JPWO2020214987A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020214987A5
JPWO2020214987A5 JP2021561645A JP2021561645A JPWO2020214987A5 JP WO2020214987 A5 JPWO2020214987 A5 JP WO2020214987A5 JP 2021561645 A JP2021561645 A JP 2021561645A JP 2021561645 A JP2021561645 A JP 2021561645A JP WO2020214987 A5 JPWO2020214987 A5 JP WO2020214987A5
Authority
JP
Japan
Prior art keywords
musk
pharmaceutical composition
splicing
domain
exon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021561645A
Other languages
Japanese (ja)
Other versions
JP2022529009A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2020/028816 external-priority patent/WO2020214987A1/en
Publication of JP2022529009A publication Critical patent/JP2022529009A/en
Publication of JPWO2020214987A5 publication Critical patent/JPWO2020214987A5/ja
Pending legal-status Critical Current

Links

Claims (30)

神経変性または損なわれた認知の1つまたは複数の特質治療するための医薬組成物であって、MuSK NGアゴナイズ剤を含む、医薬組成物 A pharmaceutical composition for treating one or more hallmarks of neurodegeneration or impaired cognition, comprising: a MuSK NG agonist . 神経発生を増加させるための医薬組成物であって、MuSK NGアゴナイズ剤を含む、医薬組成物 A pharmaceutical composition for increasing neurogenesis, comprising: a MuSK NG agonist . 前記MuSK NGアゴナイズ剤は小分子であるまたは小分子を含む、あるいは抗体剤であるまたは抗体剤を含む、あるいはオリゴヌクレオチドであるまたはオリゴヌクレオチドを含む、請求項1または2に記載の医薬組成物3. The pharmaceutical composition of claim 1 or 2, wherein the MuSK NG agonistic agent is or comprises a small molecule , or is or comprises an antibody agent, or is or comprises an oligonucleotide . 前記抗体剤はMuSKポリペプチドに特異的に結合するか、または、MuSKを標的にし、MuSKポリペプチドの前記Ig3ドメインに特異的に結合する、請求項3に記載の医薬組成物。4. The pharmaceutical composition of claim 3, wherein said antibody agent specifically binds to MuSK polypeptide or targets MuSK and specifically binds to said Ig3 domain of MuSK polypeptide. MuSKタンパク質の前記Ig3ドメインを標的にする前記抗体は、MuSKのIg1またはIg2ドメインと比べて前記Ig3ドメインに特異的に結合し得る、請求項に記載の医薬組成物5. The pharmaceutical composition of claim 4 , wherein said antibody targeting said Ig3 domain of MuSK protein is capable of specifically binding said Ig3 domain relative to the Igl or Ig2 domains of MuSK. 前記抗体剤は二価免疫グロブリン分子である、あるいは、モノクローナル抗体であるまたはモノクローナル抗体を含む、あるいは、ポリクローナル抗体であるまたはポリクローナル抗体を含む、請求項3~5のいずれか1項に記載の医薬組成物 A medicament according to any one of claims 3 to 5, wherein the antibody agent is a bivalent immunoglobulin molecule , or is or comprises a monoclonal antibody, or is or comprises a polyclonal antibody. composition . 前記MuSK NGアゴナイズ剤はオリゴヌクレオチドである、請求項に記載の医薬組成物4. The pharmaceutical composition of claim 3 , wherein said MuSK NG agonist is an oligonucleotide. 前記MuSK NGアゴナイズ剤は、転写産物のスプライシングの変更を増加させる、請求項に記載の医薬組成物8. The pharmaceutical composition of claim 7 , wherein the MuSK NG agonist increases alteration of transcript splicing. 転写産物のスプライシングの前記変更は、MuSKスプライシングを変更することであるまたは変更することを含む、請求項に記載の医薬組成物 9. The pharmaceutical composition of claim 8 , wherein said altering transcript splicing is or comprises altering MuSK splicing. MuSKスプライシングの前記変更は、所望のおよび/もしくは向上した生物学的機能を有する産物の産生、ならびに/または非所望の生物学的機能が抑制され得るようにスプライシング産物を改変することによる非所望の産物のノックダウンを含む、請求項に記載の医薬組成物Said alteration of MuSK splicing may result in the production of products with desired and/or enhanced biological functions and/or the production of undesired splicing products by altering splicing products such that undesired biological functions may be suppressed. 10. A pharmaceutical composition according to claim 9 , comprising product knockdown. MuSKスプライシングの前記変更は、MuSK Ig3ドメインをコードする配列を欠如する転写産物を含む、請求項に記載の医薬組成物10. The pharmaceutical composition of claim 9 , wherein said alteration of MuSK splicing comprises a transcript lacking a sequence encoding a MuSK Ig3 domain. 記産物はmRNAである、請求項11に記載の医薬組成物 12. The pharmaceutical composition of claim 11 , wherein said product is mRNA. 前記変更は、1つまたは複数のエクソンをスキップすることを含む、請求項に記載の医薬組成物10. The pharmaceutical composition of Claim 9 , wherein said alteration comprises skipping one or more exons. エクソンスキッピングが、エクソンスキッピングの非存在と比較して、向上した有益な活性を有するmRNAおよびタンパク質のレベルを増加させるという点で、転写産物の前記スプライシングが増加する、請求項13に記載の医薬組成物14. The pharmaceutical composition of claim 13 , wherein exon skipping increases said splicing of transcripts in that it increases levels of mRNAs and proteins with enhanced beneficial activity compared to the absence of exon skipping. things . エクソンスキッピングが、エクソンスキッピングの非存在と比較して、非所望の活性を有するmRNAおよびタンパク質のレベルを下げるという点で、転写産物の前記スプライシングが増加する、請求項13に記載の医薬組成物14. The pharmaceutical composition of claim 13 , wherein exon skipping increases said splicing of transcripts in that exon skipping reduces levels of mRNAs and proteins with unwanted activities compared to the absence of exon skipping. エクソンスキッピングが、MuSK Ig3ドメインのmRNAおよびタンパク質のレベルを下げるという点で、転写産物の前記スプライシングが増加する、請求項15に記載の医薬組成物16. The pharmaceutical composition of claim 15 , wherein exon skipping increases said splicing of transcripts in that it reduces the levels of MuSK Ig3 domain mRNA and protein. 前記スキップされた1つまたは複数のエクソンは前記MuSK Ig3ドメインにある、請求項13に記載の医薬組成物14. The pharmaceutical composition of claim 13 , wherein said skipped one or more exons are in said MuSK Ig3 domain. 前記スキップされたエクソンはMuSK Ig3ドメインのエクソン6である、請求項17に記載の医薬組成物18. The pharmaceutical composition of claim 17 , wherein said skipped exon is exon 6 of the MuSK Ig3 domain. 前記スキップされたエクソンはMuSK Ig3ドメインのエクソン7である、請求項17に記載の医薬組成物18. The pharmaceutical composition of claim 17 , wherein said skipped exon is exon 7 of the MuSK Ig3 domain. 前記スキップされたエクソンはMuSK Ig3ドメインのエクソン6および7である、請求項17に記載の医薬組成物18. The pharmaceutical composition of claim 17 , wherein said skipped exons are exons 6 and 7 of the MuSK Ig3 domain. 前記オリゴヌクレオチドは、制御された構造エレメントを含む、請求項に記載の医薬組成物 8. The pharmaceutical composition of Claim 7 , wherein said oligonucleotide comprises controlled structural elements. 前記オリゴヌクレオチドは化学修飾を含む、請求項17に記載の医薬組成物18. The pharmaceutical composition of Claim 17 , wherein said oligonucleotide comprises a chemical modification. 前記化学修飾は、塩基修飾、糖修飾、およびヌクレオチド間連結修飾のうちの1つまたは複数のタイプを含む、請求項22に記載の医薬組成物23. The pharmaceutical composition of Claim 22 , wherein said chemical modifications comprise one or more types of base modifications, sugar modifications, and internucleotide linkage modifications. 前記化学修飾は糖修飾を含む、請求項23に記載の医薬組成物24. The pharmaceutical composition of Claim 23 , wherein said chemical modification comprises a sugar modification. 前記糖修飾は2-MOE修飾である、請求項24に記載の医薬組成物25. The pharmaceutical composition according to claim 24 , wherein said sugar modification is a 2-MOE modification. MuSK NGアゴナイズ剤に曝露されており、それにより神経マーカーによって特徴付けられる細胞のレベルまたはパーセンテージが、前記曝露なしで観察されるものと比べて集団内で増加している、細胞の集団。 A population of cells that has been exposed to a MuSK NG agonist, whereby the level or percentage of cells characterized by a neuronal marker is increased within the population relative to that observed without said exposure. 前記神経マーカーは、Dex、Map2、GFAP、CNPase、S100b、O4、Sox2、ネスチン、およびその組み合わせからなる群から選択される、請求項26に記載の集団。 27. The population of claim 26 , wherein said neural marker is selected from the group consisting of Dex, Map2, GFAP, CNPase, S100b, O4, Sox2, Nestin, and combinations thereof. MuSK NGアゴナイズ剤を特徴付けする方法であって、
MuSK-Ig3-BMP複合体形成を低下させる能力を査定するステップ;
一次MuSK転写産物のスプライシングパターンを変更する能力を査定するステップ;
転写産物の発現を阻害する能力を査定するステップ;
前記Ig3ドメインをコードする配列を欠如するMuSK転写産物の発現を増加させる能力を査定するステップ;
機能的Ig3を欠如するMuSKポリペプチドのレベルを増加させる能力を査定するステップ;および
集団における細胞の特徴に影響を与える能力を査定するステップ
のうちの1つまたは複数を含む、MuSK NGアゴナイズ剤を特徴付けする方法。
A method of characterizing a MuSK NG agonist comprising:
assessing the ability to reduce MuSK-Ig3-BMP complex formation;
assessing the ability to alter the splicing pattern of the primary MuSK transcript;
assessing the ability to inhibit expression of the transcript;
assessing the ability to increase expression of MuSK transcripts lacking sequences encoding said Ig3 domain;
assessing the ability to increase levels of MuSK polypeptides lacking functional Ig3; and assessing the ability to affect cell characteristics in a population. How to characterize.
MuSKをコードする配列をそのゲノムに含む遺伝子改変されたマウスであって、MuSKをコードする前記配列は、(5’から3’の順序に)エクソン6からエクソン7までのヌクレオチドの距離を含まず;前記遺伝子改変されたマウスは、全長MuSK転写産物を発現し得ないまたは全長MuSKタンパク質を産生し得ない、遺伝子改変されたマウス。 A genetically modified mouse comprising a sequence encoding MuSK in its genome, said sequence encoding MuSK not including the nucleotide distance from exon 6 to exon 7 (in 5′ to 3′ order) a genetically modified mouse, wherein said genetically modified mouse is incapable of expressing a full-length MuSK transcript or producing a full-length MuSK protein; 配列番号2におけるアミノ酸配列を含むMuSKタンパク質を発現し得ない、請求項29に記載の遺伝子改変されたマウス。 30. The genetically modified mouse of claim 29 , which is incapable of expressing a MuSK protein comprising the amino acid sequence in SEQ ID NO:2.
JP2021561645A 2019-04-18 2020-04-17 Neurogenesis Pending JP2022529009A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962835945P 2019-04-18 2019-04-18
US62/835,945 2019-04-18
PCT/US2020/028816 WO2020214987A1 (en) 2019-04-18 2020-04-17 Neurogenesis

Publications (2)

Publication Number Publication Date
JP2022529009A JP2022529009A (en) 2022-06-16
JPWO2020214987A5 true JPWO2020214987A5 (en) 2023-04-25

Family

ID=72837977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021561645A Pending JP2022529009A (en) 2019-04-18 2020-04-17 Neurogenesis

Country Status (8)

Country Link
US (1) US20220193114A1 (en)
EP (1) EP3955742A4 (en)
JP (1) JP2022529009A (en)
AU (1) AU2020257262A1 (en)
CA (1) CA3136949A1 (en)
IL (1) IL287298A (en)
MX (1) MX2021012634A (en)
WO (1) WO2020214987A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021076883A2 (en) * 2019-10-16 2021-04-22 Brown University Muscle regeneration and growth
EP4308232A1 (en) * 2021-03-18 2024-01-24 Brown University Characterizing the binding interactions between musk and bmp receptors
WO2023141302A1 (en) * 2022-01-20 2023-07-27 Bolden Therapeutics, Inc. Musk-targeting oligonucleotides

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060024312A1 (en) * 2004-02-20 2006-02-02 Mount Sinai School Of Medicine Of New York University Methods for enhancing learning and memory
DK2381965T3 (en) * 2009-01-14 2020-07-27 Univ Drexel MODULATION OF PRE-MRNA USING SPLICE-MODULATING OLIGONUCLEOTIDS AS THERAPEUTIC DISEASES FOR THE DISEASE
RS58455B1 (en) * 2011-02-07 2019-04-30 Plexxikon Inc Compounds and methods for kinase modulation, and indications therefor
US9329182B2 (en) * 2011-11-14 2016-05-03 New York University Method of treating motor neuron disease with an antibody that agonizes MuSK
US9574015B2 (en) * 2013-09-13 2017-02-21 New York University Methods for treating muscle specific receptor kinase (MuSK) myasthenia gravis with the Ig1 domain of MuSK
JP6951336B2 (en) * 2015-12-04 2021-10-20 ザ ペン ステイト リサーチ ファウンデーション Chemical reprogramming from human glial cells to neurons with small molecule cocktails
WO2021076883A2 (en) * 2019-10-16 2021-04-22 Brown University Muscle regeneration and growth

Similar Documents

Publication Publication Date Title
Zhuang et al. The m6A reader YTHDF1 regulates axon guidance through translational control of Robo3. 1 expression
Müller et al. Integrin α8β1 is critically important for epithelial–mesenchymal interactions during kidney morphogenesis
Singer et al. Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model
Wang et al. TDP‐43, the signature protein of FTLD‐U, is a neuronal activity‐responsive factor
Frank et al. Differential expression of individual gamma-protocadherins during mouse brain development
Leggere et al. NOVA regulates Dcc alternative splicing during neuronal migration and axon guidance in the spinal cord
Lin et al. The netrin-G1 ligand NGL-1 promotes the outgrowth of thalamocortical axons
Hsu et al. Expression pattern of synucleins (non‐Aβ component of Alzheimer's disease amyloid precursor protein/α‐synuclein) during murine brain development
Watanabe et al. Patterns of expression for the mRNA corresponding to the four isoforms of phospholipase Cβ in mouse brain
Wu et al. Age related changes of various markers of astrocytes in senescence-accelerated mice hippocampus
Pan et al. β1-Integrin and integrin linked kinase regulate astrocytic differentiation of neural stem cells
Koh et al. Drosophila larval neuromuscular junction: molecular components and mechanisms underlying synaptic plasticity
Okui et al. High-level expression of the Mnb/Dyrk1A gene in brain and heart during rat early development
von Holst et al. Neural stem/progenitor cells express 20 tenascin C isoforms that are differentially regulated by Pax6
Lorković et al. RBP45 and RBP47, two oligouridylate-specific hnRNP-like proteins interacting with poly (A)+ RNA in nuclei of plant cells.
Lobas et al. Molecular heterogeneity in the choroid plexus epithelium: the 22‐member γ‐protocadherin family is differentially expressed, apically localized, and implicated in CSF regulation
Hara et al. ADP ribosylation factor 6 regulates neuronal migration in the developing cerebral cortex through FIP3/arfophilin-1-dependent endosomal trafficking of N-cadherin
Mori et al. Expression of mouse igf2 mRNA‐binding protein 3 and its implications for the developing central nervous system
Parcerisas et al. NCAM2 regulates dendritic and axonal differentiation through the cytoskeletal proteins MAP2 and 14-3-3
Wendholt et al. ProSAP-interacting protein 1 (ProSAPiP1), a novel protein of the postsynaptic density that links the spine-associated Rap-Gap (SPAR) to the scaffolding protein ProSAP2/Shank3
Ge et al. Coexpression of VGLUT1 and VGLUT2 in trigeminothalamic projection neurons in the principal sensory trigeminal nucleus of the rat
Kotani et al. Expression of PTPRO in the interneurons of adult mouse olfactory bulb
Subramanian et al. Function of translationally controlled tumor protein (TCTP) in Eudrilus eugeniae regeneration
Han et al. Cbln1 regulates axon growth and guidance in multiple neural regions
Jørgensen et al. Characterization of Meteorin—an evolutionary conserved neurotrophic factor