JPWO2020234204A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020234204A5
JPWO2020234204A5 JP2021568555A JP2021568555A JPWO2020234204A5 JP WO2020234204 A5 JPWO2020234204 A5 JP WO2020234204A5 JP 2021568555 A JP2021568555 A JP 2021568555A JP 2021568555 A JP2021568555 A JP 2021568555A JP WO2020234204 A5 JPWO2020234204 A5 JP WO2020234204A5
Authority
JP
Japan
Prior art keywords
training
magnetic resonance
visual field
alignment data
field alignment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021568555A
Other languages
Japanese (ja)
Other versions
JP7391112B2 (en
JP2022533165A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/EP2020/063744 external-priority patent/WO2020234204A1/en
Publication of JP2022533165A publication Critical patent/JP2022533165A/en
Publication of JPWO2020234204A5 publication Critical patent/JPWO2020234204A5/ja
Application granted granted Critical
Publication of JP7391112B2 publication Critical patent/JP7391112B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (11)

マシン実行可能命令と、1つ又は複数のローカライザ磁気共鳴画像及び対象者メタデータの入力に応答して磁気共鳴イメージングシステムのための予測視野整列データを出力するための予測器アルゴリズムとを記憶するメモリと、医療システムを制御するためのプロセッサとを備える、医療システムであって、
前記予測器アルゴリズムは訓練可能機械学習アルゴリズムを含み、前記予測器アルゴリズムは畳み込みニューラルネットワークであり、
前記マシン実行可能命令の実行は、前記プロセッサに、
前記1つ又は複数のローカライザ磁気共鳴画像及び前記対象者メタデータを受信することと、
前記予測器アルゴリズムへの前記1つ又は複数のローカライザ磁気共鳴画像の入力に応答して、及び前記対象者メタデータの入力に応答して、前記予測器アルゴリズムから前記予測視野整列データを受信することと
を実施させる、医療システム。
A memory storing machine-executable instructions and a predictor algorithm for outputting predicted visual field alignment data for a magnetic resonance imaging system in response to input of one or more localizer magnetic resonance images and subject metadata. and a processor for controlling the medical system, comprising:
said predictor algorithm comprising a trainable machine learning algorithm, said predictor algorithm being a convolutional neural network;
Execution of the machine-executable instructions causes the processor to:
receiving the one or more localizer magnetic resonance images and the subject metadata;
receiving the predicted visual field alignment data from the predictor algorithm in response to inputting the one or more localizer magnetic resonance images into the predictor algorithm and in response to inputting the subject metadata. health care system that enforces
前記メモリは、更に、訓練用エントリを含む訓練用データを記憶し、前記訓練用エントリの各々は、1つ又は複数の訓練用磁気共鳴画像、訓練用対象者メタデータ、及び訓練用視野整列データを含み、前記メモリは、更に、前記予測視野整列データと前記訓練用視野整列データとの比較を使用して前記予測器アルゴリズムを訓練するための訓練用アルゴリズムを含み、前記マシン実行可能命令の前記実行は、更に、前記プロセッサに、
前記予測器アルゴリズムへの前記1つ又は複数の訓練用磁気共鳴画像の入力に応答して、及び前記訓練用対象者メタデータの入力に応答して、前記予測器アルゴリズムから前記予測視野整列データを受信することと、
前記予測視野整列データと前記訓練用視野整列データとの前記比較を判定することと、
前記予測視野整列データと前記訓練用視野整列データとの前記比較を使用して前記予測器アルゴリズムを訓練することと
を実施させる、請求項1に記載の医療システム。
The memory further stores training data including training entries, each of the training entries being one or more of training magnetic resonance images, training subject metadata, and training visual field alignment data. said memory further comprising a training algorithm for training said predictor algorithm using a comparison of said predicted eye alignment data and said training eye alignment data; Execution further causes the processor to:
retrieving the predicted visual field alignment data from the predictor algorithm in response to inputting the one or more training magnetic resonance images into the predictor algorithm and in response to inputting the training subject metadata; to receive;
determining the comparison between the predicted visual field alignment data and the training visual field alignment data;
and using the comparison of the predicted visual field alignment data and the training visual field alignment data to train the predictor algorithm.
前記マシン実行可能命令の前記実行は、更に、前記プロセッサに、医療画像データベースから、前記1つ又は複数の訓練用磁気共鳴画像、前記訓練用対象者メタデータ、及び前記訓練用視野整列データを抽出することによって、前記訓練用データを生成させる、請求項2に記載の医療システム。 The execution of the machine-executable instructions further causes the processor to extract the one or more training magnetic resonance images, the training subject metadata, and the training visual field alignment data from a medical image database. 3. The medical system of claim 2, wherein the training data is generated by: 前記医療システムは、医療イメージングワークステーション、及びクラウドベース磁気共鳴イメージングプランニングシステムのうちの任意の1つである、請求項1からのいずれか一項に記載の医療システム。 4. The medical system of any one of claims 1-3 , wherein the medical system is any one of a medical imaging workstation and a cloud-based magnetic resonance imaging planning system. 前記医療システムは、更に、磁気共鳴イメージングシステムを備える、請求項1からのいずれか一項に記載の医療システム。 4. The medical system of any one of claims 1-3 , wherein the medical system further comprises a magnetic resonance imaging system. 前記メモリは、更に、ローカライザ磁気共鳴イメージングデータを取得するように前記磁気共鳴イメージングシステムを制御するためのローカライザパルスシーケンスコマンドを含み、前記マシン実行可能命令の前記実行は更に、前記プロセッサに、
前記ローカライザパルスシーケンスコマンドによって前記磁気共鳴イメージングシステムを制御することにより前記ローカライザ磁気共鳴イメージングデータを取得することと、
前記ローカライザ磁気共鳴イメージングデータから前記1つ又は複数のローカライザ磁気共鳴画像を再構成することと
を実施させる、請求項に記載の医療システム。
The memory further includes localizer pulse sequence commands for controlling the magnetic resonance imaging system to acquire localizer magnetic resonance imaging data, and the execution of the machine-executable instructions further causes the processor to:
acquiring the localizer magnetic resonance imaging data by controlling the magnetic resonance imaging system with the localizer pulse sequence commands;
and reconstructing the one or more localizer magnetic resonance images from the localizer magnetic resonance imaging data.
前記メモリは、更に、臨床磁気共鳴イメージングデータを取得するように前記磁気共鳴イメージングシステムを制御するための臨床パルスシーケンスコマンドを含み、前記マシン実行可能命令の前記実行は更に、前記プロセッサに、
前記予測視野整列データによって前記臨床パルスシーケンスコマンドを修正することにより修正済みパルスシーケンスコマンドを生成することと、
前記修正済みパルスシーケンスコマンドによって前記磁気共鳴イメージングシステムを制御することにより前記臨床磁気共鳴イメージングデータを取得することと
を実施させる、請求項又はに記載の医療システム。
The memory further includes clinical pulse sequence commands for controlling the magnetic resonance imaging system to acquire clinical magnetic resonance imaging data, the execution of the machine-executable instructions further causing the processor to:
generating a modified pulse sequence command by modifying the clinical pulse sequence command with the predicted visual field alignment data;
7. The medical system of claim 5 or 6 , wherein acquiring the clinical magnetic resonance imaging data by controlling the magnetic resonance imaging system with the modified pulse sequence commands is performed.
医療システムを制御するプロセッサによる実行のためのマシン実行可能命令を含むコンピュータプログラムであって、前記コンピュータプログラムは、更に、1つ又は複数のローカライザ磁気共鳴画像及び対象者メタデータの入力に応答して予測視野整列データを出力するための予測器アルゴリズムを含み、前記予測器アルゴリズムは訓練可能機械学習アルゴリズムを含み、前記マシン実行可能命令の実行は、前記プロセッサに、
前記1つ又は複数のローカライザ磁気共鳴画像及び前記対象者メタデータを受信することと、
前記予測器アルゴリズムへの前記1つ又は複数のローカライザ磁気共鳴画像の入力に応答して、及び前記対象者メタデータの入力に応答して、前記予測器アルゴリズムから前記予測視野整列データを受信することと
を実施させる、コンピュータプログラム。
A computer program comprising machine-executable instructions for execution by a processor for controlling a medical system, said computer program being further responsive to input of one or more localizer magnetic resonance images and subject metadata. a predictor algorithm for outputting predicted view alignment data, said predictor algorithm comprising a trainable machine learning algorithm, execution of said machine-executable instructions causing said processor to:
receiving the one or more localizer magnetic resonance images and the subject metadata;
receiving the predicted visual field alignment data from the predictor algorithm in response to inputting the one or more localizer magnetic resonance images into the predictor algorithm and in response to inputting the subject metadata. A computer program that causes
医療システムを動作させる方法であって、前記医療システムは予測器アルゴリズムを記憶するメモリを備え、前記予測器アルゴリズムは、1つ又は複数のローカライザ磁気共鳴画像及び対象者メタデータの入力に応答して予測視野整列データを出力するように構成され、前記予測器アルゴリズムは訓練可能機械学習アルゴリズムを含み、前記メモリは、更に、訓練用エントリを含む訓練用データを記憶し、前記訓練用エントリの各々は、1つ又は複数の訓練用磁気共鳴画像、訓練用対象者メタデータ、及び訓練用視野整列データを含み、前記メモリは、更に、前記予測視野整列データと前記訓練用視野整列データとの比較を使用して前記予測器アルゴリズムを訓練するための訓練用アルゴリズムを含み、前記方法は、
前記予測器アルゴリズムへの前記1つ又は複数の訓練用磁気共鳴画像の入力に応答して、及び前記訓練用対象者メタデータの入力に応答して、前記予測器アルゴリズムから前記予測視野整列データを受信するステップと、
前記予測視野整列データと前記訓練用視野整列データとの前記比較を判定するステップと、
前記予測視野整列データと前記訓練用視野整列データとの前記比較を入力することによって、前記訓練用アルゴリズムによって前記予測器アルゴリズムを訓練するステップと
を有する、方法。
A method of operating a medical system, said medical system comprising a memory storing a predictor algorithm, said predictor algorithm being responsive to input of one or more localizer magnetic resonance images and subject metadata. The predictor algorithm comprises a trainable machine learning algorithm, the memory further stores training data including training entries, each of the training entries configured to output predictive view alignment data. , one or more training magnetic resonance images, training subject metadata, and training visual field alignment data, the memory further comprising comparing the predicted visual field alignment data with the training visual field alignment data. a training algorithm for training the predictor algorithm using
retrieving the predicted visual field alignment data from the predictor algorithm in response to inputting the one or more training magnetic resonance images into the predictor algorithm and in response to inputting the training subject metadata; receiving;
determining the comparison between the predicted visual field alignment data and the training visual field alignment data;
training the predictor algorithm with the training algorithm by inputting the comparison of the predicted visual field alignment data and the training visual field alignment data.
医療画像データベースから、前記1つ又は複数の訓練用磁気共鳴画像、前記訓練用対象者メタデータ、及び前記訓練用視野整列データを抽出することによって、前記訓練用データを生成するステップを更に有する、請求項に記載の方法。 generating the training data by extracting the one or more training magnetic resonance images, the training subject metadata, and the training visual field alignment data from a medical image database; 10. The method of claim 9 . 1つ又は複数のローカライザ磁気共鳴画像及び対象者メタデータを受信するステップと、
前記予測器アルゴリズムへの前記1つ又は複数のローカライザ磁気共鳴画像の入力に応答して、及び前記対象者メタデータの入力に応答して、前記予測器アルゴリズムから前記予測視野整列データを受信するステップと
を有する、請求項又は10に記載の方法。
receiving one or more localizer magnetic resonance images and subject metadata;
receiving said predicted visual field alignment data from said predictor algorithm in response to inputting said one or more localizer magnetic resonance images into said predictor algorithm and in response to inputting said subject metadata; 11. A method according to claim 9 or 10 , comprising
JP2021568555A 2019-05-17 2020-05-16 Automatic field alignment for magnetic resonance imaging Active JP7391112B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP19175092.6 2019-05-17
EP19175092 2019-05-17
RU2019120557 2019-07-02
RU2019120557 2019-07-02
PCT/EP2020/063744 WO2020234204A1 (en) 2019-05-17 2020-05-16 Automated field of view alignment for magnetic resonance imaging

Publications (3)

Publication Number Publication Date
JP2022533165A JP2022533165A (en) 2022-07-21
JPWO2020234204A5 true JPWO2020234204A5 (en) 2023-05-23
JP7391112B2 JP7391112B2 (en) 2023-12-04

Family

ID=70680522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021568555A Active JP7391112B2 (en) 2019-05-17 2020-05-16 Automatic field alignment for magnetic resonance imaging

Country Status (5)

Country Link
US (1) US20220225888A1 (en)
EP (1) EP3969923A1 (en)
JP (1) JP7391112B2 (en)
CN (1) CN113853526A (en)
WO (1) WO2020234204A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022187666A1 (en) 2021-03-04 2022-09-09 Hyperfine Operations, Inc. Systems and methods for performing magnetic resonance imaging with reduced operator interaction

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008064106A1 (en) 2008-12-19 2010-07-08 Siemens Aktiengesellschaft Method for image recording with a magnetic resonance device and magnetic resonance device
ES2962576T3 (en) 2013-03-06 2024-03-19 Koninklijke Philips Nv Apparatus for determining the scanning region
US9471987B2 (en) * 2013-08-09 2016-10-18 Siemens Healthcare Gmbh Automatic planning for medical imaging
US11300643B2 (en) * 2016-07-11 2022-04-12 Synaptive Medical Inc. Adaptive shim coils for MR imaging
US11800978B2 (en) * 2016-08-05 2023-10-31 Siemens Healthcare Gmbh Deep learning based isocenter positioning and fully automated cardiac MR exam planning
US10452813B2 (en) 2016-11-17 2019-10-22 Terarecon, Inc. Medical image identification and interpretation
US11868852B1 (en) * 2017-05-04 2024-01-09 Amazon Technologies, Inc. Introspection of machine learning estimations
WO2019118640A1 (en) * 2017-12-13 2019-06-20 Washington University System and method for determining segments for ablation
US11191281B1 (en) * 2018-01-05 2021-12-07 Tyson Foods, Inc. Method and apparatus for conveying a meat product and using an ultrasonic knife for automated cutting of meat
EP3557274A1 (en) * 2018-04-19 2019-10-23 Koninklijke Philips N.V. Automatic artifact detection and pulse sequence modification in magnetic resonance imaging
US10872413B2 (en) * 2018-04-20 2020-12-22 iCometrue Company Ltd. Method for data management and machine learning with fine resolution
US10852379B2 (en) * 2018-06-07 2020-12-01 Siemens Healthcare Gmbh Artifact reduction by image-to-image network in magnetic resonance imaging
AU2019412503A1 (en) * 2018-12-24 2021-07-08 Body Composition Technologies Pty Ltd Analysing a body
CA3133351A1 (en) * 2019-03-14 2020-09-17 Hyperfine, Inc. Deep learning techniques for generating magnetic resonance images from spatial frequency data
US11087172B2 (en) * 2019-12-31 2021-08-10 Plus One Robotics, Inc. Systems and methods for creating training data
US11651518B2 (en) * 2021-06-03 2023-05-16 Meta Platforms Technologies, Llc System for determining an expected field of view
US11868672B1 (en) * 2023-03-30 2024-01-09 Brelyon, Inc. Methods and systems for interactive displays with intelligent generative content and tandem computing

Similar Documents

Publication Publication Date Title
KR102013828B1 (en) Method and apparatus for predicting surgical duration based on surgical video
CN107492099B (en) Medical image analysis method, medical image analysis system, and storage medium
JP6947759B2 (en) Systems and methods for automatically detecting, locating, and semantic segmenting anatomical objects
CN107680657B (en) Medical scanner self-learning optimized clinical protocol and image acquisition
KR102298412B1 (en) Surgical image data learning system
US20200051238A1 (en) Anatomical Segmentation Identifying Modes and Viewpoints with Deep Learning Across Modalities
EP3364868B1 (en) Generating natural language representations of mental content from functional brain images
US11056227B2 (en) System and method for generating textual descriptions from medical images
CN106529117A (en) Physiology-driven decision support for therapy planning
KR20230085125A (en) Training method for specializing artificial intelligence model in deployed institution, and apparatus for training the artificial intelligence model
CN110993063B (en) Medical image preprocessing at scanners for facilitating joint interpretation by radiologists and artificial intelligence algorithms
US9947104B2 (en) Preview visualisation of tracked nerve fibers
CN106462661A (en) A system and a related method for automatically selecting a hanging protocol for a medical study
KR20210036840A (en) Training method for specializing artificial intelligence model in deployed institution, and apparatus for training the artificial intelligence model
JP2024500938A (en) Automatic annotation of state features in medical images
JPWO2020234204A5 (en)
EP3821440A1 (en) Training a machine learning algorithm using digitally reconstructed radiographs
JP7391112B2 (en) Automatic field alignment for magnetic resonance imaging
JP2020190913A (en) Image-reading supporting device and method for supporting image-reading
Schoch et al. Integration of a biomechanical simulation for mitral valve reconstruction into a knowledge-based surgery assistance system
Deniz et al. GET Social Group Eye Tracking environment for social gaze analysis
EP3975194A1 (en) Device at the point of imaging for integrating training of ai algorithms into the clinical workflow
JP6912787B1 (en) Information registration support program, information registration support system and information registration support method
US20230334655A1 (en) Cardio ai smart assistant for semantic image analysis of medical imaging studies
US20230076903A1 (en) Cue-based medical reporting assistance