JPWO2020205952A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020205952A5
JPWO2020205952A5 JP2021559237A JP2021559237A JPWO2020205952A5 JP WO2020205952 A5 JPWO2020205952 A5 JP WO2020205952A5 JP 2021559237 A JP2021559237 A JP 2021559237A JP 2021559237 A JP2021559237 A JP 2021559237A JP WO2020205952 A5 JPWO2020205952 A5 JP WO2020205952A5
Authority
JP
Japan
Prior art keywords
phase
rotation
axis
converging
fringe pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021559237A
Other languages
Japanese (ja)
Other versions
JP2022527827A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2020/026143 external-priority patent/WO2020205952A1/en
Publication of JP2022527827A publication Critical patent/JP2022527827A/en
Publication of JPWO2020205952A5 publication Critical patent/JPWO2020205952A5/ja
Pending legal-status Critical Current

Links

Claims (22)

試料を画像化する方法であって、
顕微鏡の対物レンズを通って出射された光ビームの干渉によって、複数の点の各々において生成された第1の収束フリンジパターンで、前記試料の前記複数の点を照明することを含み、
前記第1の収束フリンジパターンに対して、前記顕微鏡の対物レンズの第1の別個の照明領域は第1の回転軸を有し、前記光ビームの位相は、第1の位相だけお互いに対してシフトされ、
前記方法が、前記複数の点を少なくとも1つの異なる収束フリンジパターンで照明することをさらに含み、前記光ビームは、前記第1の位相に対して、異なる位相だけ互いに対して位相がシフトされ、(i)前記顕微鏡の対物レンズの同一の別個の照明領域は、前記第1の回転軸に対して角度付けられていない同一の回転軸を有するか、または、(ii)前記顕微鏡の対物レンズの異なる別個の照明領域は、前記第1の回転軸に対して角度付けられている異なる回転軸を有し、
前記別個の照明領域の一方または双方が、非円形である、方法。
A method of imaging a sample, comprising:
illuminating the plurality of points of the sample with a first converging fringe pattern produced at each of the plurality of points by interference of light beams emitted through a microscope objective;
For said first converging fringe pattern, a first discrete illumination area of said microscope objective lens has a first axis of rotation and said light beams are phased with respect to each other by a first phase. shifted and
The method further comprises illuminating the plurality of points with at least one different converging fringe pattern, wherein the light beams are phase shifted with respect to each other by different phases relative to the first phase, and ( i) the same separate illumination areas of the microscope objective have the same axis of rotation that is not angled with respect to the first axis of rotation; or (ii) different illumination areas of the microscope objective. separate illumination areas having different axes of rotation angled with respect to the first axis of rotation;
The method, wherein one or both of the discrete illumination areas are non-circular.
単一要素検出器または分光器から、前記第1の収束フリンジパターンおよび前記少なくとも1つの異なる収束フリンジパターンの各々に対応する、複数の生画像の各々に対する照明データを取得することをさらに含む、請求項1に記載の方法。 further comprising acquiring illumination data for each of a plurality of raw images corresponding to each of said first convergent fringe pattern and said at least one different convergent fringe pattern from a single element detector or spectrograph. Item 1. The method according to item 1. 以下の式に従って、前記複数の生画像の各々に対する前記照明データから、超解像合成画像を再構成することをさらに含み、
Figure 2020205952000001
式中、Isynは、前記合成画像であり、nimagesは、前記複数の生画像の各々の数であり、
前記第1の収束フリンジパターンおよび前記少なくとも1つの異なる収束フリンジパターンの各々に対して、
iは、回転軸角度に対応する指数であり、
jは、前記光ビームのお互いに対しての位相シフトに対応する指数であり、
rawi、jは、前記回転軸角度に対応する指数iおよび前記位相シフトに対応する指数jを有する、前記複数の生画像の各々に対する前記照明データであり、
Aは、収束フリンジパターンのコントラストを表す係数であり、
phaseは、前記位相シフトである、請求項2に記載の方法。
further comprising reconstructing a super-resolution composite image from the illumination data for each of the plurality of raw images according to the formula:
Figure 2020205952000001
wherein I syn is the composite image, n images is the number of each of the plurality of raw images,
for each of the first converging fringe pattern and the at least one different converging fringe pattern;
i is an index corresponding to the rotation axis angle,
j is an index corresponding to the phase shift of the light beams with respect to each other;
Irawi,j is the illumination data for each of the plurality of raw images, with index i corresponding to the axis of rotation angle and index j corresponding to the phase shift;
A is a coefficient representing the contrast of the converging fringe pattern,
3. The method of claim 2, wherein phase is the phase shift.
前記別個の照明領域が、前記顕微鏡の対物レンズの後部開口の中心と実質的に同一直線上にある中心を有する最大内接円を含む、請求項1~3のいずれか一項に記載の方法。 A method according to any one of claims 1 to 3, wherein said discrete illumination area comprises a maximum inscribed circle having a center substantially collinear with the center of the rear aperture of said microscope objective. . 前記別個の照明領域が、各々、前記最大内接円の外部の照明増強領域をさらに含む、請求項4に記載の方法。 5. The method of claim 4, wherein each of said separate illumination areas further comprises an illumination enhancement area outside said largest inscribed circle. 前記照明増強領域が、前記別個の照明領域の少なくとも約50%を表す、請求項5に記載の方法。 6. The method of claim 5, wherein said illumination enhancement area represents at least about 50% of said discrete illumination area. 前記照明領域が、前記顕微鏡の対物レンズの後部円形開口の反対側部分に一致するスリットとして形状化される、請求項5に記載の方法。 6. The method of claim 5, wherein the illumination area is shaped as a slit coinciding with the opposite portion of the rear circular aperture of the microscope objective. 前記少なくとも1つの異なる収束フリンジパターンに対して、前記光ビームが、プログラム可能な空間光変調器を使用して同位相で変調される、請求項1~7のいずれか一項に記載の方法。 A method according to any preceding claim, wherein for said at least one different converging fringe pattern said light beams are modulated in phase using a programmable spatial light modulator. 前記第1および前記少なくとも1つの異なる収束フリンジパターンのいずれに対しても、前記別個の照明領域が、0の余弦を有する位相だけシフトされていない、請求項1~8のいずれか一項に記載の方法。 9. A method according to any one of the preceding claims, wherein for neither the first nor the at least one different converging fringe pattern the distinct illumination areas are phase shifted with a cosine of zero. the method of. 前記第1および前記少なくとも1つの異なる収束フリンジパターンのいずれに対しても、前記別個の照明領域が、0.5未満の絶対値を有する余弦を有する位相だけシフトされていない、請求項1~9のいずれか一項に記載の方法。 Claims 1 to 9, wherein for neither said first nor said at least one different converging fringe pattern said separate illumination regions are phase shifted by a cosine with an absolute value of less than 0.5. The method according to any one of . 前記少なくとも1つの異なる収束フリンジパターンが、前記第1の位相とは異なる第2の位相だけ前記光ビームがシフトされている第2の収束フリンジパターンであり、前記同一の別個の照明領域が、前記第1の回転軸に対して角度付けられていない第2の回転軸を有する第2の別個の照明領域である、請求項1~10のいずれか一項に記載の方法。 The at least one different convergent fringe pattern is a second convergent fringe pattern in which the light beam is shifted by a second phase different from the first phase, and the same distinct illumination area is the A method according to any one of claims 1 to 10, wherein the second separate illumination area has a second axis of rotation that is not angled with respect to the first axis of rotation. 前記少なくとも1つの異なる収束フリンジパターンは、
前記光ビームが前記第1の位相と実質的に同一である第3の位相だけシフトされており、かつ、第3の別個の照明領域が前記第1の回転軸および前記第2の回転軸に対して角度付けられている第3の回転軸を有する、第3の収束フリンジパターンをさらに含む、請求項11に記載の方法。
The at least one different converging fringe pattern is
wherein the light beam is shifted by a third phase that is substantially the same as the first phase, and a third separate illumination area is aligned with the first axis of rotation and the second axis of rotation; 12. The method of claim 11, further comprising a third converging fringe pattern having a third axis of rotation that is angled relative to.
前記少なくとも1つの異なる収束フリンジパターンは、
前記光ビームが前記第2の位相と実質的に同一である第4の位相だけシフトされており、かつ、第4の別個の照明領域が前記第3の回転軸に対して角度付けられていない第4の回転軸をさらに含む、請求項12に記載の方法。
The at least one different converging fringe pattern is
the light beam is shifted by a fourth phase that is substantially the same as the second phase, and a fourth discrete illumination area is not angled with respect to the third axis of rotation 13. The method of claim 12, further comprising a fourth axis of rotation.
前記第2の位相が、前記第1の位相とはπだけ異なる、請求項11~13のいずれか一項に記載の方法。 A method according to any one of claims 11 to 13, wherein said second phase differs from said first phase by π. 前記第1の位相が、0であり、前記第2の位相が、πである、請求項11~14のいずれか一項に記載の方法。 A method according to any one of claims 11 to 14, wherein said first phase is 0 and said second phase is π. 前記少なくとも1つの異なる収束フリンジパターンは、
前記光ビームが前記第1の位相および前記第3の位相と実質的に同一である第5の位相だけシフトし、かつ、第5の別個の照明領域が前記第1、第2、第3、および第4の回転軸に対して角度を有する第5の回転軸を有する、第5の収束フリンジパターンと、
前記光ビームが前記第2の位相および前記第4の位相と実質的に同一である第6の位相だけシフトされ、かつ、第6の別個の照明領域が前記第5に対して角度を有さない第6の回転軸を有する、第6の収束フリンジパターンと、を含む、請求項13に記載の方法。
The at least one different converging fringe pattern is
wherein the light beam is shifted by a fifth phase substantially identical to the first phase and the third phase, and a fifth separate illumination area is shifted from the first, second, third, and a fifth converging fringe pattern having a fifth axis of rotation angled with respect to the fourth axis of rotation;
the light beam is shifted by a sixth phase substantially identical to the second phase and the fourth phase, and a sixth separate illumination area is angled with respect to the fifth; 14. The method of claim 13, comprising a sixth converging fringe pattern having a non-zero sixth axis of rotation.
前記第1、第3、および第5の位相が0であり、前記第2、第4、および第6の位相がπである、請求項16に記載の方法。 17. The method of claim 16, wherein said first, third and fifth phases are 0 and said second, fourth and sixth phases are [pi]. 前記第3の回転軸は、前記第1の回転軸に対して約π/6から約π/2の角度を有し、前記第5の回転軸は、前記第1の回転軸に対して約π/2から約5π/6の角度を有する、請求項16に記載の方法。 The third axis of rotation has an angle of about π/6 to about π/2 with respect to the first axis of rotation, and the fifth axis of rotation has an angle of about π/6 with respect to the first axis of rotation. 17. The method of claim 16, having an angle of [pi]/2 to about 5[pi]/6. 試料を画像化する方法であって、
複数の生画像の各々の照明データを取得することを含み、前記生画像の各々は、1組の収束フリンジパターンの所与の1つに対応し、前記収束フリンジパターンの各々は、顕微鏡の対物レンズを通って出射される一対の光ビームの干渉によって生成され、前記試料の複数の点を照明し、
前記収束フリンジパターンの組は、(i)前記光ビームがシフトされたX位相と、(ii)前記光ビームの回転軸が向けられたY角度と、の組み合わせであるXおよびY構成要素を含み、前記組は、Xの2つの異なる値以下であ
前記一対の光ビームの光ビームは、前記収束フリンジパターンの少なくとも1つに対して、前記顕微鏡の対物レンズの非円形な照明領域を照明する、方法。
A method of imaging a sample, comprising:
acquiring illumination data for each of a plurality of raw images, each of said raw images corresponding to a given one of a set of converging fringe patterns, each of said converging fringe patterns corresponding to a microscope objective; produced by the interference of a pair of light beams emitted through a lens to illuminate a plurality of points on the sample;
The set of converging fringe patterns includes an X and Y component that is a combination of (i) the X phase at which the light beam is shifted and (ii) the Y angle at which the axis of rotation of the light beam is oriented. , the set is less than or equal to two different values of X;
The method of claim 1, wherein the light beams of the pair of light beams illuminate a non-circular illumination area of the microscope objective lens for at least one of the converging fringe patterns.
ラマン分光法または蛍光顕微鏡法を実行するための装置であって、前記光ビームの位相を変調するためのプログラム可能な空間光変調器(SLM)を備え、かつ、請求項1~19のいずれか一項に記載の方法を実行するように構成されている、装置。 Apparatus for performing Raman spectroscopy or fluorescence microscopy, comprising a programmable spatial light modulator (SLM) for modulating the phase of the light beam, and comprising a programmable spatial light modulator (SLM) for modulating the phase of the light beam. Apparatus configured to perform the method of claim 1. 前記SLMは、前記光ビームを前記顕微鏡の対物レンズの前記非円形の別個の照明領域に通過させる位相格子を表示する、請求項20に記載の装置。 21. The apparatus of claim 20, wherein the SLM displays a phase grating that passes the light beam through the non-circular discrete illumination areas of the microscope objective. 前記非円形の別個の照明領域を平滑化するためにガウスぼかしを実行するように構成されている、請求項20又は21に記載の装置。 22. Apparatus according to claim 20 or 21, arranged to perform a Gaussian blur to smooth the non-circular discrete illumination areas.
JP2021559237A 2019-04-02 2020-04-01 Advanced sample imaging using structured illumination microscopy Pending JP2022527827A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962827921P 2019-04-02 2019-04-02
US62/827,921 2019-04-02
PCT/US2020/026143 WO2020205952A1 (en) 2019-04-02 2020-04-01 Enhanced sample imaging using structured illumination microscopy

Publications (2)

Publication Number Publication Date
JP2022527827A JP2022527827A (en) 2022-06-06
JPWO2020205952A5 true JPWO2020205952A5 (en) 2023-03-03

Family

ID=72661658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021559237A Pending JP2022527827A (en) 2019-04-02 2020-04-01 Advanced sample imaging using structured illumination microscopy

Country Status (5)

Country Link
US (1) US11604341B2 (en)
EP (1) EP3948237B1 (en)
JP (1) JP2022527827A (en)
CN (1) CN113711014A (en)
WO (1) WO2020205952A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115297765A (en) 2020-02-19 2022-11-04 热电科学仪器有限公司 Structured illuminated phase mask
DE102020123668A1 (en) * 2020-09-10 2022-03-10 Carl Zeiss Microscopy Gmbh Methods for image evaluation for SIM microscopy and SIM microscopy methods

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5587832A (en) 1993-10-20 1996-12-24 Biophysica Technologies, Inc. Spatially light modulated confocal microscope and method
EP0916981B1 (en) 1997-11-17 2004-07-28 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Confocal spectroscopy system and method
DE10123785A1 (en) * 2001-05-16 2002-11-21 Leica Microsystems Device for illuminating a field of view, for example an object field under a microscope by two light sources
DE102004034970A1 (en) 2004-07-16 2006-02-02 Carl Zeiss Jena Gmbh Scanning microscope and use
DE102004034961A1 (en) 2004-07-16 2006-02-02 Carl Zeiss Jena Gmbh Scanning microscope with linear scanning and use
DE102008049878A1 (en) 2008-09-30 2010-04-01 Carl Zeiss Microlmaging Gmbh Improved methods and devices for microscopy with structured illumination
DE102008054317A1 (en) 2008-11-03 2010-05-06 Carl Zeiss Microlmaging Gmbh combining microscopy
JP5412394B2 (en) 2010-09-30 2014-02-12 オリンパス株式会社 Sample observation equipment
US8237835B1 (en) 2011-05-19 2012-08-07 Aeon Imaging, LLC Confocal imaging device using spatially modulated illumination with electronic rolling shutter detection
DE102011077269A1 (en) 2011-06-09 2012-12-13 Carl Zeiss Microimaging Gmbh High-resolution luminescence microscopy
US9444981B2 (en) 2011-07-26 2016-09-13 Seikowave, Inc. Portable structured light measurement module/apparatus with pattern shifting device incorporating a fixed-pattern optic for illuminating a subject-under-test
DE102011084315A1 (en) 2011-10-12 2013-04-18 Carl Zeiss Microscopy Gmbh High-resolution luminescence microscopy
US9360660B2 (en) 2012-05-24 2016-06-07 Northwestern University Methods and apparatus for laser scanning structured illumination microscopy and tomography
CN104541193A (en) 2012-07-05 2015-04-22 新加坡国立大学 Light microscope and method of controlling the same
EP2870498A4 (en) 2012-07-05 2016-03-02 Martin Russell Harris Structured illumination microscopy apparatus and method
EP2713195B1 (en) 2012-09-28 2017-04-12 Universität Heidelberg High resolution microscopy by means of structured illumination at large working distances
EP2801854B1 (en) * 2013-05-10 2017-07-19 Ruprecht-Karls-Universität Heidelberg Method and apparatus for combination of localization microscopy and structured illumination microscopy
WO2015052936A1 (en) * 2013-10-09 2015-04-16 株式会社ニコン Structured illumination microscope device
DE102014119255A1 (en) 2014-12-19 2016-06-23 Carl Zeiss Microscopy Gmbh Method for light-sheet microscopic examination of a sample
US9395293B1 (en) 2015-01-12 2016-07-19 Verily Life Sciences Llc High-throughput hyperspectral imaging with superior resolution and optical sectioning
ITUB20154591A1 (en) 2015-10-12 2017-04-12 Crestoptics S R L CONFOCAL MICROSCOPY AND RELATIVE PROCEDURE OF ACQUISITION AND PROCESSING OF IMAGES
WO2017068620A1 (en) * 2015-10-19 2017-04-27 株式会社ニコン Structured illumination microscope, observation method, and microscope control program
JP2018021954A (en) * 2016-08-01 2018-02-08 レーザーテック株式会社 Microscope and method for observation
CN107092086A (en) * 2017-02-24 2017-08-25 浙江大学 The microscopic method and device of laser scanning saturated structures optical illumination based on phase-modulation
CN106770147B (en) * 2017-03-15 2019-07-19 北京大学 A kind of Structured Illumination super-resolution micro imaging method
WO2019053768A1 (en) * 2017-09-12 2019-03-21 株式会社ニコン Microscope and observation method
CN107907981A (en) * 2017-10-27 2018-04-13 浙江大学 A kind of three-dimensional structure optical illumination super-resolution microscopic imaging device based on double galvanometers
JP2020098257A (en) * 2018-12-18 2020-06-25 株式会社ニコン Microscope and observation method
WO2020179036A1 (en) * 2019-03-06 2020-09-10 株式会社ニコン Microscope

Similar Documents

Publication Publication Date Title
JP5412394B2 (en) Sample observation equipment
Gustafsson et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination
Karadaglić et al. Image formation in structured illumination wide-field fluorescence microscopy
Luo et al. Synthetic aperture-based on-chip microscopy
Rosen et al. Non-scanning motionless fluorescence three-dimensional holographic microscopy
Li et al. Efficient quantitative phase microscopy using programmable annular LED illumination
US20090219607A1 (en) Method and apparatus for enhanced resolution microscopy of living biological nanostructures
US9817224B2 (en) Methods and systems for Fourier ptychographic imaging
EP3255414A1 (en) 3d refractive index tomography and structured illumination microscopy system using wavefront shaper and method thereof
JP2022046447A (en) Method for super-resolution of microscope image illuminated in a structured manner and microscope having structured illumination
Maurer et al. Phase contrast microscopy with full numerical aperture illumination
EP2800992A1 (en) 4f-based optical phase imaging system
EP3184992B1 (en) Raman spectroscopy microscope and method for observing raman scattering
Joseph et al. Improving the space-bandwidth product of structured illumination microscopy using a transillumination configuration
CN114594588B (en) Structured light illumination microscopic device and method based on grating projection and SLM phase shift
JP2022527827A (en) Advanced sample imaging using structured illumination microscopy
Fürhapter et al. Spiral phase microscopy
JPWO2020205952A5 (en)
Park et al. Enhancing the isotropy of lateral resolution in coherent structured illumination microscopy
WO2021064434A1 (en) Transmission microscopy
Gustafsson Extended-resolution reconstruction of structured illumination microscopy data
Fiolka Seeing more with structured illumination microscopy
CN108474930B (en) Microscopy method and microscope for determining contrast images
Masters et al. Structured Illumination Microscopy
JP2021529991A (en) Systems and methods for improved axial resolution in microscopes using photoswitching and standing wave illumination techniques