JPWO2021030373A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2021030373A5
JPWO2021030373A5 JP2022507745A JP2022507745A JPWO2021030373A5 JP WO2021030373 A5 JPWO2021030373 A5 JP WO2021030373A5 JP 2022507745 A JP2022507745 A JP 2022507745A JP 2022507745 A JP2022507745 A JP 2022507745A JP WO2021030373 A5 JPWO2021030373 A5 JP WO2021030373A5
Authority
JP
Japan
Prior art keywords
endoderm
aggregates
intestinal
aggregated
gut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022507745A
Other languages
Japanese (ja)
Other versions
JP2022544175A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2020/045809 external-priority patent/WO2021030373A1/en
Publication of JP2022544175A publication Critical patent/JP2022544175A/en
Publication of JPWO2021030373A5 publication Critical patent/JPWO2021030373A5/ja
Pending legal-status Critical Current

Links

Description

ヒト多能性幹細胞(hPSC;胚性幹細胞および人工多能性幹細胞の両方を含む)は、個別の上皮層と間葉層とに組織化されたヒト三次元胃腸組織(例えば、ヒト腸オルガノイド;HIO)を生成するための再生可能な資源を表す。例えば、HIOにおいて、上皮はすべての既知の腸上皮細胞型を含み、吸収、腸内ホルモン合成、および粘膜分泌を含む機能的な腸組織のいくつかの特性を示す。実験動物モデルへの移植後、HIOは有意な増殖および成熟を経て、粘膜、粘膜下層、および固有筋層を含む出生後のヒトの腸に似ている。上皮細胞は、陰窩の成体幹細胞活性/前駆体ゾーンを含む陰窩絨毛構造と、栄養吸収および刷子縁酵素活性などの機能が可能な成熟上皮とに配置される。その結果、多能性幹細胞に由来するオルガノイドは、腸の発達および疾患を研究するための生理学的に関連性のある強力なツールであり、薬物開発のための新規プラットフォームも提供する。さらに、人工多能性幹細胞は、腸疾患を抱える個体を含むあらゆる個体に由来する可能性があることを考えると、個別化された医療用途向けのHIOなどの疾患/患者特異的オルガノイドを生成することが可能である。インビボ組織により類似した改良されたオルガノイド組成物、およびより堅牢で、拡張性があり、より速く、また費用効果の高いオルガノイド組成物を作製する方法に対する永続的な必要性が存在する。
この出願の発明に関連する先行技術文献情報としては、以下のものがある(国際出願日以降国際段階で引用された文献及び他国に国内移行した際に引用された文献を含む)。
(先行技術文献)
(特許文献)
(特許文献1) 米国特許出願公開第2019/0093076号明細書
(特許文献2) 米国特許出願公開第2018/0258400号明細書
(特許文献3) 米国特許出願公開第2018/0043357号明細書
(特許文献4) 米国特許出願公開第2017/0202885号明細書
(非特許文献)
(非特許文献1) ARORA et al. "A process engineering approach to increase organoid yield," Development,15 March 2017 (15.03.2017).Vol.144,No.6,Pgs.1128-1136.entire document
(非特許文献2) MILLER et al. "Generation of lung organoids from human pluripotent stem cells in vitro," Nature Protocols.28 February 2019 (28.02.2019),Vol.14,No.2,Pgs.518-540.entire document
Human pluripotent stem cells (hPSCs; including both embryonic and induced pluripotent stem cells) form human three-dimensional gastrointestinal tissues (e.g., human intestinal organoids) organized into distinct epithelial and mesenchymal layers; Represents a renewable resource for producing HIO). For example, in HIO, the epithelium contains all known intestinal epithelial cell types and exhibits several properties of functional intestinal tissue, including absorption, intestinal hormone synthesis, and mucosal secretion. After implantation into an experimental animal model, HIO undergoes significant proliferation and maturation to resemble the postnatal human intestine, including the mucosa, submucosa, and muscularis propria. Epithelial cells are arranged in the crypt villus structure, which contains the adult stem cell active/progenitor zone of the crypt, and in the mature epithelium capable of functions such as nutrient uptake and brush border enzymatic activity. As a result, pluripotent stem cell-derived organoids are physiologically relevant and powerful tools for studying intestinal development and disease, and also provide a novel platform for drug development. Furthermore, given that induced pluripotent stem cells can be derived from any individual, including those with intestinal disease, to generate disease/patient-specific organoids such as HIOs for personalized medical applications. Is possible. There is a continuing need for improved organoid compositions that more closely resemble in vivo tissue and methods of making organoid compositions that are more robust, scalable, faster and cost effective.
Prior art document information related to the invention of this application includes the following (including documents cited in the international phase after the international filing date and documents cited in the national phase of other countries).
(Prior art document)
(Patent document)
(Patent Document 1) US Patent Application Publication No. 2019/0093076
(Patent Document 2) US Patent Application Publication No. 2018/0258400
(Patent Document 3) US Patent Application Publication No. 2018/0043357
(Patent Document 4) US Patent Application Publication No. 2017/0202885
(Non-Patent Literature)
(Non-Patent Document 1) ARORA et al. "A process engineering approach to increase organoid yield," Development, 15 March 2017 (15.03.2017). Vol. 144, No. 6, Pgs. 1128-1136. whole document
(Non-Patent Document 2) MILLER et al. "Generation of lung organoids from human pluripotent stem cells in vitro," Nature Protocols. 28 February 2019 (28.02.2019), Vol. 14, No. 2, Pgs. 518-540. whole document

Claims (24)

1つ以上の凝集オルガノイドを産生する方法であって、
胚体内胚葉を腸内胚葉単層および腸スフェロイドに分化させることであって、
前記腸内胚葉単層は付着性であり、前記腸スフェロイドは分離され、増殖培地に懸濁されている、分化させることと、
前記腸内胚葉単層を前記腸スフェロイドから分離することと、
前記腸内胚葉単層を腸内胚葉細胞の単一細胞懸濁液に解離することと、
前記腸内胚葉細胞の単一細胞懸濁液を1つ以上の腸内胚葉凝集体に凝集させることと、
前記1つ以上の腸内胚葉凝集体を培養して、前記1つ以上の凝集オルガノイドを産生することと、を含む、方法。
A method of producing one or more aggregated organoids, comprising:
Differentiating definitive endoderm into an intestinal endoderm monolayer and intestinal spheroids,
differentiating, wherein said intestinal endoderm monolayer is adherent and said intestinal spheroids are separated and suspended in growth medium;
separating the intestinal endoderm monolayer from the intestinal spheroids;
dissociating the intestinal endoderm monolayer into a single cell suspension of intestinal endoderm cells;
Aggregating the single-cell suspension of intestinal endoderm cells into one or more intestinal endoderm aggregates;
culturing the one or more intestinal endoderm aggregates to produce the one or more aggregated organoids.
前記分離工程が、前記腸内胚葉単層から前記増殖培地および懸濁された腸スフェロイドを吸引することを含む、請求項に記載の方法。 2. The method of claim 1 , wherein said separating step comprises aspirating said growth medium and suspended intestinal spheroids from said intestinal endoderm monolayer. 前記解離工程が、前記腸内胚葉単層を酵素的に解離することを含む、請求項1または2に記載の方法。 3. The method of claim 1 or 2 , wherein said dissociating step comprises enzymatically dissociating said intestinal endoderm monolayer. 前記凝集工程が、前記単一細胞懸濁液を懸滴で凝集させること、「v」もしくは「u」底のマイクロウェル培養プレート内の前記単一細胞懸濁液を遠心分離すること、オービタルシェーカーを使用して前記単一細胞懸濁液を凝集させること、または形成プレート内の前記単一細胞懸濁液を遠心分離すること、あるいはそれらの任意の組み合わせを含む、請求項1~3のいずれか一項に記載の方法。 the aggregating step comprises aggregating the single cell suspension in a hanging drop; centrifuging the single cell suspension in a 'v' or 'u' bottomed microwell culture plate; orbital shaker. or centrifuging the single cell suspension in a forming plate, or any combination thereof. or the method described in paragraph 1. 前記培養工程が、前記1つ以上の腸内胚葉凝集体を細胞外マトリックス、またはその模倣体もしくは誘導体と接触させることを含む、請求項1~4のいずれか一項に記載の方法。 5. The method of any one of claims 1-4 , wherein said culturing step comprises contacting said one or more intestinal endoderm aggregates with an extracellular matrix, or a mimetic or derivative thereof. 前記腸内胚葉単層が、前腸内胚葉単層であり、前記腸スフェロイドが、前腸スフェロイドである、請求項1~のいずれか一項に記載の方法。 6. The method of any one of claims 1-5 , wherein the intestinal endoderm monolayer is a foregut endoderm monolayer and the intestinal spheroids are foregut spheroids. 前記胚体内胚葉を前記前腸内胚葉単層および前記前腸スフェロイドに分化させることが、前記胚体内胚葉を1つ以上のFGFシグナル伝達経路活性化因子、1つ以上のWntシグナル伝達経路活性化因子、もしくは1つ以上のBMPシグナル伝達経路阻害剤、またはそれらの任意の組み合わせと接触させることを含む、請求項に記載の方法。 Differentiating said definitive endoderm into said foregut endoderm monolayer and said foregut spheroids comprises activating said definitive endoderm with one or more FGF signaling pathway activators, one or more Wnt signaling pathway activators 7. The method of claim 6 , comprising contacting with a factor or one or more BMP signaling pathway inhibitors, or any combination thereof. 前記1つ以上の凝集オルガノイドが、凝集肝臓オルガノイドである、請求項6または7に記載の方法。 8. The method of claim 6 or 7 , wherein the one or more aggregated organoids are aggregated liver organoids. 前記1つ以上の腸内胚葉凝集体を培養して前記1つ以上の凝集肝臓オルガノイドを形成することが、前記1つ以上の腸内胚葉凝集体を1つ以上のFGFシグナル伝達経路活性化因子、1つ以上のBMPシグナル伝達経路活性化因子、レチノイン酸、肝細胞増殖因子、デキサメタゾン、もしくはオンコスタチンM、またはそれらの任意の組み合わせと接触させることを含む、請求項に記載の方法。 Culturing said one or more gut endoderm aggregates to form said one or more aggregated liver organoids comprises treating said one or more gut endoderm aggregates with one or more FGF signaling pathway activators. , one or more BMP signaling pathway activators, retinoic acid, hepatocyte growth factor, dexamethasone, or oncostatin M, or any combination thereof. 前記1つ以上の凝集オルガノイドが、凝集胃オルガノイドである、請求項6または7に記載の方法。 8. The method of claim 6 or 7 , wherein the one or more aggregated organoids are aggregated gastric organoids. 前記1つ以上の凝集胃オルガノイドが、凝集洞胃オルガノイドである、請求項10に記載の方法。 11. The method of claim 10 , wherein the one or more aggregated gastric organoids are aggregated sinus gastric organoids. 前記1つ以上の腸内胚葉凝集体を培養して前記1つ以上の凝集洞胃オルガノイドを形成することが、前記1つ以上の腸内胚葉凝集体をEGF、レチノイン酸、もしくは1つ以上のBMPシグナル伝達経路阻害剤、またはそれらの任意の組み合わせと接触させることを含む、請求項11に記載の方法。 Culturing said one or more intestinal endoderm aggregates to form said one or more aggregated sinus gastric organoids comprises treating said one or more intestinal endoderm aggregates with EGF, retinoic acid, or one or more 12. The method of claim 11 , comprising contacting with a BMP signaling pathway inhibitor, or any combination thereof. 前記腸内胚葉単層が、後腸内胚葉単層であり、前記腸スフェロイドが、後腸スフェロイドである、請求項1~のいずれか一項に記載の方法。 6. The method of any one of claims 1-5 , wherein the gut endoderm monolayer is a hindgut endoderm monolayer and the gut spheroids are hindgut spheroids. 前記胚体内胚葉を前記後腸内胚葉単層および前記後腸スフェロイドに分化させることが、前記胚体内胚葉を1つ以上のFGFシグナル伝達経路活性化因子、もしくは1つ以上のWntシグナル伝達経路活性化因子、または両方と接触させることを含む、請求項13に記載の方法。 Differentiating said definitive endoderm into said hindgut endoderm monolayer and said hindgut spheroids is characterized by: 14. The method of claim 13 , comprising contacting with a pharmacolytic factor, or both. 前記1つ以上の凝集オルガノイドが、凝集腸オルガノイドである、請求項13または14に記載の方法。 15. The method of claim 13 or 14 , wherein the one or more aggregated organoids are aggregated intestinal organoids. 前記1つ以上の腸内胚葉凝集体を培養して前記1つ以上の凝集腸オルガノイドを形成することが、前記1つ以上の腸内胚葉凝集体をEGF、1つ以上のWntシグナル伝達経路活性化因子、もしくは1つ以上のBMPシグナル伝達経路阻害剤、またはそれらの任意の組み合わせと接触させることを含む、請求項15に記載の方法。 Culturing said one or more gut endoderm aggregates to form said one or more aggregated intestinal organoids comprises culturing said one or more gut endoderm aggregates with EGF, one or more Wnt signaling pathway activity 16. The method of claim 15 , comprising contacting with a inhibitor, or one or more BMP signaling pathway inhibitors, or any combination thereof. 前記1つ以上の凝集オルガノイドが、凝集結腸オルガノイドである、請求項13または14に記載の方法。 15. The method of claim 13 or 14 , wherein the one or more aggregated organoids are aggregated colon organoids. 前記1つ以上の腸内胚葉凝集体を培養して前記1つ以上の凝集結腸オルガノイドを形成することが、前記1つ以上の腸内胚葉凝集体をEGF、1つ以上のWntシグナル伝達経路活性化因子、もしくは1つ以上のBMPシグナル伝達経路活性化因子、またはそれらの任意の組み合わせと接触させることを含む、請求項17に記載の方法。 Culturing said one or more intestinal endoderm aggregates to form said one or more aggregated colon organoids comprises treating said one or more intestinal endoderm aggregates with EGF, one or more Wnt signaling pathway activity 18. The method of claim 17 , comprising contacting with a activator, or one or more BMP signaling pathway activators, or any combination thereof. 前記1つ以上の腸内胚葉凝集体が、少なくとも100、200、300、400、500、600、700、800、900、1000、2000、3000、4000、5000、6000、7000、8000、9000、もしくは10000個の腸内胚葉凝集体を、前記1つ以上の腸内胚葉凝集体の各々が、
前記1つ以上の腸内胚葉凝集体の平均直径から±10%、±9%、±8%、±7%、±6%、±5%、±4%、±3%、±2%、もしくは±1%以内の直径、あるいは
前記1つ以上の腸内胚葉凝集体の平均体積から±10%、±9%、±8%、±7%、±6%、±5%、±4%、±3%、±2%、もしくは±1%以内の体積あるいは、
両方を含む
求項1~18のいずれか一項に記載の方法。
said one or more gut endoderm aggregates is at least 100 , 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000; 9000 or 10000 gut endoderm aggregates , each of said one or more gut endoderm aggregates comprising :
±10%, ±9%, ±8%, ±7%, ±6%, ±5%, ±4%, ±3%, ±2% from the average diameter of said one or more gut endoderm aggregates, or within ±1% of the diameter , or
±10%, ±9%, ±8%, ±7%, ±6%, ±5%, ±4%, ±3%, ±2% from the mean volume of said one or more gut endoderm aggregates, or volume within ±1%, or
including both
A method according to any one of claims 1-18 .
請求項1~19のいずれか一項によって産生される1つ以上の凝集オルガノイド。 One or more aggregated organoids produced by any one of claims 1-19 . 少なくとも1000、2000、3000、4000、5000、6000、7000、8000、9000、もしくは10000個の腸内胚葉凝集体を含む、複数の腸内胚葉凝集体であって、前記複数の腸内胚葉凝集体の各々が、
前記複数の腸内胚葉凝集体の平均直径から±10%、±9%、±8%、±7%、±6%、±5%、±4%、±3%、±2%、もしくは±1%以内の直径、あるいは
前記複数の腸内胚葉凝集体の平均体積から±10%、±9%、±8%、±7%、±6%、±5%、±4%、±3%、±2%、もしくは±1%以内の体積、あるいは
両方を含む、複数の腸内胚葉凝集体。
a plurality of gut endoderm aggregates comprising at least 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, or 10000 gut endoderm aggregates, said plurality of gut endoderm aggregates each of the
±10%, ±9%, ±8%, ±7%, ±6%, ±5%, ±4%, ±3%, ±2%, or ± from the mean diameter of said plurality of gut endoderm aggregates diameter within 1%, or ±10%, ±9%, ±8%, ±7%, ±6%, ±5%, ±4%, ±3 from the mean volume of said plurality of gut endoderm aggregates A plurality of intestinal endoderm aggregates comprising %, volume within ±2%, or ±1%, or both.
前記複数の腸内胚葉凝集体が、同じ対象に由来する、請求項21に記載の複数の腸内胚葉凝集体。 22. The plurality of gut endoderm aggregates of claim 21 , wherein said plurality of gut endoderm aggregates are derived from the same subject. 複数のマイクロウェルおよび請求項21または22に記載の複数の腸内胚葉凝集体を含む形成プレートであって、前記複数のマイクロウェルの各々が、前記複数の腸内胚葉凝集体のうちの単一腸内胚葉凝集体を含む、形成プレート。 23. A forming plate comprising a plurality of microwells and a plurality of gut endoderm aggregates according to claim 21 or 22 , wherein each of said plurality of microwells comprises a single of said plurality of gut endoderm aggregates. A forming plate containing intestinal endoderm aggregates. 前記複数の腸内胚葉凝集体が、請求項1~19のいずれか一項に記載の方法に従って産生される、請求項21に記載の複数の腸内胚葉凝集体または請求項23に記載の形成プレート。 The plurality of gut endoderm aggregates of claim 21 or the formation of claim 23 , wherein said plurality of gut endoderm aggregates are produced according to the method of any one of claims 1-19 . plate.
JP2022507745A 2019-08-13 2020-08-11 Improved methods for making organoid compositions Pending JP2022544175A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962885903P 2019-08-13 2019-08-13
US62/885,903 2019-08-13
PCT/US2020/045809 WO2021030373A1 (en) 2019-08-13 2020-08-11 Improved methods for making organoid compositions

Publications (2)

Publication Number Publication Date
JP2022544175A JP2022544175A (en) 2022-10-17
JPWO2021030373A5 true JPWO2021030373A5 (en) 2023-08-18

Family

ID=74571192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022507745A Pending JP2022544175A (en) 2019-08-13 2020-08-11 Improved methods for making organoid compositions

Country Status (8)

Country Link
US (1) US20220275345A1 (en)
EP (1) EP4013853A4 (en)
JP (1) JP2022544175A (en)
CN (1) CN114502721A (en)
AU (1) AU2020329194A1 (en)
CA (1) CA3149805A1 (en)
IL (1) IL290544A (en)
WO (1) WO2021030373A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023278676A1 (en) * 2021-07-02 2023-01-05 Children’S Hospital Medical Center Structurally complete organoids
CN114317415B (en) * 2022-03-07 2022-06-03 天九再生医学(天津)科技有限公司 Method for directional differentiation of human pluripotent stem cells into multiple lineage large intestine organoids
WO2024025808A1 (en) * 2022-07-29 2024-02-01 Children's Hospital Medical Center Population-scale organoid pools
WO2024063999A1 (en) * 2022-09-22 2024-03-28 Children's Hospital Medical Center Organoid compositions having immune cells
WO2024071212A1 (en) * 2022-09-27 2024-04-04 慶應義塾 Drug for culturing organoid in absence of extracellular matrix

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8895300B2 (en) * 2008-11-04 2014-11-25 Viacyte, Inc. Scalable primate pluripotent stem cell aggregate suspension culture and differentiation thereof
US8859286B2 (en) * 2013-03-14 2014-10-14 Viacyte, Inc. In vitro differentiation of pluripotent stem cells to pancreatic endoderm cells (PEC) and endocrine cells
WO2017048193A1 (en) * 2015-09-15 2017-03-23 Agency For Science, Technology And Research (A*Star) Derivation of liver organoids from human pluripotent stem cells
US10569270B2 (en) * 2016-06-14 2020-02-25 Cellply S.R.L. Screening kit and method
US11898166B2 (en) * 2017-09-20 2024-02-13 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services In vitro generation of thymic organoid from human pluripotent stem cells

Similar Documents

Publication Publication Date Title
Nikolić et al. Human lung development: recent progress and new challenges
Bartfeld et al. Stem cell-derived organoids and their application for medical research and patient treatment
Kolanowski et al. Making human cardiomyocytes up to date: Derivation, maturation state and perspectives
Clevers Modeling development and disease with organoids
JP6738808B2 (en) Use of Jagged 1/Frizzled 4 as a cell surface marker to isolate human ventricular progenitor cells
JP7097814B2 (en) Genetic markers for engraftment of human ventricular progenitor cells
JP7225096B2 (en) Method for isolating human ventricular progenitor cells
JP7315923B2 (en) Organ organoid and method for producing the same
JP2005516616A5 (en)
JP2017524377A (en) Single cell-derived organoid
Shankaran et al. Advances in development and application of human organoids
Dimicco et al. Structure of pericellular matrix around agarose-embedded chondrocytes
WO2007064090A1 (en) Multipotent adult stem cells having an ability of oct4 expression derived from umbilical cord blood and method for preparing the same
CA2796888A1 (en) Physiological methods for isolation of high purity cell populations
JP5602364B2 (en) Activator of stem cells and / or progenitor cells
Liu et al. Microenvironmental reprogramming of human dermal papilla cells for hair follicle tissue engineering
JPWO2021030373A5 (en)
Zhao et al. Application of stem cells in engineered vascular graft and vascularized organs
Oshima et al. Regeneration of complex oral organs using 3D cell organization technology
Mai et al. Application of hiPSCs in tooth regeneration via cellular modulation
JP2021528102A (en) Proliferation and differentiation of neural progenitor cells
Varma et al. Current strategies and opportunities to manufacture cells for modeling human lungs
JP7479466B2 (en) Method for isolating vascular endothelial cells, medium for maintaining vascular endothelial cell characteristics, and culture method including the medium
JP6721868B2 (en) Method for producing spheroid and medium used in the method
KR102258053B1 (en) Methods for separating of pure vascular endothelial cells