JPWO2021014994A1 - Bone regenerating agent and how to use it - Google Patents

Bone regenerating agent and how to use it Download PDF

Info

Publication number
JPWO2021014994A1
JPWO2021014994A1 JP2020545758A JP2020545758A JPWO2021014994A1 JP WO2021014994 A1 JPWO2021014994 A1 JP WO2021014994A1 JP 2020545758 A JP2020545758 A JP 2020545758A JP 2020545758 A JP2020545758 A JP 2020545758A JP WO2021014994 A1 JPWO2021014994 A1 JP WO2021014994A1
Authority
JP
Japan
Prior art keywords
bone
regenerating agent
zinc
bone regenerating
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020545758A
Other languages
Japanese (ja)
Other versions
JP6814328B1 (en
Inventor
圭美 中田
圭美 中田
悦郎 宇田川
悦郎 宇田川
山本 修
修 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Mineral Co Ltd
Original Assignee
JFE Mineral Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Mineral Co Ltd filed Critical JFE Mineral Co Ltd
Priority claimed from PCT/JP2020/026963 external-priority patent/WO2021014994A1/en
Application granted granted Critical
Publication of JP6814328B1 publication Critical patent/JP6814328B1/en
Publication of JPWO2021014994A1 publication Critical patent/JPWO2021014994A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/025Other specific inorganic materials not covered by A61L27/04 - A61L27/12
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/30Zinc; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0024Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/047Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/446Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with other specific inorganic fillers other than those covered by A61L27/443 or A61L27/46
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/102Metals or metal compounds, e.g. salts such as bicarbonates, carbonates, oxides, zeolites, silicates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Dermatology (AREA)
  • Inorganic Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rheumatology (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Materials For Medical Uses (AREA)

Abstract

残存を抑制しつつ骨欠損部を修復できる骨再生剤を提供する。上記骨再生剤は、ハイドロジンカイトを含む炭酸水酸化亜鉛を含有する。上記炭酸水酸化亜鉛は、溶出試験後のZn2+イオン溶出量が0.1質量ppm以上であり、溶出試験後のpHが7.2以上8.3未満であることが好ましい。上記ハイドロジンカイトの一部の炭酸イオンが硫酸イオンまたは塩化物イオンに置換されていることが好ましい。上記骨再生剤は、骨欠損部に適用されることが好ましい。Provided is a bone regenerating agent capable of repairing a bone defect while suppressing residual bone. The bone regenerating agent contains zinc carbonate hydroxide containing hydrogen kite. The zinc hydroxide hydroxide preferably has a Zn2 + ion elution amount of 0.1 mass ppm or more after the elution test and a pH of 7.2 or more and less than 8.3 after the elution test. It is preferable that some carbonate ions of the hydrozincite are replaced with sulfate ions or chloride ions. The bone regenerating agent is preferably applied to the bone defect portion.

Description

本発明は、骨再生剤およびその使用方法に関する。 The present invention relates to a bone regenerating agent and a method of using the same.

従来、β−リン酸三カルシウム(TCP)を含有する骨再生剤が知られている(特許文献1を参照)。 Conventionally, a bone regenerating agent containing β-tricalcium phosphate (TCP) is known (see Patent Document 1).

特開2017−61419号公報JP-A-2017-61419

従来の骨再生剤(β−TCP)は、骨欠損部に残存する場合がある。残存した骨再生剤は、生体にとって異物である。骨リモデリングの際に、残存した骨再生剤の周囲で、破骨細胞による骨吸収(吸収孔の形成)が活発となり得る。このため、骨再生剤は、骨欠損部に残存しないことが求められる。
そこで、本発明は、残存を抑制しつつ骨欠損部を修復できる骨再生剤を提供することを目的とする。
The conventional bone regenerating agent (β-TCP) may remain in the bone defect. The remaining bone regenerating agent is a foreign substance to the living body. During bone remodeling, bone resorption (formation of resorption pores) by osteoclasts can become active around the remaining bone remodeling agent. Therefore, the bone regenerating agent is required not to remain in the bone defect portion.
Therefore, an object of the present invention is to provide a bone regenerating agent capable of repairing a bone defect while suppressing residual bone.

本発明者らは、鋭意検討した結果、下記構成を採用することにより、上記目的が達成されることを見出し、本発明を完成させた。
すなわち、本発明は、以下の[1]〜[8]を提供する。
[1]ハイドロジンカイトを含む炭酸水酸化亜鉛を含有する、骨再生剤。
[2]上記炭酸水酸化亜鉛は、溶出試験後のZn2+イオン溶出量が0.1質量ppm以上であり、溶出試験後のpHが7.2以上8.3未満である、上記[1]に記載の骨再生剤。
[3]上記ハイドロジンカイトの一部の炭酸イオンが硫酸イオンに置換されている、上記[1]または[2]に記載の骨再生剤。
[4]上記ハイドロジンカイトの一部の炭酸イオンが塩化物イオンに置換されている、上記[1]または[2]に記載の骨再生剤。
[5]骨欠損部に適用される、上記[1]〜[4]のいずれかに記載の骨再生剤。
[6]更に、生体適合性ポリマーを含有し、ペースト状である、上記[1]〜[5]のいずれかに記載の骨再生剤。
[7]上記生体適合性ポリマーが、ポリメチルメタクリレートである、上記[6]に記載の骨再生剤。
[8]上記[1]〜[7]のいずれかに記載の骨再生剤を、骨欠損部に埋植し、残存骨膜により被覆する、骨再生剤の使用方法。
As a result of diligent studies, the present inventors have found that the above object can be achieved by adopting the following configuration, and have completed the present invention.
That is, the present invention provides the following [1] to [8].
[1] A bone regenerating agent containing zinc carbonate containing hydrogen kite.
[2] The zinc carbonate hydroxide has a Zn 2+ ion elution amount of 0.1 mass ppm or more after the elution test and a pH of 7.2 or more and less than 8.3 after the elution test [1]. The bone regenerating agent described in.
[3] The bone regenerating agent according to the above [1] or [2], wherein a part of the carbonate ion of the hydrozincite is replaced with a sulfate ion.
[4] The bone regenerating agent according to the above [1] or [2], wherein a part of the carbonate ions of the hydrodin kite is replaced with chloride ions.
[5] The bone regenerating agent according to any one of the above [1] to [4], which is applied to a bone defect portion.
[6] The bone regenerating agent according to any one of the above [1] to [5], which further contains a biocompatible polymer and is in the form of a paste.
[7] The bone regenerating agent according to the above [6], wherein the biocompatible polymer is polymethylmethacrylate.
[8] A method for using a bone regenerating agent, wherein the bone regenerating agent according to any one of [1] to [7] above is implanted in a bone defect and covered with a residual periosteum.

本発明によれば、残存を抑制しつつ骨欠損部を修復できる。 According to the present invention, the bone defect can be repaired while suppressing the residual.

実施例1〜実施例3のハイドロジンカイトを含む炭酸水酸化亜鉛のXRDパターンを示すグラフである。It is a graph which shows the XRD pattern of zinc hydroxide containing the hydrogen kite of Examples 1 to 3. FIG.

[骨再生剤]
本発明の骨再生剤は、ハイドロジンカイトを含む炭酸水酸化亜鉛(以下、単に「炭酸水酸化亜鉛」ともいう)を含有する、骨再生剤である。
本発明の骨再生剤においては、炭酸水酸化亜鉛の溶解に伴って発生する亜鉛イオン(Zn2+イオン)が、骨髄中の肝細胞を骨芽細胞に分化することを促進し、骨芽細胞が石灰化を誘導すると考えられる。
[Bone regeneration agent]
The bone regenerating agent of the present invention is a bone regenerating agent containing zinc hydroxide (hereinafter, also simply referred to as “zinc hydroxide”) containing hydrogen kite.
In the bone regenerating agent of the present invention, zinc ions (Zn 2+ ions) generated by the dissolution of zinc hydroxide hydroxide promote the differentiation of hepatocytes in bone marrow into osteoblasts, and the osteoblasts are produced. It is thought to induce calcification.

<ハイドロジンカイトを含む炭酸水酸化亜鉛>
ハイドロジンカイトは、例えば、Zn(CO(OH)、または、Zn(CO(OH)・nHO(nは、0〜6であり、2が好ましい)で表される。
<Zinc hydroxide containing hydrozinc kite>
Hydrozinc kites are, for example, Zn 5 (CO 3 ) 2 (OH) 6 or Zn 5 (CO 3 ) 2 (OH) 6 · nH 2 O (n is 0 to 6, preferably 2). expressed.

《第1態様》
このようなハイドロジンカイトを含む炭酸水酸化亜鉛(第1態様)は、例えば、下記式(1)で表される炭酸水酸化亜鉛であることが好ましい。このとき、ZnとCOとのモル比(Zn/CO)は、2.5〜3.3が好ましい。
Zn4〜6(CO1〜3(OH)5〜6・nHO (1)
ただし、式(1)中、nは、0〜6である。
<< First aspect >>
The zinc hydroxide hydroxide (first aspect) containing such a hydrogen kite is preferably zinc carbonate hydroxide represented by the following formula (1), for example. At this time, the molar ratio of Zn to CO 3 (Zn / CO 3 ) is preferably 2.5 to 3.3.
Zn 4 to 6 (CO 3 ) 1 to 3 (OH) 5 to 6・ nH 2 O (1)
However, in the formula (1), n is 0 to 6.

炭酸水酸化亜鉛に含まれるハイドロジンカイトの量は、60質量%以上が好ましく、80質量%以上がより好ましく、95質量%以上が更に好ましい。 The amount of hydrogen kite contained in zinc carbonate hydroxide is preferably 60% by mass or more, more preferably 80% by mass or more, and further preferably 95% by mass or more.

《第2態様》
ハイドロジンカイトを含む炭酸水酸化亜鉛(第2態様)は、例えば、ハイドロジンカイトの一部の炭酸イオン(CO 2−)が硫酸イオン(SO 2−)に置換されていてもよい。硫黄(S)含有量が所定値以下であれば、鉱物相としてはハイドロジンカイトに帰属される。
第2態様の炭酸水酸化亜鉛は、0.1質量%以上1.5質量%未満の硫黄(S)を含有する炭酸水酸化亜鉛であることが好ましく、下記式(2)で表される炭酸水酸化亜鉛であることがより好ましい。このとき、Znと((1−x)CO+x(SO))とのモル比(Zn/((1−x)CO+x(SO)))は、2.5〜3.3が好ましい。
Zn4〜6((1−x)CO+x(SO))1〜3(OH)5〜6・nHO (2)
ただし、式(2)中、nは0〜6であり、xは0.005〜0.1である。
<< Second aspect >>
Hydro Jin zinc carbonate hydroxide containing kite (second embodiment), for example, hydro-Jin kite part of carbonate ions (CO 3 2-) may be replaced by sulfate ions (SO 4 2-). If the sulfur (S) content is not more than a predetermined value, the mineral phase is attributed to hydrozincite.
The zinc hydroxide hydroxide of the second aspect is preferably zinc carbonate hydroxide containing 0.1% by mass or more and less than 1.5% by mass of sulfur (S), and is represented by the following formula (2). More preferably, it is zinc hydroxide. At this time, the molar ratio of Zn to ((1-x) CO 3 + x (SO 4 )) (Zn / ((1-x) CO 3 + x (SO 4 ))) is 2.5 to 3.3. Is preferable.
Zn 4 to 6 ((1-x) CO 3 + x (SO 4 )) 1-3 (OH) 5 to 6 · nH 2 O (2)
However, in the formula (2), n is 0 to 6, and x is 0.005 to 0.1.

《第3態様》
ハイドロジンカイトを含む炭酸水酸化亜鉛(第3態様)は、例えば、ハイドロジンカイトの一部の炭酸イオン(CO 2−)が塩化物イオン(Cl)に置換されていてもよい。塩素(Cl)含有量が所定値以下であれば、鉱物相としてはハイドロジンカイトに帰属される。
第3態様の炭酸水酸化亜鉛は、0.05質量%以上1質量%未満の塩素(Cl)を含有する炭酸水酸化亜鉛であることが好ましく、下記式(3)で表される炭酸水酸化亜鉛であることがより好ましい。このとき、Znと((1−x)CO+xCl)とのモル比(Zn/((1−x)CO+xCl))は、2.5〜3.3が好ましい。
Zn4〜6((1−x)CO+xCl)1〜3(OH)5〜6・nHO (3)
ただし、式(3)中、nは0〜6であり、xは0.005〜0.1である。
<< Third aspect >>
Hydro Jin zinc carbonate hydroxide containing Kite (third embodiment), for example, hydro-Jin kite part of carbonate ions (CO 3 2-) is chloride ion - may be substituted with (Cl). If the chlorine (Cl) content is not more than a predetermined value, the mineral phase is attributed to hydrozincite.
The zinc hydroxide hydroxide of the third aspect is preferably zinc carbonate hydroxide containing 0.05% by mass or more and less than 1% by mass of chlorine (Cl), and is represented by the following formula (3). Zinc is more preferred. At this time, Zn and ((1-x) CO 3 + xCl) the molar ratio of (Zn / ((1-x ) CO 3 + xCl)) is preferably 2.5 to 3.3.
Zn 4 to 6 ((1-x) CO 3 + xCl) 1 to 3 (OH) 5 to 6・ nH 2 O (3)
However, in the formula (3), n is 0 to 6, and x is 0.005 to 0.1.

すなわち、本発明における「ハイドロジンカイトを含む炭酸水酸化亜鉛」(第1態様、第2態様および第3態様)は、「ハイドロジンカイト様化合物を含む炭酸水酸化亜鉛」とも言えるが、区別せずに、「ハイドロジンカイトを含む炭酸水酸化亜鉛」(または、単に「炭酸水酸化亜鉛」)と呼ぶ。
残存をより抑制できるという理由からは、第1態様または第2態様が好ましい。
後述する溶出試験後のZn2+イオン溶出量が多くなるという理由からは、第2態様または第3態様が好ましく、第2態様がより好ましい。
That is, the "zinc hydroxide containing hydrozincite" (first, second and third aspects) in the present invention can be said to be "zinc hydroxide containing a hydrozincite-like compound", but without distinction. , "Zinc hydroxide containing hydrogen kite" (or simply "zinc hydroxide").
The first aspect or the second aspect is preferable because the residual can be further suppressed.
The second or third aspect is preferable, and the second aspect is more preferable, because the amount of Zn 2+ ions eluted after the dissolution test described later is large.

《溶出試験後の特性》
ハイドロジンカイトを含む炭酸水酸化亜鉛は、溶出試験後のZn2+イオン溶出量が0.1質量ppm以上であることが好ましく、溶出試験後のpHが7.2以上8.3未満であることが好ましい。
溶出試験後のZn2+イオン溶出量は、0.5質量ppm以上がより好ましく、1.0質量ppm以上が更に好ましい。骨再生面積が大きくなるという理由からは、溶出試験後のZn2+イオン溶出量は、5.0質量ppm以上がより好ましく、10.0質量ppm以上が更に好ましく、15.0質量ppm以上が特に好ましく、20.0質量ppm以上が最も好ましい。
一方、細胞毒性を抑制する観点からは、溶出試験後のZn2+イオン溶出量は、80質量ppm以下が好ましく、50質量ppm以下がより好ましく、30質量ppm以下が更に好ましい。
溶出試験後のpHは、8.2以下がより好ましく、8.0以下が更に好ましく、7.8以下が特に好ましい。
<< Characteristics after dissolution test >>
The amount of Zn 2+ ion eluted after the elution test of zinc carbonate containing hydrogen kite is preferably 0.1 mass ppm or more, and the pH after the elution test is 7.2 or more and less than 8.3. preferable.
The amount of Zn 2+ ions eluted after the dissolution test is more preferably 0.5 mass ppm or more, further preferably 1.0 mass ppm or more. The amount of Zn 2+ ions eluted after the dissolution test is more preferably 5.0 mass ppm or more, further preferably 10.0 mass ppm or more, and particularly preferably 15.0 mass ppm or more, for the reason that the bone regeneration area becomes large. It is preferable, and 20.0 mass ppm or more is most preferable.
On the other hand, from the viewpoint of suppressing cytotoxicity, the amount of Zn 2+ ions eluted after the elution test is preferably 80 mass ppm or less, more preferably 50 mass ppm or less, and even more preferably 30 mass ppm or less.
The pH after the dissolution test is more preferably 8.2 or less, further preferably 8.0 or less, and particularly preferably 7.8 or less.

溶出試験後の特性は、次のように求める。
まず、ハイドロジンカイトを含む炭酸水酸化亜鉛を、37℃の生理食塩水中で、回転子を用いて500rpmで3時間攪拌する。生理食塩水中におけるハイドロジンカイトを含む炭酸水酸化亜鉛の濃度は20g/Lとする。これが溶出試験である。
溶出試験後(つまり、3時間の攪拌後)、生理食塩水中に溶出したZn2+イオン量(単位:質量ppm)を、ICP発光分析装置(島津製作所社製、ICPE−9000)を用いて測定する。測定して得られる値が、ハイドロジンカイトを含む炭酸水酸化亜鉛の溶出試験後のZn2+イオン溶出量である。
溶出試験後の生理食塩水のpHを測定し、得られる値を、ハイドロジンカイトを含む炭酸水酸化亜鉛の溶出試験後のpHとする。
The characteristics after the dissolution test are determined as follows.
First, zinc hydroxide containing hydrogen kite is stirred in physiological saline at 37 ° C. using a rotor at 500 rpm for 3 hours. The concentration of zinc hydroxide containing hydrozinc hydroxide in physiological saline is 20 g / L. This is the dissolution test.
After the dissolution test (that is, after stirring for 3 hours), the amount of Zn 2+ ions eluted in physiological saline (unit: mass ppm) is measured using an ICP emission spectrometer (ICPE-9000, manufactured by Shimadzu Corporation). .. The value obtained by measurement is the amount of Zn 2+ ions eluted after the elution test of zinc hydroxide containing hydrogen kite.
The pH of the physiological saline solution after the dissolution test is measured, and the obtained value is taken as the pH after the dissolution test of zinc hydroxide containing hydrogen hydroxide.

《平均粒子径》
本発明の骨再生剤に含有される炭酸水酸化亜鉛の二次粒子の平均粒子径は、5〜30μmが好ましく、10〜20μmがより好ましい。
二次粒子の平均粒子径は、レーザー回折・散乱式粒度分布計(シーラス社製、CILAS1064L)を用いて求められる、粒度分布の累積度数が体積百分率で50%となる粒子径(D50)である。
《Average particle size》
The average particle size of the secondary particles of zinc hydroxide contained in the bone regenerating agent of the present invention is preferably 5 to 30 μm, more preferably 10 to 20 μm.
The average particle size of the secondary particles is the particle size (D50) at which the cumulative frequency of the particle size distribution is 50% by volume, which is determined by using a laser diffraction / scattering type particle size distribution meter (CILAS 1064L, manufactured by Cirrus). ..

<その他の成分>
本発明の骨再生剤は、必要な場合は、製薬学上許容される担体(以下、単に「担体」という)を更に含有してもよい。
担体としては、例えば、有機溶媒、無機溶媒などの溶媒が挙げられ、その具体例としては、水、生理食塩水、アルコール、多価アルコール、これらの混合物などが挙げられる。
<Other ingredients>
If necessary, the bone regenerating agent of the present invention may further contain a pharmaceutically acceptable carrier (hereinafter, simply referred to as “carrier”).
Examples of the carrier include solvents such as organic solvents and inorganic solvents, and specific examples thereof include water, physiological saline, alcohols, polyhydric alcohols, and mixtures thereof.

例えば本発明の骨再生剤が担体として溶媒を含有する場合などにおいて、更に、本発明の骨再生剤に増粘剤等を加え、本発明の骨再生剤をゲル状またはペースト状に加工して取り扱い性を向上させてもよい。
増粘剤としては、例えば、生体適合性ポリマーが挙げられ、その具体例としては、ポリメチルメタクリレート(PMMA)等が好適に挙げられる。
そのほかに、担体としては、例えば、国際公開第2016/199907号の段落[0027]〜[0030]に記載された担体を使用できる。
For example, when the bone regenerating agent of the present invention contains a solvent as a carrier, a thickener or the like is further added to the bone regenerating agent of the present invention to process the bone regenerating agent of the present invention into a gel or paste. The handleability may be improved.
Examples of the thickener include biocompatible polymers, and specific examples thereof preferably include polymethylmethacrylate (PMMA) and the like.
In addition, as the carrier, for example, the carriers described in paragraphs [0027] to [0030] of International Publication No. 2016/199907 can be used.

本発明の骨再生剤には、実際の用途に応じて、その他の添加剤を含有させてもよい。
その他の添加剤としては、特に限定されないが、例えば、保湿剤、酸化防止剤、防腐剤、消炎剤、美白剤、血行促進剤、抗脂漏剤、増粘剤、pH調整剤などが挙げられ、その具体例としては、国際公開第2016/199907号の段落[0031]〜[0034]に記載された成分が挙げられる。
The bone regenerating agent of the present invention may contain other additives depending on the actual use.
Examples of other additives include, but are not limited to, moisturizers, antioxidants, preservatives, anti-inflammatory agents, whitening agents, blood circulation promoters, anti-fat leak agents, thickeners, pH adjusters and the like. Specific examples thereof include the components described in paragraphs [0031] to [0034] of International Publication No. 2016/199907.

本発明の骨再生剤の形態は、生理食塩水などの担体を溶媒として含む液剤の形態であってもよいし、溶媒(担体)を含まない粉体の形態であってもよい。更に、両者の中間である増粘した形態(例えばペースト状)またはゲル化した形態であってもよい。 The form of the bone regenerating agent of the present invention may be a liquid preparation containing a carrier such as physiological saline as a solvent, or a powder form containing no solvent (carrier). Further, it may be in a thickened form (for example, a paste form) or a gelled form, which is intermediate between the two.

[骨再生剤の使用方法]
本発明の骨再生剤を使用する方法としては、例えば、本発明の骨再生剤を、骨欠損部に埋植(充填)する方法が挙げられる。このとき、本発明の骨再生剤を埋植した部位(埋植部位)を、残存骨膜などを用いて被覆してもよい。
本発明の骨再生剤を骨欠損部に埋植した後、所定期間を経過させる。
これにより、骨欠損部において組織が再生し、新生骨部となる。すなわち、骨欠損部が修復される。このとき、本発明の骨再生剤は、骨欠損部に残存しにくい。
[How to use bone regenerating agent]
Examples of the method of using the bone regenerating agent of the present invention include a method of implanting (filling) the bone regenerating agent of the present invention in a bone defect portion. At this time, the site (implanted site) in which the bone regenerating agent of the present invention is implanted may be covered with residual periosteum or the like.
After implanting the bone regenerating agent of the present invention in the bone defect portion, a predetermined period of time elapses.
As a result, the tissue regenerates in the bone defect part and becomes a new bone part. That is, the bone defect is repaired. At this time, the bone regenerating agent of the present invention is unlikely to remain in the bone defect portion.

[骨再生剤の製造方法]
本発明の骨再生剤を製造する方法としては、例えば、ハイドロジンカイトを含む炭酸水酸化亜鉛を得て、これに、必要に応じて、担体などを組み合わせる方法が挙げられる。
ハイドロジンカイトを含む炭酸水酸化亜鉛は、以下に説明するように、沈殿物生成反応により得ることが好ましい。
[Manufacturing method of bone regenerating agent]
Examples of the method for producing the bone regenerating agent of the present invention include a method of obtaining zinc hydroxide containing a hydrozincite and combining it with a carrier or the like, if necessary.
Zinc hydroxide containing hydrogen kite is preferably obtained by a precipitate formation reaction as described below.

<沈殿物生成反応>
ハイドロジンカイトを含む炭酸水酸化亜鉛は、亜鉛源、炭酸源およびアルカリを用いた沈殿物生成反応(アルカリ沈殿法)により得ることが好ましい。
<Precipitate formation reaction>
Zinc hydroxide hydroxide containing hydrogen kite is preferably obtained by a precipitate formation reaction (alkali precipitation method) using a zinc source, a carbonic acid source and an alkali.

亜鉛源としては、例えば、硫酸亜鉛(ZnSO)、塩化亜鉛(ZnCl)、酢酸亜鉛(Zn(CHCOO))、硝酸亜鉛(Zn(NO)などが挙げられる。
第1態様の炭酸水酸化亜鉛を得る場合は、硝酸亜鉛を用いることが好ましい。
第2態様の炭酸水酸化亜鉛を得る場合は、硫酸亜鉛を用いることが好ましい。
第3態様の炭酸水酸化亜鉛を得る場合は、塩化亜鉛を用いることが好ましい。
Examples of the zinc source include zinc sulfate (ZnSO 4 ), zinc chloride (ZnCl 2 ), zinc acetate (Zn (CH 3 COO) 2 ), zinc nitrate (Zn (NO 3 ) 2 ) and the like.
When the zinc hydroxide hydroxide of the first aspect is obtained, it is preferable to use zinc nitrate.
When the zinc hydroxide hydroxide of the second aspect is obtained, it is preferable to use zinc sulfate.
When the zinc hydroxide hydroxide of the third aspect is obtained, it is preferable to use zinc chloride.

炭酸源としては、例えば、炭酸アンモニウム((NHCO)、炭酸ナトリウム(NaCO)、炭酸水素ナトリウム(NaH(CO))などが挙げられ、炭酸水素ナトリウムが好ましい。
第2態様の炭酸水酸化亜鉛を得る場合は、硫酸アンモニウムを炭酸源と併用できる。
第3態様の炭酸水酸化亜鉛を得る場合は、塩化アンモニウムを炭酸源と併用できる。
Examples of the carbonic acid source include ammonium carbonate ((NH 4 ) 2 CO 3 ), sodium carbonate (Na 2 CO 3 ), sodium hydrogen carbonate (NaH (CO 3 )), and the like, and sodium hydrogen carbonate is preferable.
When obtaining the zinc hydroxide of the second aspect, ammonium sulfate can be used in combination with a carbonate source.
When obtaining zinc hydroxide of the third aspect, ammonium chloride can be used in combination with a carbonate source.

アルカリとしては、アンモニア(NH)、水酸化ナトリウム(NaOH)などが挙げられ、水酸化ナトリウムが好ましい。Examples of the alkali include ammonia (NH 3 ), sodium hydroxide (NaOH) and the like, and sodium hydroxide is preferable.

亜鉛源、炭酸源およびアルカリは、水溶液の態様で用いられることが好ましい。 The zinc source, carbonic acid source and alkali are preferably used in the form of an aqueous solution.

沈殿物生成反応においては、具体的には、例えば、亜鉛源の水溶液(酸性の水溶液)を炭酸源の水溶液に滴下し、この滴下中、炭酸源の水溶液にアルカリの水溶液を送液して炭酸源の水溶液のpHを一定の範囲に維持し、亜鉛源の水溶液の滴下が終了した後、10〜30時間の撹拌(撹拌養生)を行ない、沈殿物を含む反応液を得ることが好ましい。
pHは、用いる炭酸源および亜鉛源の種類および濃度などによって変化し得るが、6.5以上9.5未満が好ましく、7.0以上9.5未満がより好ましい。すなわち、Zn2+イオン、CO 2−イオンおよびOHイオン(更に、SO 2−イオン、または、Clイオンなどを含む場合がある)の反応により沈殿物を得るが、pHが上記範囲に制御された反応場で得られた沈殿物を用いることが好ましい。
In the precipitate formation reaction, specifically, for example, an aqueous solution of a zinc source (an acidic aqueous solution) is dropped into an aqueous solution of a carbon dioxide source, and during this dropping, an aqueous solution of an alkali is sent to the aqueous solution of the carbon dioxide source to carry out carbon dioxide. It is preferable to maintain the pH of the aqueous solution of the source in a certain range, and after the dropping of the aqueous solution of the zinc source is completed, stir (stirring and curing) for 10 to 30 hours to obtain a reaction solution containing a precipitate.
The pH can vary depending on the type and concentration of the carbonic acid source and zinc source used, but is preferably 6.5 or more and less than 9.5, and more preferably 7.0 or more and less than 9.5. That, Zn 2+ ion, CO 3 2-ion and OH - ions (and, SO 4 2-ionic or,, Cl - may contain an ion), but obtain a precipitate by reaction, pH is within the above range It is preferable to use the precipitate obtained in a controlled reaction field.

亜鉛源および炭酸源における亜鉛と炭酸とのモル比(亜鉛:炭酸)は、5:2が好ましい。
第2態様および第3態様において、亜鉛と陰イオンとのモル比(亜鉛:陰イオン)は5:2が好ましい。この陰イオンにおけるモル比(すなわち、CO 2−:SO 2−およびCO 2−:Cl)は、得られる炭酸水酸化亜鉛のS含有量およびCl含有量を考慮して、適宜設定される。
亜鉛源の水溶液の濃度は、0.01mol/L以上が好ましく、0.03mol/L以上がより好ましい。一方、3mol/L以下が好ましく、1mol/L以下がより好ましい。
炭酸源の水溶液の濃度は、0.004mol/L以上が好ましく、0.012mol/L以上がより好ましい。一方、1.2mol/L以下が好ましく、0.4mol/L以下がより好ましい。
反応温度は、15℃以上が好ましい。一方、60℃以下が好ましく、40℃以下がより好ましい。
The molar ratio of zinc to carbonic acid (zinc: carbonic acid) in the zinc source and carbonic acid source is preferably 5: 2.
In the second and third aspects, the molar ratio of zinc to anion (zinc: anion) is preferably 5: 2. The molar ratio of this anion (ie, CO 3 2- : SO 4 2- and CO 3 2- : Cl ) is appropriately set in consideration of the S content and Cl content of the obtained zinc hydroxide. Will be done.
The concentration of the zinc source aqueous solution is preferably 0.01 mol / L or more, more preferably 0.03 mol / L or more. On the other hand, 3 mol / L or less is preferable, and 1 mol / L or less is more preferable.
The concentration of the aqueous solution of the carbonic acid source is preferably 0.004 mol / L or more, more preferably 0.012 mol / L or more. On the other hand, 1.2 mol / L or less is preferable, and 0.4 mol / L or less is more preferable.
The reaction temperature is preferably 15 ° C. or higher. On the other hand, 60 ° C. or lower is preferable, and 40 ° C. or lower is more preferable.

沈殿物生成反応後、例えば、沈殿物を含む反応液を吸引濾過または遠心分離することにより固液分離し、得られた沈殿物を純水または蒸留水を用いて洗浄し、次いで真空乾燥する。これにより、炭酸水酸化亜鉛の粉末が得られる。その後、公知の方法により適切な粒子径としてもよい。
得られた炭酸水酸化亜鉛の粉末は、未反応物(原料)、反応副生物、原料から混入する不純物などを含み得る。
After the precipitate formation reaction, for example, the reaction solution containing the precipitate is subjected to solid-liquid separation by suction filtration or centrifugation, and the obtained precipitate is washed with pure water or distilled water, and then vacuum dried. As a result, a zinc carbonate powder is obtained. After that, an appropriate particle size may be used by a known method.
The obtained zinc hydroxide powder may contain unreacted substances (raw materials), reaction by-products, impurities mixed from the raw materials, and the like.

以下、実施例を用いて本発明を具体的に説明する。ただし、本発明は、以下の実施例に限定されない。 Hereinafter, the present invention will be specifically described with reference to Examples. However, the present invention is not limited to the following examples.

<実施例1>
反応容器内に0.08mol/Lの炭酸水素ナトリウム水溶液(500mL)を調製した。これとは別に、0.1mol/Lの硝酸亜鉛水溶液(1000mL)を準備した。更に、pH調整液として、30質量%の水酸化ナトリウム水溶液を準備した。
反応容器内の炭酸水素ナトリウム水溶液に、pHコントローラと繋がったpH電極を装入した。このpHコントローラによってオンオフ制御されるポンプを用いて、硝酸亜鉛水溶液および水酸化ナトリウム水溶液を、炭酸水素ナトリウム水溶液に滴下した。滴下中、炭酸水素ナトリウム水溶液のpHを7.0に維持した。滴下中、炭酸水素ナトリウム水溶液を、回転子によって撹拌した。硝酸亜鉛水溶液を全て滴下した後、更に16時間の攪拌を行ない、養生した。反応温度(滴下、養生の際の環境温度)は25℃とした。こうして、沈殿物を含む反応液を得た。
得られた反応液を、遠心分離によって固液分離した。得られた固体(沈殿物)に対して、水洗および遠心分離を3回繰り返すことにより、洗浄を施した。洗浄した沈殿物を、真空乾燥することにより、上述した第1態様の炭酸水酸化亜鉛の粉末を得た。得られた粉末を、実施例1の骨再生剤とした。
<Example 1>
A 0.08 mol / L sodium hydrogen carbonate aqueous solution (500 mL) was prepared in the reaction vessel. Separately, a 0.1 mol / L zinc nitrate aqueous solution (1000 mL) was prepared. Further, a 30% by mass sodium hydroxide aqueous solution was prepared as a pH adjusting liquid.
The pH electrode connected to the pH controller was charged into the aqueous sodium hydrogen carbonate solution in the reaction vessel. A zinc nitrate aqueous solution and a sodium hydroxide aqueous solution were added dropwise to the sodium hydrogen carbonate aqueous solution using a pump controlled on and off by this pH controller. During the dropping, the pH of the aqueous sodium hydrogen carbonate solution was maintained at 7.0. During the dropping, the aqueous sodium hydrogen carbonate solution was stirred with a rotor. After all the zinc nitrate aqueous solution was added dropwise, the mixture was further stirred for 16 hours and cured. The reaction temperature (environmental temperature at the time of dropping and curing) was 25 ° C. In this way, a reaction solution containing a precipitate was obtained.
The obtained reaction solution was separated into solid and liquid by centrifugation. The obtained solid (precipitate) was washed by repeating washing with water and centrifugation three times. The washed precipitate was vacuum dried to obtain the zinc hydroxide powder of the first aspect described above. The obtained powder was used as the bone regenerating agent of Example 1.

実施例1で得られた炭酸水酸化亜鉛の粉末について、XRD装置(Bruker社製、D8ADVANCE)を用いて、XRD測定した(後述する実施例2および実施例3も同様)。このXRD測定の結果を、図1に示す。図1のXRDパターンを見ると、ハイドロジンカイトを現すピークが認められる。 The zinc carbonate powder obtained in Example 1 was XRD-measured using an XRD device (D8ADVANCE manufactured by Bruker) (the same applies to Examples 2 and 3 described later). The result of this XRD measurement is shown in FIG. Looking at the XRD pattern in FIG. 1, a peak showing hydrozincite is observed.

<実施例2>
0.1mol/Lの硝酸亜鉛水溶液(1000mL)に代えて、0.1mol/Lの硫酸亜鉛水溶液(1000mL)を使用した以外は、実施例1と同様にして、上述した第2態様の炭酸水酸化亜鉛の粉末を得た。得られた粉末を、実施例2の骨再生剤とした。図1のXRDパターンを見ると、ハイドロジンカイトを現すピークが認められる。
<Example 2>
The carbonated water of the second aspect described above was described in the same manner as in Example 1 except that a 0.1 mol / L zinc sulfate aqueous solution (1000 mL) was used instead of the 0.1 mol / L zinc nitrate aqueous solution (1000 mL). A zinc oxide powder was obtained. The obtained powder was used as the bone regenerating agent of Example 2. Looking at the XRD pattern in FIG. 1, a peak showing hydrozincite is observed.

<実施例3>
0.1mol/Lの硝酸亜鉛水溶液(1000mL)に代えて、0.1mol/Lの塩化亜鉛水溶液(1000mL)を使用した以外は、実施例1と同様にして、上述した第3態様の炭酸水酸化亜鉛の粉末を得た。得られた粉末を、実施例3の骨再生剤とした。図1のXRDパターンを見ると、ハイドロジンカイトを現すピークが認められる。
<Example 3>
The carbonated water of the third aspect described above was described in the same manner as in Example 1 except that a 0.1 mol / L zinc chloride aqueous solution (1000 mL) was used instead of the 0.1 mol / L zinc nitrate aqueous solution (1000 mL). A zinc oxide powder was obtained. The obtained powder was used as the bone regenerating agent of Example 3. Looking at the XRD pattern in FIG. 1, a peak showing hydrozincite is observed.

<溶出試験後の特性>
実施例1〜実施例3の炭酸水酸化亜鉛の粉末(骨再生剤)について、上述した方法により、溶出試験後のZn2+イオン溶出量およびpHを求めた。結果を下記表1に示す。
<Characteristics after dissolution test>
For the zinc hydroxide powder (bone regenerating agent) of Examples 1 to 3, the Zn 2+ ion elution amount and pH after the elution test were determined by the above-mentioned method. The results are shown in Table 1 below.

Figure 2021014994
Figure 2021014994

<評価>
実施例2の炭酸水酸化亜鉛の粉末(骨再生剤)を用いて、動物実験を行なった。
更に、比較例1の骨再生剤として、市販品の骨充填材であるβ−TCP(オスフェリオン(登録商標)、オリンパステルモバイオマテリアル社製)を用いた。
<Evaluation>
Animal experiments were carried out using the zinc carbonate powder (bone regenerating agent) of Example 2.
Further, as the bone regenerating agent of Comparative Example 1, β-TCP (Osferion (registered trademark), manufactured by Olympus Terumo Biomaterials), which is a commercially available bone filling material, was used.

動物実験では、ゼンノープレミアムピッグの肋骨欠損部に骨再生剤を埋植した。ゼンノープレミアムピッグは、完全麻酔下とし、埋植部位には、歯科用キシロカインで局所麻酔した。
より詳細には、ゼンノープレミアムピッグの両腹側部を剃毛して肋骨を露出させ、露出した肋骨に、ボルバーVmaxを用いて、約2mm×14mmの骨欠損部を作製した。0.005gの骨再生剤を、骨欠損部に埋植し、残存骨膜により被覆した後、閉創した。埋植期間は4週間とした。
4週間経過後、ゼンノープレミアムピッグをイソフルランによって麻酔し、放血処理した後、肋骨の一部(埋植部位、および、その周辺)を摘出した。摘出した肋骨に付着していた軟組織をトリミングした後、骨再生を評価した。
In animal experiments, a bone regenerating agent was implanted in the rib defect of Zenno Premium Pig. Zenno Premium Pig was under complete anesthesia, and the implant site was locally anesthetized with dental xylocaine.
More specifically, both ventral sides of the Zenno Premium Pig were shaved to expose the ribs, and a bone defect portion of about 2 mm × 14 mm was prepared on the exposed ribs using Volver Vmax. 0.005 g of a bone regenerating agent was implanted in the bone defect, covered with the residual periosteum, and then closed. The burial period was 4 weeks.
After 4 weeks, Zenno Premium Pig was anesthetized with isoflurane, exsanguinated, and then a part of the ribs (implantation site and its surroundings) was removed. Bone regeneration was evaluated after trimming the soft tissue attached to the removed ribs.

《巨視的評価》
摘出した肋骨の埋植部位(骨欠損部)を、システム顕微鏡(オリンパス社製、BX53)を用いて観察した。
その結果、比較例1では、骨欠損部に組織の再生が確認されたものの、骨欠損部を断面視したときに、多量の骨再生剤(β−TCP)が残存していた。
一方、実施例2では、骨欠損部には、組織の再生が確認され、骨再生剤(炭酸水酸化亜鉛)の残存は認められなかった。
《Microscopic evaluation》
The implantation site (bone defect) of the excised rib was observed using a system microscope (BX53 manufactured by Olympus Corporation).
As a result, in Comparative Example 1, although tissue regeneration was confirmed in the bone defect portion, a large amount of bone regeneration agent (β-TCP) remained when the bone defect portion was cross-sectionally viewed.
On the other hand, in Example 2, tissue regeneration was confirmed in the bone defect portion, and no residual bone regenerating agent (zinc hydroxide) was observed.

《組織学的評価》
摘出した肋骨の埋植部位(骨欠損部)に対して、ヘマトキシリン・エオシン(HE)染色およびマッソン・トリクローム(MT)染色を行なった。
その結果、比較例1では、骨再生剤(β−TCP)を埋植した骨欠損部は石灰化していたが、多数の吸収孔が存在し、炎症系細胞が認められた。
一方、実施例2では、骨欠損部には骨再生剤(炭酸水酸化亜鉛)の残存は認められず、厚い石灰化骨が形成されていた。
《Histological evaluation》
Hematoxylin and eosin (HE) staining and Masson's trichrome (MT) staining were performed on the implanted site (bone defect) of the excised ribs.
As a result, in Comparative Example 1, the bone defect portion in which the bone regenerating agent (β-TCP) was implanted was calcified, but a large number of absorption holes were present and inflammatory cells were observed.
On the other hand, in Example 2, no residual bone regenerating agent (zinc hydroxide) was observed in the bone defect, and thick calcified bone was formed.

実施例1および実施例3の骨再生剤を使用した場合も、実施例2の骨再生剤を使用した場合と同様の結果が得られた。ただし、実施例3の骨再生剤は極めて微量に残存していたのに対して、実施例1および実施例2の骨再生剤は全く残存が見られなかった。
骨再生面積にも違いが見られた。すなわち、骨欠損部において組織が再生した面積は、比較例1、実施例1、実施例3および実施例2の順に大きかった(実施例2の骨再生面積が最も大きかった)。
When the bone regenerating agents of Examples 1 and 3 were used, the same results as when the bone regenerating agent of Example 2 was used were obtained. However, while the bone regenerating agent of Example 3 remained in an extremely small amount, the bone regenerating agent of Examples 1 and 2 did not remain at all.
There was also a difference in the bone regeneration area. That is, the area of tissue regeneration in the bone defect portion was larger in the order of Comparative Example 1, Example 1, Example 3, and Example 2 (the bone regeneration area of Example 2 was the largest).

<評価結果まとめ>
以上の結果から、比較例1の骨再生剤(β−TCP)は肋骨欠損部に残存したのに対して、実施例1〜実施例3の骨再生剤は、残存を抑制しつつ、肋骨欠損部を修復できることが明らかとなった。
ハイドロジンカイトを含む炭酸水酸化亜鉛は、体液との接触によって溶出するため、骨髄量が豊富な肋骨においては、全て溶出されたと考えられる。したがって、ハイドロジンカイトを含む炭酸水酸化亜鉛は、骨再生剤に適している。
<Summary of evaluation results>
From the above results, the bone regenerating agent (β-TCP) of Comparative Example 1 remained in the rib defect portion, whereas the bone regenerating agent of Examples 1 to 3 remained in the rib defect while suppressing the residual. It became clear that the part could be repaired.
Since zinc hydroxide containing hydrogen kite is eluted by contact with body fluid, it is considered that all of it is eluted in the ribs having abundant bone marrow. Therefore, zinc hydroxide containing hydrogen kite is suitable as a bone regenerating agent.

Claims (8)

ハイドロジンカイトを含む炭酸水酸化亜鉛を含有する、骨再生剤。 A bone regenerating agent containing zinc carbonate containing hydroxyzine kite. 前記炭酸水酸化亜鉛は、溶出試験後のZn2+イオン溶出量が0.1質量ppm以上であり、溶出試験後のpHが7.2以上8.3未満である、請求項1に記載の骨再生剤。The bone according to claim 1, wherein the zinc carbonate hydroxide has a Zn 2+ ion elution amount of 0.1 mass ppm or more after the elution test and a pH of 7.2 or more and less than 8.3 after the elution test. Regenerative agent. 前記ハイドロジンカイトの一部の炭酸イオンが硫酸イオンに置換されている、請求項1または2に記載の骨再生剤。 The bone regenerating agent according to claim 1 or 2, wherein a part of the carbonate ion of the hydrozincite is replaced with a sulfate ion. 前記ハイドロジンカイトの一部の炭酸イオンが塩化物イオンに置換されている、請求項1または2に記載の骨再生剤。 The bone regenerating agent according to claim 1 or 2, wherein a part of the carbonate ion of the hydrozincite is replaced with a chloride ion. 骨欠損部に適用される、請求項1〜4のいずれか1項に記載の骨再生剤。 The bone regenerating agent according to any one of claims 1 to 4, which is applied to a bone defect portion. 更に、生体適合性ポリマーを含有し、
ペースト状である、請求項1〜5のいずれか1項に記載の骨再生剤。
In addition, it contains a biocompatible polymer,
The bone regenerating agent according to any one of claims 1 to 5, which is in the form of a paste.
前記生体適合性ポリマーが、ポリメチルメタクリレートである、請求項6に記載の骨再生剤。 The bone regenerating agent according to claim 6, wherein the biocompatible polymer is polymethylmethacrylate. 請求項1〜7のいずれか1項に記載の骨再生剤を、骨欠損部に埋植し、残存骨膜により被覆する、骨再生剤の使用方法。 A method for using a bone regenerating agent, wherein the bone regenerating agent according to any one of claims 1 to 7 is implanted in a bone defect and covered with a residual periosteum.
JP2020545758A 2019-07-25 2020-07-10 Bone regenerating agent and how to use it Active JP6814328B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019136934 2019-07-25
JP2019136934 2019-07-25
PCT/JP2020/026963 WO2021014994A1 (en) 2019-07-25 2020-07-10 Bone regenerative agent and method of using same

Publications (2)

Publication Number Publication Date
JP6814328B1 JP6814328B1 (en) 2021-01-13
JPWO2021014994A1 true JPWO2021014994A1 (en) 2021-09-13

Family

ID=74096394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020545758A Active JP6814328B1 (en) 2019-07-25 2020-07-10 Bone regenerating agent and how to use it

Country Status (5)

Country Link
US (1) US20220280686A1 (en)
EP (1) EP4005636A4 (en)
JP (1) JP6814328B1 (en)
KR (1) KR20220018597A (en)
CN (1) CN114126676A (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6694431B2 (en) * 2015-06-12 2020-05-13 Jfeミネラル株式会社 Remedy for skin wounds or rough skin
JP6604471B2 (en) 2015-09-24 2019-11-13 国立大学法人 東京大学 Structure containing carboxymethylated cellulose fiber and bone filling material

Also Published As

Publication number Publication date
US20220280686A1 (en) 2022-09-08
EP4005636A1 (en) 2022-06-01
JP6814328B1 (en) 2021-01-13
KR20220018597A (en) 2022-02-15
CN114126676A (en) 2022-03-01
EP4005636A4 (en) 2022-08-24

Similar Documents

Publication Publication Date Title
CN101391117B (en) Composite biomaterial comprising calcium phosphate, collagen and glycosaminoglycans
US20110295383A1 (en) Bone substitute material for medical use and method of producing the same
JP6072968B1 (en) Method for producing sintered calcium phosphate particles
US20200181026A1 (en) Calcium phosphate sintered body particles and method for producing same
CN104947097A (en) Method for preparing calcium hydrophosphate micro-nanofiber conversion coating on pure-titanium surface
JP6072967B1 (en) Method for producing sintered calcium phosphate particles
KR20110008603A (en) Complex oxide film and method of manufacturing the same
JP5411932B2 (en) Collagen production promoter
ES2592220T3 (en) Phosphocalcium compounds doped with gallium
JP6814328B1 (en) Bone regenerating agent and how to use it
WO2021014994A1 (en) Bone regenerative agent and method of using same
US11168031B2 (en) Calcium phosphate sintered particles and production method therefor
CN100428963C (en) Preparation method of non-sizing nano-calcium phosphate powder for medical slow release metal ion
JP6548618B2 (en) Ceramic particle carrying medical sheet
JP6548617B2 (en) Collagen production promoter
JP2018002580A (en) Method for producing calcium phosphate sintered compact particle
JP2018002579A (en) Method for producing calcium phosphate sintered compact particle
JPWO2018043623A1 (en) Ceramic particle carrying stent
WO2018043622A1 (en) Novel ceramic particle composite material
CN115624653B (en) Dual slow-release bone repair material and preparation method thereof
WO2018043620A1 (en) Ceramic particle carrying medical tube and/or cuff
JP2006296945A (en) Method of manufacturing material for repairing biological tissue
Balázsi et al. Hydroxyapatite from Natural Resources

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200901

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200901

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201218

R150 Certificate of patent or registration of utility model

Ref document number: 6814328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250