JPWO2020259898A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020259898A5
JPWO2020259898A5 JP2021576967A JP2021576967A JPWO2020259898A5 JP WO2020259898 A5 JPWO2020259898 A5 JP WO2020259898A5 JP 2021576967 A JP2021576967 A JP 2021576967A JP 2021576967 A JP2021576967 A JP 2021576967A JP WO2020259898 A5 JPWO2020259898 A5 JP WO2020259898A5
Authority
JP
Japan
Prior art keywords
protective coating
glass fiber
range
glass
glass fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021576967A
Other languages
Japanese (ja)
Other versions
JP2022538147A (en
Publication date
Priority claimed from EP19182983.7A external-priority patent/EP3757081A1/en
Application filed filed Critical
Publication of JP2022538147A publication Critical patent/JP2022538147A/en
Publication of JPWO2020259898A5 publication Critical patent/JPWO2020259898A5/ja
Pending legal-status Critical Current

Links

Description

ここで、最小直径30cmの巻き取りリールに巻かれたガラス繊維2は、繊維誘導システム(図には示されていない)によって巻き取りリールから連続的に巻き戻され、ガイドスリーブ24を通って溶融領域6aに供給される。溶融領域6aでは、焦点がぼかされたレーザービーム3が加熱源として機能する。熱分布のピークは、レーザービーム3の周りの破線として図に示されている焦点ぼけによって補償される。理想的には、レーザービーム3は、衝突点で、溶融されるガラス繊維の直径の約2倍の幅であり、そのため、ガラス繊維とその周辺領域の両方、特に基板7が加熱される。 Here, the glass fibers 2 wound on a take-up reel with a minimum diameter of 30 cm are continuously unwound from the take-up reel by a fiber guidance system (not shown in the figure) and melted through the guide sleeve 24. It is supplied to region 6a. In the melting region 6a a defocused laser beam 3 acts as a heating source. The thermal distribution peaks are compensated by the defocusing shown in the figure as dashed lines around the laser beam 3 . Ideally, the laser beam 3 is about twice as wide as the diameter of the glass fiber 2 to be melted at the point of impact, so that both the glass fiber 2 and its surrounding area, especially the substrate 7, are heated. .

Claims (16)

ガラスから三次元物体(1)を製造する方法であって、
ガラス繊維(2)の成形ステップを含み、該ステップでは、保護被膜(22)を備えた前記ガラス繊維(2)が、加熱源(3)に連続的に供給され、前記保護被膜(22)が、熱の影響下で除去され、及び、前記ガラス繊維(2)が軟化され、
前記ガラス繊維(2)が、10nmから10μmの範囲の層厚の保護被膜(22)を有することを特徴とする三次元物体(1)を製造する方法。
A method of manufacturing a three-dimensional object (1) from glass , comprising:
forming a glass fiber (2), wherein said glass fiber (2) with a protective coating (22) is continuously fed to a heating source (3), said protective coating (22) , is removed under the influence of heat and the glass fibers (2) are softened,
A method for producing a three-dimensional object (1), characterized in that said glass fibers (2) have a protective coating (22) with a layer thickness in the range from 10 nm to 10 μm.
50nmから5μmの範囲の層厚を有する保護被膜(22)を備えたガラス繊維(2)が用いられることを特徴とする請求項1に記載の方法。 2. Method according to claim 1, characterized in that glass fibers (2) with a protective coating (22) with a layer thickness in the range from 50 nm to 5 [mu]m are used. 前記ガラス繊維(2)が、少なくとも300mm/分の供給速度で前記加熱源(3)に供給されることを特徴とする請求項1又は請求項2に記載の方法。 3. A method according to claim 1 or 2, characterized in that the glass fibers (2) are fed to the heating source (3) at a feed rate of at least 300 mm/min . 20μmから1000μmの範囲の直径を有するガラス繊維(2)が用いられることを特徴とする請求項1から請求項3のいずれか1項に記載の方法。 4. A method according to any one of claims 1 to 3, characterized in that glass fibers (2) with a diameter in the range from 20 [mu]m to 1000 [mu]m are used . 前記保護被膜(22)が除去された、長手方向部(23)は、0.5から2cmの範囲の長さを有することを特徴とする請求項1から請求項4のいずれか1項に記載の方法。 5. A longitudinal section (23) from which the protective coating (22) has been removed has a length in the range from 0.5 to 2 cm. the method of. 前記保護被膜(22)は、炭素、珪素、水素、窒素、及び酸素の成分のみで構成されていることを特徴とする請求項1から請求項5のいずれか1項に記載の方法。 6. A method according to any one of claims 1 to 5, characterized in that the protective coating (22) consists exclusively of the constituents carbon, silicon, hydrogen, nitrogen and oxygen. 前記保護被膜(22)の分解温度が400℃未満であることを特徴とする請求項1から請求項6のいずれか1項に記載の方法。 A method according to any one of the preceding claims, characterized in that the decomposition temperature of the protective coating (22) is less than 400°C. 前記保護被膜(22)は有機材料からなることを特徴とする請求項1から請求項7のいずれか1項に記載の方法。 A method according to any one of claims 1 to 7, characterized in that the protective coating (22) consists of an organic material . 前記保護被膜(22)は、1つ以上の、フッ素を含まないシラン類及び/又はフッ素を含まない界面活性剤から作製されることを特徴とする請求項1から請求項8のいずれか1項に記載の方法。 9. Any one of claims 1 to 8, wherein the protective coating (22) is made from one or more fluorine-free silanes and/or fluorine-free surfactants. The method described in section. 前記保護被膜(22)は、浸漬又はローラーコーティングによって前記ガラス繊維(2)上に作製されることを特徴とする請求項1から請求項9のいずれか1項に記載の方法。 10. A method according to any one of the preceding claims, characterized in that the protective coating (22) is produced on the glass fibers (2) by dipping or roller coating. ガラスから三次元物体(1)を製造するためのガラス繊維であって、前記ガラス繊維(2)は、10nmから10μmの範囲の層厚の保護被膜(22)を備えていることを特徴とするガラス繊維。 A glass fiber for producing a three-dimensional object (1) from glass, characterized in that said glass fiber (2) is provided with a protective coating (22) with a layer thickness in the range from 10 nm to 10 μm. fiberglass. 前記保護被膜(22)が、50nmから5μmの範囲の層厚を有することを特徴とする請求項11に記載のガラス繊維。 12. Glass fiber according to claim 11, characterized in that the protective coating (22) has a layer thickness in the range from 50 nm to 5 [mu]m. 前記ガラス繊維(2)が、20μmから1000μmの範囲の直径を有することを特徴とする請求項11又は請求項12に記載のガラス繊維。 13. Glass fiber according to claim 11 or 12, characterized in that the glass fiber (2) has a diameter in the range from 20 [mu]m to 1000 [mu]m. 最小巻き取り直径30cm未満の巻き取りリールに巻かれていることを特徴とする請求項11から請求項13のいずれか1項に記載のガラス繊維。 14. A glass fiber according to any one of claims 11 to 13, which is wound on a take-up reel with a minimum take-up diameter of less than 30 cm. 前記保護被膜(22)は、分解温度が400℃未満の有機材料を含むことを特徴とする請求項11から請求項14のいずれか1項に記載のガラス繊維。 15. Glass fiber according to any one of claims 11 to 14, characterized in that the protective coating (22) comprises an organic material with a decomposition temperature of less than 400<0>C. 前記保護被膜(22)は有機材料からなることを特徴とする請求項11から請求項15のいずれか1項に記載のガラス繊維。 16. Glass fiber according to any one of claims 11 to 15, characterized in that the protective coating (22) consists of an organic material .
JP2021576967A 2019-06-27 2020-04-30 Method for producing three-dimensional glass object and glass fiber suitable for it Pending JP2022538147A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP19182983.7A EP3757081A1 (en) 2019-06-27 2019-06-27 Method for manufacturing a three-dimensional object made of glass and corresponding glass fibre
EP19182983.7 2019-06-27
PCT/EP2020/062022 WO2020259898A1 (en) 2019-06-27 2020-04-30 Method for producing a three-dimensional glass object and glass fibres suitable for therefor

Publications (2)

Publication Number Publication Date
JP2022538147A JP2022538147A (en) 2022-08-31
JPWO2020259898A5 true JPWO2020259898A5 (en) 2023-05-11

Family

ID=67105931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021576967A Pending JP2022538147A (en) 2019-06-27 2020-04-30 Method for producing three-dimensional glass object and glass fiber suitable for it

Country Status (5)

Country Link
US (1) US20220267188A1 (en)
EP (2) EP3757081A1 (en)
JP (1) JP2022538147A (en)
CN (1) CN113840809B (en)
WO (1) WO2020259898A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4370308A1 (en) * 2021-07-14 2024-05-22 FOKINE, Michael Method and apparatus for additive manufacturing of a glass object
WO2023285338A1 (en) 2021-07-14 2023-01-19 Michael Fokine Method and apparatus for additive manufacturing of glass

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4461804A (en) * 1981-05-29 1984-07-24 Ppg Industries, Inc. Aqueous sizing composition for glass fibers for use in producing a mat
FR2516441A1 (en) * 1981-11-18 1983-05-20 Spie Batignolles PROCESS FOR PRODUCING FIBER-LOADED THERMOPLASTIC RESIN PROFILES, INSTALLATION FOR IMPLEMENTATION, PROFILES OBTAINED AND USE THEREOF
JPH05294676A (en) * 1992-02-18 1993-11-09 Olympus Optical Co Ltd Glass fiber
US6767579B1 (en) * 1998-11-24 2004-07-27 Corning Incorporated Methods for protecting silica-containing article in optical fiber manufacturing
FR2826359B1 (en) * 2001-06-21 2004-05-07 Saint Gobain Vetrotex SIZED GLASS WIRES, SIZING COMPOSITION AND COMPOSITES COMPRISING SAID WIRES
DE60314377T2 (en) * 2002-03-22 2008-02-28 Heraeus Quarzglas Gmbh & Co. Kg METHOD FOR PRODUCING LIGHT FILTER AND LIGHT FIBER
US8070898B2 (en) * 2005-10-04 2011-12-06 Clph, Llc Catheters with lubricious linings and methods for making and using them
US7103250B1 (en) * 2005-12-02 2006-09-05 Corning Incorporated Optical fiber with high small-angle scatter and sensor using same
DE102006012116A1 (en) * 2006-03-14 2007-09-20 Schott Ag Glaser fiber cable
JP2011154107A (en) * 2010-01-26 2011-08-11 Sumitomo Electric Ind Ltd Plastic-cladding optical fiber
EP2546910B1 (en) * 2010-03-08 2017-06-14 Nippon Sheet Glass Company, Limited Reinforcing sheet for solid electrolyte membrane
WO2014152896A2 (en) * 2013-03-14 2014-09-25 Afl Telecommunications Llc Method and apparatus for fabrication of metal-coated optical fiber, and the resulting optical fiber
BR102013020961A2 (en) * 2013-08-12 2016-03-08 Univ Fed De São Carlos vitreous composition, bioactive vitreous fibers and tissues and articles
DE102015015730A1 (en) * 2015-09-28 2017-03-30 Giesecke & Devrient Gmbh Packaging, cover foil and use of a foil as cover foil
US9889606B2 (en) * 2015-11-09 2018-02-13 Nike, Inc. Tack and drag printing
DE102015224885A1 (en) * 2015-12-10 2017-06-14 Adidas Ag Procedures for placement of patches and manufactured articles
KR20180055370A (en) * 2016-11-17 2018-05-25 현대자동차주식회사 Polyketone composite resin composition
US11254048B2 (en) * 2017-02-21 2022-02-22 Kansas State University Research Foundation Additive manufacturing of continuous fiber thermoplastic composites
PL3650608T3 (en) * 2018-11-07 2023-11-06 Iso-Chemie Gmbh Method for producing a roll of sealing strip

Similar Documents

Publication Publication Date Title
JP3301602B2 (en) Optical fiber having low loss at 1385 nm and method for producing the same
TW201617659A (en) Optical assembly and method for producing and using the same
WO2019044703A1 (en) Manufacturing method of optical fiber
JPWO2020259898A5 (en)
CN113840809B (en) Method for producing three-dimensional glass object and glass fiber suitable for use in the method
JP4302367B2 (en) Optical fiber drawing method and drawing apparatus
JP2005170714A (en) Method and apparatus for drawing optical fiber preform
US8065893B2 (en) Process, apparatus, and material for making silicon germanium core fiber
US5366530A (en) Method and apparatus for fabricating an oval cross-sectional optical waveguide
JP3197069B2 (en) Optical fiber manufacturing method
JP2010269971A (en) Method for manufacturing optical fiber
EP4201552A1 (en) Spooling and unspooling apparatus, systems and methods
JP2018536779A5 (en)
JP4252891B2 (en) Optical fiber drawing method
US20220356107A1 (en) Method for producing glass filament
JPH0339020B2 (en)
WO2023285338A1 (en) Method and apparatus for additive manufacturing of glass
WO2021132380A1 (en) Method for manufacturing optical fiber, and device for manufacturing optical fiber
JP2024525819A (en) Methods and Apparatus for Additive Manufacturing of Glass
JP2644018B2 (en) Optical fiber manufacturing method
JPS59116144A (en) Optical fiber and manufacture
WO2023285340A1 (en) Method and apparatus for additive manufacturing of a glass object
US8613208B2 (en) Method for forming an improved weld between a primary preform and a silica bar
JP2024525252A (en) Method and apparatus for additive manufacturing of glass objects
JPH02293355A (en) Production of optical fiber having gas-tight coating