2023-06-08 Hadasit Medical Research Services And Development Ltd. Machine learning prediction of genetic mutations impact
EP4239647A1 (en) 2022-03-03 2023-09-06 Tempus Labs, Inc. Systems and methods for deep orthogonal fusion for multimodal prognostic biomarker discovery
WO2023168049A2 (en) * 2022-03-04 2023-09-07 Bostongene Corporation Cytokine gene expression signatures
CN115273966B (en) * 2022-08-29 2023-03-31 西安交通大学 Analysis method of alternative splicing patterns and dynamic change of chromatin state in lineage tree

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090299646A1 (en) * 2004-07-30 2009-12-03 Soheil Shams System and method for biological pathway perturbation analysis
CA2758826A1 (en) * 2009-04-18 2010-10-21 Merck Sharp & Dohme Corp. Methods and gene expression signature for assessing ras pathway activity
WO2015077725A1 (en) 2013-11-22 2015-05-28 Dignity Health Diagnosing idh1 related subgroups and treatment of cancer
EP2549399A1 (en) 2011-07-19 2013-01-23 Koninklijke Philips Electronics N.V. Assessment of Wnt pathway activity using probabilistic modeling of target gene expression
EA201590175A1 (en) * 2012-07-26 2015-06-30 Дзе Реджентс Оф Дзе Юниверсити Оф Калифорния SCREENING, DIAGNOSTICS AND FORECASTING OF AUTISM AND OTHER DEVELOPMENTAL DISABILITIES
EP2958574A4 (en) * 2013-01-23 2016-11-02 Reproductive Genetics And Technology Solutions Llc Compositions and methods for genetic analysis of embryos
KR101785795B1 (en) 2015-10-30 2017-10-13 가톨릭대학교 산학협력단 Biomarker micro rna for predicting prognosis of head and neck squamous cell carcinoma
EP3879535A1 (en) 2017-06-13 2021-09-15 BostonGene Corporation Systems and methods for identifying cancer treatments from normalized biomarker scores
WO2020033453A1 (en) 2018-08-06 2020-02-13 Tempus Labs, Inc. A multi-modal approach to predicting immune infiltration based on integrated rna expression and imaging features
AU2019346427A1 (en) 2018-09-24 2021-05-13 Tempus Ai, Inc. Methods of normalizing and correcting RNA expression data
WO2020081607A1 (en) 2018-10-15 2020-04-23 Tempus Labs, Inc. Microsatellite instability determination system and related methods
AU2019380342A1 (en) * 2018-11-15 2021-07-01 Ampel Biosolutions, Llc Machine learning disease prediction and treatment prioritization
EP3906557A4 (en) 2018-12-31 2022-09-28 Tempus Labs, Inc. Transcriptome deconvolution of metastatic tissue samples
WO2020210487A1 (en) * 2019-04-12 2020-10-15 Cipher Genetics Inc. Systems and methods for nutrigenomics and nutrigenetic analysis
JP2022544604A (en) * 2019-08-16 2022-10-19 テンパス・ラボズ・インコーポレイテッド Systems and methods for detecting cellular pathway dysregulation in cancer specimens

Similar Documents

Publication Publication Date Title
JPWO2021034712A5 (en)
Blumcke et al. Neocortical development and epilepsy: insights from focal cortical dysplasia and brain tumours
Ruscio et al. Determining the number of factors to retain in an exploratory factor analysis using comparison data of known factorial structure.
CN107548498A (en) System and method for the chemotherapy in the high-level carcinoma of urinary bladder of response prediction
TW201320966A (en) Methods and systems for hearing tests
Nebenzahl-Guimaraes et al. Transmissible Mycobacterium tuberculosis strains share genetic markers and immune phenotypes
Djordjilović et al. Global test for high‐dimensional mediation: Testing groups of potential mediators
WO2022170909A1 (en) Drug sensitivity prediction method, electronic device and computer-readable storage medium
Vismara et al. New challenges in facing cyberchondria during the coronavirus disease pandemic
CN111882066B (en) Inverse fact reasoning equipment based on deep characterization learning
Yan et al. BiRWDDA: a novel drug repositioning method based on multisimilarity fusion
Garcia-Rudolph et al. Personalized web-based cognitive rehabilitation treatments for patients with traumatic brain injury: cluster analysis
Teresi et al. Differential item functioning analyses of the Patient-Reported Outcomes Measurement Information System (PROMIS®) measures: methods, challenges, advances, and future directions
CN110010195A (en) A kind of method and device detecting single nucleotide mutation
Bossuyt et al. Evaluating biomarkers for guiding treatment decisions
Chow et al. Evidence for an amodal domain-general object recognition ability
Zarrabi et al. Modeling HIV-1 intracellular replication: two simulation approaches
Zhang et al. Three‐component mixture model‐based adverse drug event signal detection for the adverse event reporting system
Wang et al. Diffusion tensor imaging‐based machine learning for IDH wild‐type glioblastoma stratification to reveal the biological underpinning of radiomic features
JP7429036B2 (en) Judgment device, model generation device, judgment method and judgment program
CN105177130B (en) It is used for assessing the mark of aids patient generation immune reconstitution inflammatory syndrome
Konigorski et al. Estimating and testing direct genetic effects in directed acyclic graphs using estimating equations
Chen et al. Artificial neural network prediction for cancer survival time by gene expression data
Stoltenberg Epistasis among presynaptic serotonergic system components
WO2023068220A1 (en) Prediction method and biomarker