JPWO2020252477A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020252477A5
JPWO2020252477A5 JP2021573777A JP2021573777A JPWO2020252477A5 JP WO2020252477 A5 JPWO2020252477 A5 JP WO2020252477A5 JP 2021573777 A JP2021573777 A JP 2021573777A JP 2021573777 A JP2021573777 A JP 2021573777A JP WO2020252477 A5 JPWO2020252477 A5 JP WO2020252477A5
Authority
JP
Japan
Prior art keywords
differentiating
charged surface
hpcs
culturing
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021573777A
Other languages
Japanese (ja)
Other versions
JP2022537278A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2020/037790 external-priority patent/WO2020252477A1/en
Publication of JP2022537278A publication Critical patent/JP2022537278A/en
Publication of JPWO2020252477A5 publication Critical patent/JPWO2020252477A5/ja
Pending legal-status Critical Current

Links

Claims (36)

誘導多能性幹細胞(iPSC)を分化させるためのインビトロ方法であって、
(a)細胞外マトリックスタンパク質の非存在下において正または負に帯電した表面上で前記iPSCを培養して、造血前駆細胞(HPC)を製造すること;及び
(b)前記HPCを内皮細胞、間葉系幹細胞(MSC)又はミクログリアに分化させること
を含むインビトロ方法。
An in vitro method for differentiating induced pluripotent stem cells (iPSCs), comprising:
(a) culturing said iPSCs on a positively or negatively charged surface in the absence of extracellular matrix proteins to produce hematopoietic progenitor cells (HPCs) ; An in vitro method comprising differentiating into meristrial stem cells (MSCs) or microglia .
前記帯電表面は、正に帯電した表面である、請求項1に記載の方法。 2. The method of claim 1, wherein the charged surface is a positively charged surface. 前記正に帯電した表面は、アミン表面又はポリLリジン表面である、請求項2に記載の方法。 3. The method of claim 2, wherein the positively charged surface is an amine surface or a poly-L-lysine surface. 前記正に帯電した表面は、窒素含有官能基を含む、請求項2に記載の方法。 3. The method of claim 2, wherein the positively charged surface comprises nitrogen-containing functional groups. 前記帯電表面は、負に帯電した表面である、請求項1に記載の方法。 2. The method of claim 1, wherein the charged surface is a negatively charged surface. 前記負に帯電した表面は、カルボキシル表面である、請求項5に記載の方法。 6. The method of claim 5, wherein said negatively charged surface is a carboxyl surface. 前記負に帯電した表面は、酸素含有官能基を含む、請求項5に記載の方法。 6. The method of claim 5, wherein the negatively charged surface comprises oxygen-containing functional groups. 前記帯電表面は、ポリマー表面である、請求項1~のいずれか一項に記載の方法。 A method according to any preceding claim, wherein the charged surface is a polymer surface. 前記ポリマー表面は、ポリスチレン表面である、請求項に記載の方法。 9. The method of claim 8 , wherein the polymer surface is a polystyrene surface. 前記iPSCは、無血清の限定培地で培養される、請求項1~のいずれか一項に記載の方法。 The method of any one of claims 1-9 , wherein the iPSCs are cultured in a serum-free defined medium. 分化させることは、ブレビスタチン又はROCK阻害剤の存在下で培養することを含む、請求項10に記載の方法。 11. The method of claim 10 , wherein differentiating comprises culturing in the presence of blebbistatin or a ROCK inhibitor. 前記培養することは、ラミニン、フィブロネクチン、ビトロネクチン、MATRIGEL(商標)、テネイシン、エンタクチン、トロンボスポンジン、エラスチン、ゼラチン及び/又はコラーゲンの非存在下で実行される、請求項1~11のいずれか一項に記載の方法。 12. Any one of claims 1 to 11 , wherein said culturing is performed in the absence of laminin, fibronectin, vitronectin, MATRIGEL™, tenascin, entactin, thrombospondin, elastin, gelatin and/or collagen. The method described in section. ステップ(a)前に、TREM2、SNCA、またはMeCP2の破壊された発現を有するように前記iPSCを操作することをさらに含む、請求項1~12のいずれか一項に記載の方法。 13. The method of any one of claims 1-12 , further comprising engineering said iPSCs to have disrupted expression of TREM2 , SNCA, or MeCP2 prior to step (a). 前記HPCを内皮細胞に分化させることを含む、請求項1~13のいずれか一項に記載の方法。 14. The method of any one of claims 1-13 , comprising differentiating said HPCs into endothelial cells. ステップ(a)は、アミン表面上で培養してHPCを生成することを含み、及びステップ(b)は、内皮分化培地の存在下においてカルボキシル表面上で培養して内皮細胞を産生することを含む、請求項14に記載の方法。 Step (a) comprises culturing on an amine surface to produce HPCs and step (b) comprises culturing on a carboxyl surface in the presence of an endothelial differentiation medium to produce endothelial cells. 15. The method of claim 14 . 前記内皮細胞を脳微小血管内皮細胞(BMEC)またはリンパ性内皮細胞に分化させることをさらに含む、請求項1~15のいずれか一項に記載の方法。 16. The method of any one of claims 1-15 , further comprising differentiating said endothelial cells into brain microvascular endothelial cells (BMEC) or lymphoid endothelial cells . 前記HPCをMSCに分化させることを含む、請求項1~15のいずれか一項に記載の方法。 16. The method of any one of claims 1-15 , comprising differentiating said HPCs into MSCs. 分化させることは、MSC培地の存在下においてアミン表面上で前記HPCを培養することを含む、請求項17に記載の方法。 18. The method of claim 17 , wherein differentiating comprises culturing said HPCs on an amine surface in the presence of MSC medium. 前記MSCは、CD73、CD44及びCD105について陽性である、請求項18に記載の方法。 19. The method of claim 18 , wherein said MSCs are positive for CD73, CD44 and CD105. 前記分化された細胞の少なくとも90%は、CD73について陽性である、請求項18に記載の方法。 19. The method of claim 18 , wherein at least 90% of said differentiated cells are positive for CD73. 前記MSCを周皮細胞に分化させることをさらに含む、請求項17に記載の方法。 18. The method of claim 17 , further comprising differentiating said MSCs into pericytes. 前記MSCは、細胞外タンパク質の非存在下において周皮細胞培地の存在下で培養される、請求項21に記載の方法。 22. The method of claim 21 , wherein said MSCs are cultured in the presence of pericyte medium in the absence of extracellular proteins. 前記周皮細胞は、NG2、PDGFRβ及びCD146について陽性である、請求項21に記載の方法。 22. The method of claim 21 , wherein said pericytes are positive for NG2, PDGFR[beta] and CD146. 前記方法が、前記HPCをミクログリアに分化させることを含む、請求項23に記載の方法。 24. The method of claim 23 , wherein said method comprises differentiating said HPCs into microglia. 分化させることは、ミクログリア分化培地の存在下において、中性に帯電した表面又は超低付着表面上で前記HPCを培養することを含む、請求項24に記載の方法。 25. The method of claim 24 , wherein differentiating comprises culturing said HPCs on a neutrally charged surface or ultra-low attachment surface in the presence of a microglial differentiation medium. 前記ミクログリア分化培地は、IL34、TGF及び/またはMCSFを含む、請求項25に記載の方法。 26. The method of claim 25 , wherein said microglial differentiation medium comprises IL34, TGF and /or MCSF. 前記ミクログリアは、CD45、CD11b及びCD33について陽性である、請求項26に記載の方法。 27. The method of claim 26 , wherein said microglia are positive for CD45, CD11b and CD33. 前記分化された細胞の少なくとも50%または90%は、CD11bについて陽性である、請求項27に記載の方法。 28. The method of claim 27 , wherein at least 50% or 90% of said differentiated cells are positive for CD11b. 前記方法のステップ(b)は、前記細胞の精製を含まない、請求項1~28のいずれか一項に記載の方法。 29. The method of any one of claims 1-28 , wherein step (b) of the method does not comprise purification of the cells. 適正製造基準(GMP)に準拠している、請求項1~29のいずれか一項に記載の方法。 30. The method of any one of claims 1-29 , wherein the method complies with Good Manufacturing Practices (GMP). 低酸素条件下で実施される、請求項1~30のいずれか一項に記載の方法。 The method of any one of claims 1-30 , which is carried out under hypoxic conditions. ステップ(a)~(d)のそれぞれは、ゼノフリー条件、フィーダーフリー条件及び/又は馴化培地なしの条件下で実施される、請求項1~31のいずれか一項に記載の方法。 32. The method of any one of claims 1-31 , wherein each of steps (a)-(d) is performed under xeno-free, feeder-free and/or conditioned medium-free conditions. TREM2、P2RY12、TMEM119、IBA-1及び/又はCX3CR1について少なくとも90%陽性のミクログリア細胞集団を含む組成物であって、前記ミクログリア細胞集団は、iPSCから分化される、組成物。 A composition comprising a microglial cell population that is at least 90% positive for TREM2, P2RY12, TMEM119, IBA-1 and/or CX3CR1, wherein said microglial cell population is differentiated from an iPSC. 請求項1~32のいずれか一項に記載の方法によって産生されたミクログリアと、内皮細胞、周皮細胞、星状細胞及び/又は神経前駆細胞とを含む共培養物。 A co-culture comprising microglia produced by the method of any one of claims 1-32 and endothelial cells, pericytes, astrocytes and/or neural progenitor cells. ヒトの脳の発達を模倣するための、請求項34に記載の共培養の使用。 35. Use of the co-culture according to claim 34 for mimicking human brain development. ステップ(b)の培養が、二次元培養としてさらに定義される、請求項1に記載方法。2. The method of claim 1, wherein the culturing of step (b) is further defined as two-dimensional culturing.
JP2021573777A 2019-06-14 2020-06-15 Methods for producing multiple lineages from induced pluripotent stem cells using charged surfaces Pending JP2022537278A (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201962861640P 2019-06-14 2019-06-14
US62/861,640 2019-06-14
US201962865806P 2019-06-24 2019-06-24
US62/865,806 2019-06-24
US202063038564P 2020-06-12 2020-06-12
US63/038,564 2020-06-12
PCT/US2020/037790 WO2020252477A1 (en) 2019-06-14 2020-06-15 Methods for the production of multiple lineages from induced pluripotent stem cells using charged surfaces

Publications (2)

Publication Number Publication Date
JP2022537278A JP2022537278A (en) 2022-08-25
JPWO2020252477A5 true JPWO2020252477A5 (en) 2023-06-15

Family

ID=71950810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021573777A Pending JP2022537278A (en) 2019-06-14 2020-06-15 Methods for producing multiple lineages from induced pluripotent stem cells using charged surfaces

Country Status (8)

Country Link
US (1) US20220251516A1 (en)
EP (1) EP3983528A1 (en)
JP (1) JP2022537278A (en)
KR (1) KR20220032561A (en)
CN (1) CN114174493A (en)
AU (1) AU2020293287A1 (en)
CA (1) CA3143332A1 (en)
WO (1) WO2020252477A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230084457A1 (en) * 2020-02-10 2023-03-16 Public University Corporation Nagoya City University Coating agent for inducing differentiation of pluripotent stem cells into brain microvascular endothelium-like cells and use thereof
CA3217672A1 (en) * 2021-05-05 2022-11-10 FUJIFILM Cellular Dynamics, Inc. Methods and compositions for ipsc-derived microglia
JP2023140135A (en) 2022-03-22 2023-10-04 株式会社リコー Microglia production method
WO2023220453A2 (en) * 2022-05-13 2023-11-16 Herophilus, Inc. Heterogenous neuroimmune organoid model and uses thereof
WO2023240147A1 (en) 2022-06-08 2023-12-14 Century Therapeutics, Inc. Genetically engineered cells expressing cd16 variants and nkg2d and uses thereof
US20240003871A1 (en) * 2022-06-29 2024-01-04 FUJIFILM Cellular Dynamics, Inc. Ipsc-derived astrocytes and methods of use thereof
TWI820875B (en) * 2022-08-23 2023-11-01 國璽幹細胞應用技術股份有限公司 Optimizing cell grafts, methods of their preparation, and their uses

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2007270069B2 (en) * 2006-07-06 2013-05-16 Es Cell International Pte Ltd Method for stem cell culture and cells derived therefrom
CA2831609C (en) * 2011-03-30 2019-06-11 Cellular Dynamics International, Inc. Priming of pluripotent stem cells for neural differentiation
WO2017223199A1 (en) * 2016-06-22 2017-12-28 Xcell Biosciences, Inc. Methods for increasing cell culture transfection efficiency and cellular reprogramming
US10961505B2 (en) * 2016-10-05 2021-03-30 FUJIFILM Cellular Dynamics, Inc. Generating mature lineages from induced pluripotent stem cells with MECP2 disruption

Similar Documents

Publication Publication Date Title
McKee et al. Advances and challenges in stem cell culture
Merten Advances in cell culture: anchorage dependence
Sart et al. Engineering stem cell fate with biochemical and biomechanical properties of microcarriers
Wang et al. Paracrine signals from mesenchymal cell populations govern the expansion and differentiation of human hepatic stem cells to adult liver fates
Chen et al. Human pluripotent stem cell culture: considerations for maintenance, expansion, and therapeutics
Phinney et al. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views
Orbay et al. Mesenchymal stem cells isolated from adipose and other tissues: basic biological properties and clinical applications
Chen et al. Increasing efficiency of human mesenchymal stromal cell culture by optimization of microcarrier concentration and design of medium feed
Yusuf et al. Embryonic fibroblasts represent a connecting link between mesenchymal and embryonic stem cells
Saleh et al. Turning round: multipotent stromal cells, a three-dimensional revolution?
Cunha et al. Exploring continuous and integrated strategies for the up-and downstream processing of human mesenchymal stem cells
Moon et al. Isolation and characterization of multipotent human keloid-derived mesenchymal-like stem cells
US20120028352A1 (en) Microcarriers for Stem Cell Culture
Kim et al. Assessment of differentiation aspects by the morphological classification of embryoid bodies derived from human embryonic stem cells
Guo et al. Inducing human induced pluripotent stem cell differentiation through embryoid bodies: A practical and stable approach
Yan et al. Scalable generation of mesenchymal stem cells from human embryonic stem cells in 3D
Son et al. Physical passaging of embryoid bodies generated from human pluripotent stem cells
JPWO2020252477A5 (en)
Rungsiwiwut et al. Human umbilical cord blood-derived serum for culturing the supportive feeder cells of human pluripotent stem cell lines
Niibe et al. A shaking-culture method for generating bone marrow derived mesenchymal stromal/stem cell-spheroids with enhanced multipotency in vitro
Dong et al. Serum-free culture system for spontaneous human mesenchymal stem cell spheroid formation
RU2018142263A (en) COMPOSITIONS AND METHODS FOR BIOENGINEERING FABRICS
JP2024026851A (en) Amniotic fluid cell-derived extracellular matrix and its use
Subramanian et al. Scalable expansion of multipotent adult progenitor cells as three‐dimensional cell aggregates
An et al. Characteristics of mesenchymal stem cells isolated from the bone marrow of red pandas