JPWO2020214587A5 - - Google Patents
Download PDFInfo
- Publication number
- JPWO2020214587A5 JPWO2020214587A5 JP2021561804A JP2021561804A JPWO2020214587A5 JP WO2020214587 A5 JPWO2020214587 A5 JP WO2020214587A5 JP 2021561804 A JP2021561804 A JP 2021561804A JP 2021561804 A JP2021561804 A JP 2021561804A JP WO2020214587 A5 JPWO2020214587 A5 JP WO2020214587A5
- Authority
- JP
- Japan
- Prior art keywords
- action
- count
- actions
- determining whether
- act
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004590 computer program Methods 0.000 claims 6
- 238000000034 method Methods 0.000 claims 6
- 238000012512 characterization method Methods 0.000 claims 4
- 230000002547 anomalous effect Effects 0.000 claims 3
- 238000013528 artificial neural network Methods 0.000 claims 3
- 230000004931 aggregating effect Effects 0.000 claims 1
- 238000011524 similarity measure Methods 0.000 claims 1
Claims (20)
クラウド環境において現在の時間間隔中に取られたアクションのカウントを受取るステップと、
ピアグループにわたって前記アクションが取られた場合、前記アクションの前記カウントが、前の時間の統計的特徴付けよりも閾値量を超える分だけ大きいかどうかを判断するステップと、
前記アクションがアウトライアを表わすかどうかを判断するステップと、
前記アクションがアウトライアを表わすかどうかの判断に基づいてアラートを生成するステップとを含む、方法。 A method for detecting anomalous user behavior in a cloud environment, comprising:
receiving a count of actions taken during the current time interval in the cloud environment;
if the action is taken across peer groups, determining whether the count of the action is greater than a statistical characterization of the previous time by more than a threshold amount;
determining whether the action represents an outlier;
and generating an alert based on determining whether the action represents an outlier.
前記アクションの前記カウントおよび前記アクションのタイプをニューラルネットワークに提供するステップと、
前記アクションがアウトライアを表わすかどうかを示す出力を前記ニューラルネットワークから受取るステップとを含む、請求項1~5のいずれか1項に記載の方法。 determining whether the count of the actions is greater than a threshold amount;
providing the count of the actions and the type of the action to a neural network;
receiving an output from the neural network indicating whether the action represents an outlier.
クラウド環境において現在の時間間隔中に取られたアクションのカウントを受取る動作と、
ピアグループにわたって前記アクションが取られた場合、前記アクションの前記カウントが、前の時間の統計的特徴付けよりも閾値量を超える分だけ大きいかどうかを判断する動作と、
前記アクションがアウトライアを表わすかどうかを判断する動作と、
前記アクションがアウトライアを表わすかどうかの判断に基づいてアラートを生成する動作とを含む、コンピュータプログラム。 A computer program comprising instructions that, when executed by one or more processors, causes the one or more processors to perform an action, the action comprising:
an act of receiving a count of actions taken during a current time interval in a cloud environment;
an act of determining whether, if the action was taken across a peer group, the count of the action is greater than a statistical characterization of a previous time by more than a threshold amount;
an act of determining whether the action represents an outlier;
generating an alert based on determining whether the action represents an outlier.
前記クラウド環境における複数の前の時間間隔中に取られたアクションを表わす第1のベクトルを算出する動作と、
前記第1のベクトルと、現在の時間間隔中に取られたアクションのカウントを含む第2のベクトルとの間の類似度を算出する動作とを含み、前記第2のベクトルは前記アクションの前記カウントも含み、前記動作はさらに、
1つ以上の異常アクションが発生したかどうかを判断するために、前記類似度をベースライン閾値と比較する動作と、
前記1つ以上の異常アクションが前記クラウド環境において発生したという判断に少なくとも部分的に基づいてアラートを生成する動作とを含む、請求項8に記載のコンピュータプログラム。 Said operation further comprises:
an act of calculating a first vector representing actions taken during a plurality of previous time intervals in the cloud environment;
calculating a similarity between said first vector and a second vector comprising counts of actions taken during a current time interval, said second vector being said counts of said actions. also comprising:
an act of comparing the similarity measure to a baseline threshold to determine if one or more anomalous actions have occurred;
generating an alert based, at least in part, on determining that the one or more anomalous actions have occurred in the cloud environment.
1つ以上のプロセッサと、
前記1つ以上のプロセッサによって実行されると前記1つ以上のプロセッサに動作を実行させる命令を含む1つ以上のメモリデバイスとを含み、前記動作は、
クラウド環境において現在の時間間隔中に取られたアクションのカウントを受取る動作と、
ピアグループにわたって前記アクションが取られた場合、前記アクションの前記カウントが、前の時間の統計的特徴付けよりも閾値量を超える分だけ大きいかどうかを判断する動作と、
前記アクションがアウトライアを表わすかどうかを判断する動作と、
前記アクションがアウトライアを表わすかどうかの判断に基づいてアラートを生成する動作とを含む、システム。 a system,
one or more processors;
and one or more memory devices containing instructions that, when executed by the one or more processors, cause the one or more processors to perform operations, the operations comprising:
an act of receiving a count of actions taken during a current time interval in a cloud environment;
an act of determining whether, if the action was taken across a peer group, the count of the action is greater than a statistical characterization of a previous time by more than a threshold amount;
an act of determining whether the action represents an outlier;
generating an alert based on determining whether the action represents an outlier.
前記アクションの前記カウントが、前記アクションについてのスケールファクタを乗じたアクションカウントのグローバル平均よりも大きいかどうかに関する第2の判断を実行する動作を含む、請求項15に記載のシステム。 The act of determining whether the action represents an outlier comprises:
16. The system of claim 15, comprising the act of performing a second determination as to whether the count for the action is greater than a global average of action counts multiplied by a scale factor for the action.
前記スケールファクタを、アクションカウントの前記グローバル平均に対するアクションカウントのローカル平均の比として算出する動作を含む、請求項16に記載のシステム
。 The act of determining whether the action represents an outlier comprises:
17. The system of claim 16, comprising calculating the scale factor as a ratio of a local average of action counts to the global average of action counts.
前記スケールファクタが前記アクションについての既存のスケールファクタよりも大きい場合、前記既存のスケールファクタを置換する動作を含む、請求項17に記載のシステム。 The act of determining whether the action represents an outlier comprises:
18. The system of claim 17, comprising replacing the existing scale factor if the scale factor is greater than an existing scale factor for the action.
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962835983P | 2019-04-18 | 2019-04-18 | |
US201962835993P | 2019-04-18 | 2019-04-18 | |
US201962835980P | 2019-04-18 | 2019-04-18 | |
US62/835,983 | 2019-04-18 | ||
US62/835,993 | 2019-04-18 | ||
US62/835,980 | 2019-04-18 | ||
US16/750,874 | 2020-01-23 | ||
US16/750,874 US11757906B2 (en) | 2019-04-18 | 2020-01-23 | Detecting behavior anomalies of cloud users for outlier actions |
PCT/US2020/028108 WO2020214587A1 (en) | 2019-04-18 | 2020-04-14 | Detecting behavior anomalies of cloud users for outlier actions |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2022529655A JP2022529655A (en) | 2022-06-23 |
JPWO2020214587A5 true JPWO2020214587A5 (en) | 2023-04-14 |
JP7539408B2 JP7539408B2 (en) | 2024-08-23 |
Family
ID=72832113
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021561816A Pending JP2022529467A (en) | 2019-04-18 | 2020-04-14 | Detection of cloud user behavioral abnormalities |
JP2021561804A Active JP7539408B2 (en) | 2019-04-18 | 2020-04-14 | Detecting Cloud User Behavior Anomalies Regarding Outlier Actions |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021561816A Pending JP2022529467A (en) | 2019-04-18 | 2020-04-14 | Detection of cloud user behavioral abnormalities |
Country Status (5)
Country | Link |
---|---|
US (3) | US11288111B2 (en) |
EP (2) | EP3957048A1 (en) |
JP (2) | JP2022529467A (en) |
CN (2) | CN113940034B (en) |
WO (2) | WO2020214585A1 (en) |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11288111B2 (en) | 2019-04-18 | 2022-03-29 | Oracle International Corporation | Entropy-based classification of human and digital entities |
DE102019210227A1 (en) * | 2019-07-10 | 2021-01-14 | Robert Bosch Gmbh | Device and method for anomaly detection in a communication network |
US12088473B2 (en) | 2019-10-23 | 2024-09-10 | Aryaka Networks, Inc. | Method, device and system for enhancing predictive classification of anomalous events in a cloud-based application acceleration as a service environment |
US12095639B2 (en) | 2019-10-23 | 2024-09-17 | Aryaka Networks, Inc. | Method, device and system for improving performance of point anomaly based data pattern change detection associated with network entity features in a cloud-based application acceleration as a service environment |
US12050689B2 (en) * | 2019-11-22 | 2024-07-30 | Pure Storage, Inc. | Host anomaly-based generation of snapshots |
US11611576B2 (en) * | 2019-12-11 | 2023-03-21 | GE Precision Healthcare LLC | Methods and systems for securing an imaging system |
US11637910B2 (en) * | 2020-08-20 | 2023-04-25 | Zscaler, Inc. | Cloud access security broker systems and methods with an in-memory data store |
US11222134B2 (en) | 2020-03-04 | 2022-01-11 | Sotero, Inc. | System and methods for data encryption and application-agnostic querying of encrypted data |
US11734121B2 (en) * | 2020-03-10 | 2023-08-22 | EMC IP Holding Company LLC | Systems and methods to achieve effective streaming of data blocks in data backups |
US20220046406A1 (en) * | 2020-08-07 | 2022-02-10 | Nokia Technologies Oy | Problem mitigation in subscriber profile management |
US11979473B2 (en) | 2020-08-20 | 2024-05-07 | Zscaler, Inc. | Cloud access security broker systems and methods with an in-memory data store |
CN112016701B (en) * | 2020-09-09 | 2023-09-15 | 四川大学 | Abnormal change detection method and system integrating time sequence and attribute behaviors |
US11609704B2 (en) * | 2020-10-14 | 2023-03-21 | Netapp, Inc. | Visualization of outliers in a highly-skewed distribution of telemetry data |
CN114546754A (en) * | 2020-11-26 | 2022-05-27 | 北京四维图新科技股份有限公司 | Automatic intelligent monitoring method and system and map data cloud platform |
CN112783682B (en) * | 2021-02-01 | 2022-02-22 | 福建多多云科技有限公司 | Abnormal automatic repairing method based on cloud mobile phone service |
US11714997B2 (en) * | 2021-03-17 | 2023-08-01 | Paypal, Inc. | Analyzing sequences of interactions using a neural network with attention mechanism |
US20220345457A1 (en) * | 2021-04-22 | 2022-10-27 | Microsoft Technology Licensing, Llc | Anomaly-based mitigation of access request risk |
JP7567070B2 (en) | 2021-05-20 | 2024-10-15 | ネットスコープ, インク. | Confidence scoring of user compliance with organizational security policies |
WO2022248892A1 (en) * | 2021-05-26 | 2022-12-01 | Citrix Systems, Inc. | Reconstructing execution call flows to detect anomalies |
US11210155B1 (en) * | 2021-06-09 | 2021-12-28 | International Business Machines Corporation | Performance data analysis to reduce false alerts in a hybrid cloud environment |
US20220400127A1 (en) * | 2021-06-09 | 2022-12-15 | Microsoft Technology Licensing, Llc | Anomalous user activity timing determinations |
US11501013B1 (en) * | 2021-07-09 | 2022-11-15 | Sotero, Inc. | Autonomous machine learning methods for detecting and thwarting malicious database access |
US20230040648A1 (en) * | 2021-08-03 | 2023-02-09 | Data Culpa, Inc. | String entropy in a data pipeline |
US11818219B2 (en) * | 2021-09-02 | 2023-11-14 | Paypal, Inc. | Session management system |
CN114764946B (en) * | 2021-09-18 | 2023-08-11 | 北京甲板智慧科技有限公司 | Action counting method and system based on time sequence standardization and intelligent terminal |
US20230186221A1 (en) * | 2021-12-14 | 2023-06-15 | Fmr Llc | Systems and methods for job role quality assessment |
CN114513435B (en) * | 2022-01-14 | 2024-08-27 | 深信服科技股份有限公司 | Method for detecting VPN tunnel, electronic device and storage medium |
US11663325B1 (en) * | 2022-04-05 | 2023-05-30 | Cyberark Software Ltd. | Mitigation of privilege escalation |
US20230379346A1 (en) * | 2022-05-18 | 2023-11-23 | Microsoft Technology Licensing, Llc | Threat detection for cloud applications |
US11743280B1 (en) * | 2022-07-29 | 2023-08-29 | Intuit Inc. | Identifying clusters with anomaly detection |
US20240080186A1 (en) * | 2022-09-07 | 2024-03-07 | Google Llc | Random Trigger for Automatic Key Rotation |
US12032694B2 (en) | 2022-09-14 | 2024-07-09 | Sotero, Inc. | Autonomous machine learning methods for detecting and thwarting ransomware attacks |
CN115223104B (en) * | 2022-09-14 | 2022-12-02 | 深圳市睿拓新科技有限公司 | Method and system for detecting illegal operation behaviors based on scene recognition |
US20240232392A9 (en) * | 2022-10-21 | 2024-07-11 | Microsoft Technology Licensing, Llc | Access decision management system for digital resources |
WO2024144778A1 (en) * | 2022-12-29 | 2024-07-04 | Varonis Systems, Inc. | Indicators of compromise of access |
Family Cites Families (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4135034C2 (en) * | 1991-10-23 | 1995-04-13 | Deutsche Forsch Luft Raumfahrt | Device for controlling the orbit of at least two co-positioned geostationary satellites |
US7657935B2 (en) * | 2001-08-16 | 2010-02-02 | The Trustees Of Columbia University In The City Of New York | System and methods for detecting malicious email transmission |
US7191119B2 (en) * | 2002-05-07 | 2007-03-13 | International Business Machines Corporation | Integrated development tool for building a natural language understanding application |
CA2531410A1 (en) | 2005-12-23 | 2007-06-23 | Snipe Network Security Corporation | Behavioural-based network anomaly detection based on user and group profiling |
US8204982B2 (en) | 2006-09-14 | 2012-06-19 | Quova, Inc. | System and method of middlebox detection and characterization |
US9609015B2 (en) | 2008-05-28 | 2017-03-28 | Zscaler, Inc. | Systems and methods for dynamic cloud-based malware behavior analysis |
US8566956B2 (en) | 2010-06-23 | 2013-10-22 | Salesforce.Com, Inc. | Monitoring and reporting of data access behavior of authorized database users |
KR20120105759A (en) | 2011-03-16 | 2012-09-26 | 한국전자통신연구원 | Malicious code visualization apparatus, apparatus and method for detecting malicious code |
US8621586B1 (en) | 2011-09-28 | 2013-12-31 | Emc Corporation | Using baseline profiles in adaptive authentication |
US8830057B1 (en) | 2012-02-09 | 2014-09-09 | Google Inc. | Systems and methods for using robots to monitor environmental conditions in an environment |
CN103338188B (en) * | 2013-06-08 | 2016-02-10 | 北京大学 | A kind of dynamic authentication method of client side being applicable to mobile cloud |
FR3024260B1 (en) * | 2014-07-25 | 2016-07-29 | Suez Environnement | METHOD FOR DETECTING ANOMALIES IN A DISTRIBUTION NETWORK, ESPECIALLY DRINKING WATER |
US9805193B1 (en) * | 2014-12-18 | 2017-10-31 | Palo Alto Networks, Inc. | Collecting algorithmically generated domains |
US9807086B2 (en) * | 2015-04-15 | 2017-10-31 | Citrix Systems, Inc. | Authentication of a client device based on entropy from a server or other device |
US9917852B1 (en) | 2015-06-29 | 2018-03-13 | Palo Alto Networks, Inc. | DGA behavior detection |
RU2617631C2 (en) | 2015-09-30 | 2017-04-25 | Акционерное общество "Лаборатория Касперского" | Method for detection working malicious software runned from client, on server |
NL2015680B1 (en) | 2015-10-29 | 2017-05-31 | Opt/Net Consulting B V | Anomaly detection in a data stream. |
CN105677538B (en) | 2016-01-11 | 2018-01-26 | 中国科学院软件研究所 | A kind of cloud computing system self-adaptive monitoring method based on failure predication |
EP3427437A4 (en) * | 2016-03-10 | 2019-10-23 | Telefonaktiebolaget LM Ericsson (PUBL) | Ddos defence in a packet-switched network |
US10372910B2 (en) * | 2016-06-20 | 2019-08-06 | Jask Labs Inc. | Method for predicting and characterizing cyber attacks |
US10140260B2 (en) | 2016-07-15 | 2018-11-27 | Sap Se | Intelligent text reduction for graphical interface elements |
US10715533B2 (en) | 2016-07-26 | 2020-07-14 | Microsoft Technology Licensing, Llc. | Remediation for ransomware attacks on cloud drive folders |
US10045218B1 (en) | 2016-07-27 | 2018-08-07 | Argyle Data, Inc. | Anomaly detection in streaming telephone network data |
US10075463B2 (en) | 2016-09-09 | 2018-09-11 | Ca, Inc. | Bot detection system based on deep learning |
KR102464390B1 (en) | 2016-10-24 | 2022-11-04 | 삼성에스디에스 주식회사 | Method and apparatus for detecting anomaly based on behavior analysis |
JP2018081655A (en) | 2016-11-18 | 2018-05-24 | 富士通株式会社 | Unauthorized operation monitoring device, unauthorized operation monitoring method, unauthorized operation monitoring program, and unauthorized operation monitoring system |
US10320819B2 (en) | 2017-02-27 | 2019-06-11 | Amazon Technologies, Inc. | Intelligent security management |
CN107302547B (en) * | 2017-08-21 | 2021-07-02 | 深信服科技股份有限公司 | Web service anomaly detection method and device |
CN108334530B (en) | 2017-08-24 | 2021-12-07 | 平安普惠企业管理有限公司 | User behavior information analysis method, device and storage medium |
US20190109870A1 (en) | 2017-09-14 | 2019-04-11 | Commvault Systems, Inc. | Ransomware detection and intelligent restore |
US10678692B2 (en) * | 2017-09-19 | 2020-06-09 | Intel Corporation | Method and system for coordinating baseline and secondary prefetchers |
US10623429B1 (en) * | 2017-09-22 | 2020-04-14 | Amazon Technologies, Inc. | Network management using entropy-based signatures |
US11637844B2 (en) * | 2017-09-28 | 2023-04-25 | Oracle International Corporation | Cloud-based threat detection |
US20190102361A1 (en) | 2017-09-29 | 2019-04-04 | Linkedin Corporation | Automatically detecting and managing anomalies in statistical models |
US10735457B2 (en) * | 2017-10-03 | 2020-08-04 | Microsoft Technology Licensing, Llc | Intrusion investigation |
US10417335B2 (en) | 2017-10-10 | 2019-09-17 | Colossio, Inc. | Automated quantitative assessment of text complexity |
CN108040067B (en) | 2017-12-26 | 2021-07-06 | 北京星河星云信息技术有限公司 | Cloud platform intrusion detection method, device and system |
CN108564592B (en) * | 2018-03-05 | 2021-05-11 | 华侨大学 | Image segmentation method based on dynamic multi-population integration differential evolution algorithm |
CN108334875A (en) * | 2018-04-26 | 2018-07-27 | 南京邮电大学 | Vena characteristic extracting method based on adaptive multi-thresholding |
US11055411B2 (en) | 2018-05-10 | 2021-07-06 | Acronis International Gmbh | System and method for protection against ransomware attacks |
US11555699B2 (en) * | 2018-05-24 | 2023-01-17 | Nextnav, Llc | Systems and methods for determining when an estimated altitude of a mobile device can be used for calibration or location determination |
US11030322B2 (en) * | 2018-10-24 | 2021-06-08 | International Business Machines Corporation | Recommending the most relevant and urgent vulnerabilities within a security management system |
US11687761B2 (en) * | 2018-12-11 | 2023-06-27 | Amazon Technologies, Inc. | Improper neural network input detection and handling |
US11470110B2 (en) | 2019-02-08 | 2022-10-11 | Imperva, Inc. | Identifying and classifying community attacks |
US20220126878A1 (en) | 2019-03-29 | 2022-04-28 | Intel Corporation | Autonomous vehicle system |
US11288111B2 (en) | 2019-04-18 | 2022-03-29 | Oracle International Corporation | Entropy-based classification of human and digital entities |
-
2020
- 2020-01-23 US US16/750,863 patent/US11288111B2/en active Active
- 2020-01-23 US US16/750,874 patent/US11757906B2/en active Active
- 2020-01-23 US US16/750,852 patent/US11930024B2/en active Active
- 2020-04-14 EP EP20722207.6A patent/EP3957048A1/en active Pending
- 2020-04-14 CN CN202080038794.4A patent/CN113940034B/en active Active
- 2020-04-14 EP EP20722956.8A patent/EP3957049A1/en not_active Withdrawn
- 2020-04-14 CN CN202080034989.1A patent/CN113826368B/en active Active
- 2020-04-14 JP JP2021561816A patent/JP2022529467A/en active Pending
- 2020-04-14 JP JP2021561804A patent/JP7539408B2/en active Active
- 2020-04-14 WO PCT/US2020/028105 patent/WO2020214585A1/en active Application Filing
- 2020-04-14 WO PCT/US2020/028108 patent/WO2020214587A1/en active Application Filing
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPWO2020214587A5 (en) | ||
US11151014B2 (en) | System operational analytics using additional features for health score computation | |
JPWO2020214585A5 (en) | ||
US10592308B2 (en) | Aggregation based event identification | |
US10242087B2 (en) | Cluster evaluation in unsupervised learning of continuous data | |
US10419269B2 (en) | Anomaly detection | |
CN107301118B (en) | A kind of fault indices automatic marking method and system based on log | |
US8468161B2 (en) | Determining a seasonal effect in temporal data | |
JP6714152B2 (en) | Analytical apparatus, analytical method and analytical program | |
CN112882796A (en) | Abnormal root cause analysis method and apparatus, and storage medium | |
CN113535454B (en) | Log data anomaly detection method and device | |
US10705940B2 (en) | System operational analytics using normalized likelihood scores | |
Chandolikar et al. | Efficient algorithm for intrusion attack classification by analyzing KDD Cup 99 | |
US12001546B2 (en) | Systems and methods for causality-based multivariate time series anomaly detection | |
US10733514B1 (en) | Methods and apparatus for multi-site time series data analysis | |
CN113515434A (en) | Abnormity classification method, abnormity classification device, abnormity classification equipment and storage medium | |
CN110796591A (en) | GPU card using method and related equipment | |
CN107085544B (en) | System error positioning method and device | |
CN114416410A (en) | Anomaly analysis method and device and computer-readable storage medium | |
CN115858606A (en) | Method, device and equipment for detecting abnormity of time series data and storage medium | |
CN111783883A (en) | Abnormal data detection method and device | |
CN108073464A (en) | A kind of time series data abnormal point detecting method and device based on speed and acceleration | |
CN111768219B (en) | Advertisement crowd experiment method, device and storage medium | |
CN114756401B (en) | Abnormal node detection method, device, equipment and medium based on log | |
CN111309706A (en) | Model training method and device, readable storage medium and electronic equipment |