JPWO2020181685A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020181685A5
JPWO2020181685A5 JP2021502766A JP2021502766A JPWO2020181685A5 JP WO2020181685 A5 JPWO2020181685 A5 JP WO2020181685A5 JP 2021502766 A JP2021502766 A JP 2021502766A JP 2021502766 A JP2021502766 A JP 2021502766A JP WO2020181685 A5 JPWO2020181685 A5 JP WO2020181685A5
Authority
JP
Japan
Prior art keywords
bounding box
anchor point
cnn
network
collection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021502766A
Other languages
Japanese (ja)
Other versions
JP2021530062A (en
JP7120689B2 (en
Publication date
Priority claimed from CN201910185300.4A external-priority patent/CN109977812B/en
Application filed filed Critical
Publication of JP2021530062A publication Critical patent/JP2021530062A/en
Publication of JPWO2020181685A5 publication Critical patent/JPWO2020181685A5/ja
Application granted granted Critical
Publication of JP7120689B2 publication Critical patent/JP7120689B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は深層学習に基づく車載ビデオターゲット検出方法に関わり、ビデオ画像処理技術分野に属する。 The present invention relates to an in-vehicle video target detection method based on deep learning and belongs to the field of video image processing technology.

運転中に、車前の車、歩行者及び他の障害物に対するターゲット検出及び追跡を行い、それにより前車の行動に対する分析を行うのは安全運転支援システムの基礎である。従来のターゲット検出方法は主なステップとして、ターゲット特徴の抽出、該当する分類子に対する訓練、ウィンドウのスライドによる検索、重複及び誤検知フィルタリングが普通である。このようなターゲット検出はスライディングウィンドウ選択策略に焦点がなく、タイミングの複雑さが高く、ウィンドウが冗長性につながり、手作りデザインの特徴の堅牢性が下手であり、分類子が信頼できないと同時に、需要に応じて有効な特徴を学習して個別検出を完成するように柔軟にデータを訓練できない。 It is the basis of a safe driving support system to detect and track targets for vehicles, pedestrians and other obstacles in front of the vehicle while driving, thereby analyzing the behavior of the vehicle in front. Conventional target detection methods usually have the main steps of extracting target features, training the corresponding classifier, searching by sliding windows, and filtering for duplicates and false positives. Such target detection does not focus on sliding window selection strategies, has high timing complexity, windows lead to redundancy, poor robustness of handmade design features, classifiers are unreliable and at the same time demand. It is not possible to flexibly train the data to learn valid features and complete individual detections accordingly.

本発明は従来の技術の前記の不足を解決して深層学習に基づく車載ビデオターゲット検出方法を提供することを目的にする。 An object of the present invention is to solve the above-mentioned deficiencies of the prior art and to provide an in-vehicle video target detection method based on deep learning.

上記の目的を達成するために、本発明は以下の技術的解決策を採用する。 In order to achieve the above object, the present invention employs the following technical solutions.

深層学習に基づく車載ビデオターゲット検出方法は下記のステップを含む。 An in-vehicle video target detection method based on deep learning includes the following steps.

ステップ1)深度座標の下のピクセルをカラー座標の下に合わせ、深度画像及びカラー画像を各々CNNにより特徴抽出を行い、各々の畳み込み層が出力した特徴マップをチャンネル次元で直列接続融合を行って最終的RGB-D特徴を取得して融合済畳み込み特徴マップとするここで、前記直列接続融合によって取得したRGB-D特徴はRPNとFast R-CNNが共有する融合済畳み込み特徴マップとしてマトリックス形式が下記であり、

Figure 2020181685000005

その中、
i、j、k:中間変数
i~[0,h‐1]、j~[0,w‐1]、k~[0,2c‐1]、
h:特徴マップの高さ
w:特徴マップの幅
c:RGBのチャンネルの3つ
RGB (i,j,k): カラー画像特徴
depth (i,j,k‐c):深度画像特徴
merge (i,j,k):直列接続融合済画像特徴である。 Step 1) Align the pixels under the depth coordinates under the color coordinates, extract the features of the depth image and the color image by CNN, and perform serial connection fusion of the feature maps output by each convolution layer in the channel dimension. The final RGB-D feature is acquired and used as a fused convolutional feature map . Here, the RGB-D features acquired by the series connection fusion have the following matrix format as a fused convolution feature map shared by RPN and Fast R-CNN.
Figure 2020181685000005

Among them
i, j, k: Intermediate variables
i ~ [0, h-1], j ~ [0, w-1], k ~ [0,2c-1],
h: Height of feature map
w: Feature map width
c: 3 RGB channels
Y RGB (i, j, k): Color image features
Y depth (i, j, kc): Depth image features
Y merge (i, j, k): This is a series-connected image feature.

ステップ2)領域提案ネットワークRPNを作成する。前記の領域提案ネットワークRPNは3×3の畳み込み層の1つ及び1×1の並行畳み込み層の2つを含む。融合済畳み込み特徴マップを3×3の畳み込み層に入力し、入力した特徴マップ上にピクセル単位でプリセットしたサイズごとにアンカーポイントを設定し、アンカーポイントに所定寸法のアンカーポイントバウンディングボックスを生じさせる。 Step 2) Create a region proposal network RPN. The region proposed network RPN includes one of the 3x3 convolutional layers and two of the 1x1 parallel convolutional layers. Enter the fused convolution feature map into a 3x3 convolution layer, set anchor points for each pixel preset size on the entered feature map, and generate an anchor point bounding box of the specified dimensions at each anchor point . To.

生じたアンカーポイントバウンディングボックスを1×1の並行畳み込み層の2つに入力してバウンディングボックス回帰及び前景背景の判断を行い、各々アンカーポイントバウンディングボックス前景背景信頼度及びアンカーポイントバウンディングボックス位置を出力しプリセットした条件に従って取得したアンカーポイントバウンディングボックスから見込み信頼度が一番高いトップ所定数の領域を選出し、最終的な領域提案コレクションCを取得する。 Input the generated anchor point bounding box into two 1x1 parallel convolution layers to perform bounding box regression and foreground background judgment, and output the foreground background reliability and anchor point bounding box position of the anchor point bounding box , respectively. Then, select the top predetermined number of regions with the highest expected reliability from the anchor point bounding boxes acquired according to the preset conditions, and acquire the final region proposal collection C.

Fast R-CNNモデルを作成する。前記のFast R-CNNモデルはROIプーリングレイヤーの2つ、完全に接続されたレイヤーの1つ及び並行な完全に接続されたレイヤーの2つからなり、各々当該領域の信頼度及びバウンディングボックス回帰済位置を出力する。融合済畳み込み特徴マップをFast R-CNNモデルに入力し、画像におけるターゲットの位置及び種類及び信頼度を出力する。 Create a Fast R-CNN model. The Fast R-CNN model described above consists of two ROI pooling layers, one fully connected layer and two parallel fully connected layers, the reliability and bounding box regression of the region , respectively. Output the finished position . The fused convolutional feature map is input to the Fast R-CNN model and the target position , type and reliability in the image are output.

ステップ3)RPNネットワークを訓練するコスト関数及びFast R-CNNネットワークを訓練するコスト関数を作成する。 Step 3) Create a cost function to train the RPN network and a cost function to train the Fast R-CNN network.

ステップ4)所定の値に設定した標準偏差のゼロ平均ガウス分布から重みを抽出してランダムにすべての新規レイヤーの初期化を行う。 Step 4) Extract weights from the zero mean Gaussian distribution with standard deviation set to a given value and randomly initialize all new layers.

ステップ5)逆伝播アルゴリズム、確率的勾配降下アルゴリズムを利用して、RPNとFast R-CNNの2つのネットワークに対する交替訓練によりモデルに対する訓練を行い、プリセットしたパラメータにより順にレイヤーごとのニューラルネットワークの重みを調整する。 Step 5) Using the back propagation algorithm and stochastic gradient descent algorithm, train the model by alternating training for two networks , R PN and Fast R-CNN, and then train the neural network for each layer in order according to the preset parameters. To adjust.

ステップ6)事前に取得した訓練コレクションにより訓練しておいたFaster R-CNNモデルをテストし、難しいサンプルの判断式により難しいサンプルを選出する。ここで、前記難しいサンプルの判断式が下記である。

Figure 2020181685000006
その中、
L IoU :バウンディングボックス回帰誤差
score :分類誤差
o:サンプルとターゲットとの交差率
k:しきい値に対する感度係数
oとpの値の範囲:0~1である。 Step 6) Test the Faster R-CNN model trained by the training collection acquired in advance, and select the difficult sample by the judgment formula of the difficult sample. Here, the judgment formula of the difficult sample is as follows.
Figure 2020181685000006
Among them
L IoU : Bounding box regression error
L score : Classification error
o: Intersection rate between sample and target
k: Sensitivity coefficient for threshold value
Range of values for o and p: 0 to 1.

ステップ7)ステップ6)で生じた難しいサンプルを訓練コレクションに入れ、ネットワークに対する再訓練を行い、ステップ5~7を繰り返して最終に最適なFaster R-CNNモデルを取得する。 Step 7) Put the difficult sample generated in step 6) into the training collection, retrain the network, and repeat steps 5-7 to finally get the optimal Faster R-CNN model.

ステップ8)実際に採集した車載ビデオ画像を処理し、訓練しておいたFaster R-CNNモデルに入力し、当該画像におけるターゲット種類、信頼度及びターゲット位置を出力する。 Step 8) Process the actually collected in-vehicle video image, input it to the trained Faster R-CNN model, and output the target type, reliability, and target position in the image.

本発明の効果は以下のとおりである。 The effects of the present invention are as follows.

第一、本発明提案に基づく畳み込みニューラルネットワークモデルに基づいて、深度情報補完に基づくターゲット検出モデルを提出し、改善されたFaster R-CNNは深度情報チャンネルを追加し、カラー画像及び深度画像を各々同じ構成のCNNにより特徴抽出を行い、CNNの2つについて並行して接続した構成を採用し、元のカラー画像特徴マップ深度画像特徴マップと直列接続融合を行って最終的画像特徴を取得する。従来のアルゴリズムと比べてみると、本発明による画像特徴が更に豊かであり、車の細部関係の情報を補充し、時間コスト上昇の恐れがなく、複雑なシーンにおけるターゲット検出を向上させることの需要を満たすことができる。 First, the present invention submits a target detection model based on depth information complementation based on the convolutional neural network model based on the proposal, and the improved Faster R-CNN adds a depth information channel to add color and depth images. Feature extraction is performed by CNNs with the same configuration, and the configuration in which the two CNNs are connected in parallel is adopted, and the original color image feature map is serially connected and fused with the depth image feature map to obtain the final image feature. do. Compared to conventional algorithms, the demand for richer image features according to the invention, supplementing vehicle detail information, no risk of increased time costs, and improved target detection in complex scenes. Can be met.

第二、本発明は訓練段階に難しいサンプルの掘り出し策略を追加したので、モデルが元より更に難しいサンプルに注意をはらい、更によく車及び疑似車の背景を区分し、正確性向上の目的達成できる。 Secondly, since the present invention has added a difficult sample digging strategy to the training stage, the model pays attention to the more difficult sample from the original, better divides the background of the car and the simulated car, and achieves the purpose of improving accuracy. can.

第三、本発明は共有畳み込みネットワークにより提案アンカーポイントバウンディングボックスを抽出するFaster R-CNNアルゴリズムがリアルタイムで顕著に向上したものである。このアルゴリズムは従来の領域提案アルゴリズムを放棄し、深層ネットワークにおける畳み込み層によりアンカーポイントバウンディングボックスを抽出するので、大量に時間コストを削減できるものである。 Third, the present invention is a remarkable improvement in real - time performance of the Faster R-CNN algorithm that extracts the proposed anchor point bounding box by a shared convolutional network. This algorithm abandons the conventional region proposal algorithm and extracts the anchor point bounding box by the convolution layer in the deep network, so that a large amount of time cost can be reduced.

本発明の実施例のプロセスチャート。A process chart of an embodiment of the present invention. 本発明の実施例の改善されたFaster R-CNNアルゴリズムの訓練プロセスチャート。Training process chart of the improved Faster R-CN N algorithm of the embodiment of the present invention.

次に図と合わせて本発明について更に説明する。下記の実施例は更にはっきりして本発明の技術的な解決策について説明するためのものだけであり、本発明の保護範囲を制限するものではない。 Next, the present invention will be further described with reference to the drawings. The following examples are for the purpose of more clearly explaining the technical solution of the present invention and do not limit the scope of protection of the present invention.

本発明は深層学習に基づく車載ビデオターゲット検出方法を提供することを目的にし、Faster R-CNNの基礎深度画像の特徴マップを追加して車の細部関係の情報を補充し、カラー画像の特徴を抽出するのと同じ畳み込みニューラルネットワークを採用し、カラー画像チャンネル及び深度画像チャンネルを並行して接続した構成にし、抽出した特徴が直列接続融合を行われて最終的RGB-D特徴を取得して、訓練に難しいサンプル掘り出しの策略を追加し、複雑な交通シーンにおける小さなターゲット及び難しいターゲットに対するアルゴリズムによる検出の正確性を向上させる。 An object of the present invention is to provide an in-vehicle video target detection method based on deep learning, and on the basis of Faster R-CNN, a feature map of a depth image is added to supplement information related to vehicle details and color. The same convolutional neural network that extracts the features of the image is adopted, and the color image channel and the depth image channel are connected in parallel, and the extracted features are connected in series and fused to obtain the final RGB-D feature. Acquire and add difficult sample digging tricks to training and improve the accuracy of algorithmic detection for small and difficult targets in complex traffic scenes.

図1は本発明の方法の実施例のプロセスチャートである。 FIG. 1 is a process chart of an embodiment of the method of the present invention.

本発明を実施する際に当たり事前に取得した訓練コレクションサンプルコレクション及びテストコレクションサンプルに基づいてもいいし、需要に応じて訓練コレクション及びテストコレクションを作成してもいい。本実施例で、KITTIデータコレクションにより訓練サンプルコレクション及びテストサンプルコレクションを作成する場合、下記のステップ1を含む。即ち、PASCAL VOCデータコレクションのフォーマット及び評価アルゴリズム工具を利用する。先ず、KITTIの種類を転換する。PASCAL VOCは20種あり、都市の交通シーンで重要な検出対象が車、歩行者及び交通標識であるので、データコレクションを前記の3種に分ける。次に、ラベル情報を転換する。ラベルファイルをtxtファイルからxmlファイルに転換し、ラベルにおける他の情報を削除し、3種のみを保留する。最後に、訓練コレクション及びテストコレクションを生成する。 The training collection sample collection and the test collection sample obtained in advance in carrying out the present invention may be used, or the training collection and the test collection may be created according to the demand. In this example, when the training sample collection and the test sample collection are created by the KITTI data collection, the following step 1 is included. That is, the PASCAL VOC data collection format and evaluation algorithm tools are used. First, change the type of KITTI. There are 20 types of PASCAL VOCs, and since the important detection targets in the urban traffic scene are cars, pedestrians, and traffic signs, the data collection is divided into the above three types. Next, the label information is converted. Convert the label file from a txt file to an xml file , remove the other information in the label and reserve only 3 types. Finally, a training collection and a test collection are generated.

図1の通りに、本発明による方法は下記のステップを含む。 As shown in FIG. 1, the method according to the present invention includes the following steps.

ステップ2)領域提案ネットワーク(Regional Proposal Network,RPN)及びFast R-CNNネットワークを整合した改善されたFaster R-CNNモデルを作成する。 Step 2) Create an improved Faster R-CNN model that aligns the Regional Proposal Network (RPN) and the Fast R-CNN network.

2.1)畳み込みニューラルネットワーク(Convolutional Neural Networks,CNN) 2.1) Convolutional Neural Networks (CNN)

先ず、深度座標の下のピクセルをカラー座標の下に合わせる。CNNについてZFモデル中の特徴抽出ネットワークを選択し、構成が同じCNNの2つを並行して接続する(元のカラー画像チャンネルはチャンネル1、並行して接続した深度画像チャンネルはチャンネル2である)。画像の2種がCNNにより徴抽出されてから、特徴マップはサイズがともにhwc(ここで、h、wは各々特徴マップの高さ及び幅を表し、cはRGBのチャンネルの3つである)である。カラー画像特徴及び深度画像特徴はチャンネルの2つとして特徴融合を行い、融合済特徴マップはサイズが2hwc である。 First, align the pixels below the depth coordinates below the color coordinates. For CNN, select the feature extraction network in the ZF model and connect two CNNs with the same configuration in parallel (the original color image channel is channel 1 and the depth image channel connected in parallel is channel 2). be). Since the two types of images have been feature-extracted by CNN, the feature maps are both hwc in size (where h and w represent the height and width of the feature map, respectively, and c is the three RGB channels. There is). Color image features and depth image features are fused as two channels, and the fused feature map is 2hwc in size.

2.2)領域提案ネットワークRPNは3×3の畳み込み層の1つ及び1×1の並行畳み込み層の2つを含む。 2.2) The region proposal network RPN includes one of the 3x3 convolutional layers and two of the 1x1 parallel convolutional layers.

融合済畳み込み特徴マップを3×3の畳み込み層に入力し、入力した特徴マップ上でピクセル単位でプリセットしたサイズごとにアンカーポイントを設定し、各アンカーポイントに所定寸法のアンカーポイントバウンディングボックスを生じさせる。本実施例では各々寸法の3つ及びアスペクト比の3つを採用する場合、各アンカーポイントに異なる寸法のアンカーポイントバウンディングボックスのk=3×3=9個が生じ、アンカーポイントバウンディングボックスの計hwk個が生じるEnter the fused convolution feature map into a 3x3 convolution layer, set anchor points for each pixel preset size on the entered feature map, and generate an anchor point bounding box of predetermined dimensions at each anchor point. .. In this embodiment, when 3 dimensions and 3 aspect ratios are adopted for each anchor point , k = 3 × 3 = 9 anchor point bounding boxes with different dimensions are generated at each anchor point, and the total hwk of the anchor point bounding boxes is generated. Individuals are produced .

1×1の並行畳み込み層の2つは上層で生じたアンカーポイントバウンディングボックスに対してバウンディングボックス回帰及び前景背景の判断を行い、各々アンカーポイントバウンディングボックス前景背景信頼度及びアンカーポイントバウンディングボックス位置を出力する。アンカーポイントバウンディングボックス位置はアンカーポイントバウンディングボックス中心点座標のx、y、幅w’及び高さh’というパラメータの4つを含む。 Two of the 1x1 parallel convolution layers perform bounding box regression and foreground background judgment for the anchor point bounding box generated in the upper layer, and determine the foreground background reliability and anchor point bounding box position of the anchor point bounding box , respectively. Output. The anchor point bounding box position contains four parameters: x, y, width w'and height h'of the anchor point bounding box center point coordinates.

2.3)2.1)で取得したアンカーポイントバウンディングボックスに対してプリセットした条件に従ってプリセットした条件を満たす予定数の領域を選出する。本実施例では、取得したアンカーポイントバウンディングボックスに対してsoftmaxの得点により降順で並べ替え、トップ2000領域を保留し、更に非最大値抑制アルゴリズム(Non-Maximum Suppression、NMS)により見込み信頼度が一番高い領域のトップ300を選出し、最終的な領域の提案コレクションCを取得する。 2.3 ) Select the planned number of areas that meet the preset conditions according to the preset conditions for the anchor point bounding box acquired in 2.1). In this embodiment, the acquired anchor point bounding box is sorted in descending order by the score of softmax, the top 2000 area is reserved, and the expected reliability is one by the non-maximum suppression algorithm (NMS). Select the top 300 of the highest territories and get the final territory proposal collection C.

2.4)Fast R-CNNはROIプーリングレイヤーの2つ、完全に接続されたレイヤーの1つ及び並行な完全に接続されたレイヤーの2つからなり、各々当該領域の信頼度及びバウンディングボックス回帰済位置を出力する。 2.4 ) Fast R-CNN consists of two ROI pooling layers, one fully connected layer and two parallel fully connected layers, each of which has been regressed on the reliability and bounding box of the area . Output the position .

ROIプーリングレイヤーは領域の提案コレクションCと融合済畳み込み特徴マップに対するプーリング操作を行い、入力したイメージによりROIを特徴マップの対応位置にマッピングし、マッピング済領域を同一のサイズのセクションに分け、各セクションに対して最大プーリング操作を行う。 The ROI pooling layer performs a pooling operation on the region 's proposed collection C and the fused convolution feature map , maps the ROI to the corresponding position on the feature map according to the input image, divides the mapped area into sections of the same size, and each section. Perform the maximum pooling operation for.

完全に接続されたレイヤーはROIプーリングレイヤーの出力結果を併合し、最後に並行な完全に接続されたレイヤーの2つを入力し、アンカーポイントバウンディングボックスに対して領域分類及びバウンディングボックス回帰を行い、画像におけるターゲットの位置及その種類、信頼度を出力する。 Fully connected layers merge the output of the ROI pooling layer, and finally input two of the parallel fully connected layers, and perform region classification and bounding box regression on the anchor point bounding box. , Outputs the position of the target in the image, its type, and reliability.

ステップ3)RPNネットワークを訓練するコスト関数及びFast R-CNNネットワークを訓練するコスト関数を作成する。 Step 3) Create a cost function to train the RPN network and a cost function to train the Fast R-CNN network.

本実施例では、RPNネットワークを訓練するコスト関数は下記である。 In this example, the cost function for training the RPN network is:

Figure 2020181685000007
その中
ground truth(即ち較正された真実なデータ)との引渡し率(Intersection over Union、IoU)最大または少なくとも0.7あるアンカーポイントバウンディングボックスを正サンプルに表示する。
i:想定信頼度
i *:ラベル値、1である場合に正サンプル、0である場合に負サンプルを表し、iはアンカーポイントバウンディングボックスの索引である。
cls:アンカーポイントバウンディングボックス総数
reg:正サンプルの数
i:想定アンカーポイントバウンディングボックスの補正値
i *:実際のアンカーポイントバウンディングボックスの補正値
cls:分類コスト
regバウンディングボックス回帰コスト
λ:バランスウェイト
Figure 2020181685000007
Among them
g Display an anchor point bounding box with a maximum or at least 0.7 Intersection over Union (IoU) with round truth (ie, calibrated truth data) in the positive sample.
P i : Assumed reliability P i * : Label value, if it is 1, it represents a positive sample, if it is 0, it represents a negative sample, and i is an index of the anchor point bounding box .
N cls : Total number of anchor point bounding boxes N reg : Number of positive samples t i : Assumed anchor point bounding box correction value t i * : Actual anchor point bounding box correction value L cls : Classification cost L reg : Bounding box regression Cost λ: Balance weight

本実施例では、Fast R-CNNネットワークを訓練するコスト関数は下記である。 In this example, the cost function for training the Fast R-CNN network is:

Figure 2020181685000008
その中、
u:u類目
u:u類目のバウンディングボックス回帰想定補正値
v:実際の補正値
cls:分類コスト
regバウンディングボックス回帰コスト
p:分類想定結果
λ:バランスウェイト
Figure 2020181685000008
Among them
u: u-class t u : u-class bounding box regression assumption correction value
v: Actual correction value L cls : Classification cost L reg : Bounding box regression cost
p: Assumed classification result
λ: Balance weight

ステップ4)スタンダードZFモデル訓練及び微調整ネットワークの各パラメータにより設定した標準偏差のゼロ平均ガウス分布から重みを抽出してランダムにすべての新規レイヤーの初期化を行う。 Step 4) Standard ZF model training and fine-tuning Extract weights from the zero-mean Gaussian distribution of standard deviations set by the network parameters and randomly initialize all new layers.

ステップ5)逆伝播アルゴリズム、確率的勾配降下アルゴリズムを利用して、RPNとFast R-CNNの2つのネットワークに対する交替訓練によりモデルに対する訓練を行い、順にレイヤーごとのニューラルネットワークの重みを調整し、ネットワーク初期学習率を0.01、最低学習率を0.0001、勢いを0.9、重み減衰係数を0.0005、Dropout値を0.5に設定する。具体的なステップは下記である。 Step 5) Using the back propagation algorithm and stochastic gradient descent algorithm, train the model by alternating training for two networks , R PN and Fast R-CNN, and adjust the weights of the neural network for each layer in order . Set the network initial learning rate to 0.01, the minimum learning rate to 0.0001, the momentum to 0.9, the weight attenuation coefficient to 0.0005, and the Dropout value to 0.5. The specific steps are as follows.

(1)逆伝播アルゴリズム及び確率的勾配アルゴリズムによりRPNモデルを訓練し、この段階を80000回繰り返す(1) Train the RPN model by the reverse polish notation algorithm and the stochastic gradient descent algorithm, and repeat this step 80,000 times.

(2)RPNに生成したアンカーポイントバウンディングボックスをFast R-CNNの入力にし、独立した訓練を行い、この段階を40000回繰り返す(2) Anchor point bounding box generated in RPN is used as input of Fast R-CNN, independent training is performed, and this stage is repeated 40,000 times.

(3)(2)における結果によりRPNネットワークの構成の初期化を行い、共有畳み込み層を固定し(共有畳み込み層の学習率を0にする)、RPNネットワークのパラメータを更新し、この段階を80000回繰り返す(3) Initialize the RPN network configuration based on the results in (2) , fix the shared convolution layer (set the learning rate of the shared convolution layer to 0 ), update the parameters of the RPN network, and set this stage to 80,000. Repeat once.

(4)共有畳み込み層を固定し(共有畳み込み層の学習率を0にする)、Fast R-CNNネットワークの構成を微調整し、その完全に接続されたレイヤーパラメータを更新し、この段階を40000回繰り返す(4) Fix the shared convolution layer (set the learning rate of the shared convolution layer to 0 ), fine-tune the configuration of the Fast R-CNN network, update the parameters of its fully connected layer, and perform this step. Repeat 40,000 times.

ステップ6)訓練コレクションにより大体に訓練しておいたFaster R-CNNモデルをテストし、本発明の難しいサンプル判別式により難しいサンプルを選出する。 Step 6) Test the Faster R-CNN model that has been roughly trained by the training collection, and select difficult samples by the difficult sample discriminant of the present invention.

ステップ7)ステップ6)で生じた難しいサンプルを訓練コレクションに入れ、ネットワークに対する再訓練を行い、ステップ5~7を繰り返してネットワークの難しいサンプルに対する判別力を強化し、最終に最適なFaster R-CNNモデルを取得する。訓練の過程について図2を参照できる。 Step 7) Put the difficult sample generated in step 6) into the training collection, retrain the network, repeat steps 5-7 to strengthen the discriminating power for the difficult sample of the network, and finally the optimum Faster R-CNN. Get the model. See Figure 2 for the training process.

ステップ8)実際に採集した車載ビデオ画像を処理し、訓練しておいたFaster R-CNNモデルに入力し、当該画像におけるターゲット種類、信頼度及びターゲット位置を出力する。 Step 8) Process the actually collected in-vehicle video image, input it to the trained Faster R-CNN model, and output the target type, reliability, and target position in the image.

本発明は充分にFaster R-CNNアルゴリズムに存在する小さなターゲットの検出漏れを考慮し、深度の画像特徴融合及び難しいサンプルの掘り出し方法により複雑な交通シーンにおける車認識の正確率を向上させる。 The present invention fully takes into account the small target detection omissions present in the Faster R-CNN algorithm and improves the accuracy of vehicle recognition in complex traffic scenes through depth image feature fusion and difficult sample digging methods.

本発明で使用する畳み込みニューラルネットワークに基づくターゲット検出アルゴリズムは柔軟にデータを訓練する場合に需要に応じて有効な特徴を学習して個別検出を完成できる。R-CNNアルゴリズムはアンカーポイントバウンディングボックス提案と畳み込みニューラルネットワーク結び合わせたターゲット検出アルゴリズムであり、領域提案アルゴリズムが生じた多数の提案アンカーポイントバウンディングボックス及び高い時間コストにより、リアルタイム性及び正確性で改善の余地がまだ大きい。共有畳み込みネットワークにより提案アンカーポイントバウンディングボックスを抽出するFaster R-CNNアルゴリズムはリアルタイムで顕著に向上したものであり、従来の領域提案アルゴリズムを放棄し、深層ネットワークにおける畳み込み層によりアンカーポイントバウンディングボックスを抽出するので、大量に時間コストを削減できるが、小さなターゲットが多く、複雑なシーンでは、検出漏れが顕著であるので、改善の余地がまだ大きいである。 The target detection algorithm based on the convolutional neural network used in the present invention can learn effective features according to demand and complete individual detection when training data flexibly. The R-CNN algorithm is a target detection algorithm that combines an anchor point bounding box proposal and a convolutional neural network. There is still a lot of room for. Extracting Proposed Anchor Point Bounding Boxes with Shared Convolutional Networks The Faster R-CNN algorithm is a significant improvement in real time, abandoning the traditional region proposal algorithm and extracting anchor point bounding boxes with convolutional layers in deep networks. Therefore, the time cost can be reduced in a large amount, but there is still a lot of room for improvement because there are many small targets and the detection omission is remarkable in a complicated scene.

上記のものが本発明の好ましい実施形態だけであるので、本技術分野の普通の技術者にとって、本発明の技術原理を離れない前提で若干の改善または変形を行うことができ、該当する改善でも変形でも本発明の保護範囲にある。 Since the above are only preferred embodiments of the present invention, ordinary engineers in the art can make slight improvements or modifications on the premise that they do not deviate from the technical principles of the present invention, and even the corresponding improvements can be made. Even the modification is within the protection range of the present invention.

Claims (8)

下記のステップを含むことを特徴とする深層学習に基づく車載ビデオターゲット検出方法:
ステップ1)深度座標の下のピクセルをカラー座標の下に合わせ、深度画像及びカラー画像を各々CNNにより特徴抽出を行い、各々の畳み込み層が出力した特徴マップをチャンネル次元で直列接続融合を行って最終的RGB-D特徴を取得して融合済畳み込み特徴マップとし、ここで、前記直列接続融合によって取得したRGB-D特徴はRPNとFast R-CNNが共有する融合済畳み込み特徴マップとしてマトリックス形式が下記であり、
Figure 2020181685000001

その中、
i、j、k:中間変数
i~[0,h‐1]、j~[0,w‐1]、k~[0,2c‐1]、
h:特徴マップの高さ
w:特徴マップの幅
c:RGBのチャンネルの3つ
RGB (i,j,k): カラー画像特徴
depth (i,j,k‐c):深度画像特徴
merge (i,j,k):直列接続融合済画像特徴であり、
領域提案ネットワークRPNを作成し、前記の領域提案ネットワークRPNは3×3の畳み込み層の1つ及び1×1の並行畳み込み層の2つを含み、融合済畳み込み特徴マップを3×3の畳み込み層に入力し、入力した特徴マップ上にピクセル単位でプリセットしたサイズごとにアンカーポイントを設定し、アンカーポイントに所定寸法のアンカーポイントバウンディングボックスを生じさせ
生じたアンカーポイントバウンディングボックスを1×1の並行畳み込み層の2つに入力してバウンディングボックス回帰及び前景背景の判断を行い、各々アンカーポイントバウンディングボックス前景背景信頼度及びアンカーポイントバウンディングボックス位置を出力し、プリセットした条件に従って取得したアンカーポイントバウンディングボックスから所定条件を満たすプリセットした数の領域を抽出し、最終的な領域提案コレクションCを取得し、
ステップ2)Fast R-CNNモデルを作成し、
前記のFast R-CNNモデルはROIプーリングレイヤーの2つ、完全に接続されたレイヤーの1つ及び並行な完全に接続されたレイヤーの2つからなり、各々当該領域の信頼度及びバウンディングボックス回帰済位置を出力し、融合済畳み込み特徴マップをFast R-CNNモデルに入力し、画像におけるターゲットの位置及び種類及び信頼度を出力し、
ステップ3)RPNネットワークを訓練するコスト関数及びFast R-CNNネットワークを訓練するコスト関数を作成し、
ステップ4)所定の値に設定した標準偏差のゼロ平均ガウス分布から重みを抽出してランダムにすべての新規レイヤーの初期化を行い、
ステップ5)逆伝播アルゴリズム、確率的勾配降下アルゴリズムを利用して、RPNとFast R-CNNの2つのネットワークに対する交替訓練によりモデルに対する訓練を行い、プリセットしたパラメータにより順にレイヤーごとのニューラルネットワークの重みを調整し、
ステップ6)事前に取得した訓練コレクションにより訓練しておいたFaster R-CNNモデルをテストし、難しいサンプルの判断式により難しいサンプルを選出し、
ここで、前記難しいサンプルの判断式が下記であり
Figure 2020181685000002
その中、
L IoU :バウンディングボックス回帰誤差
score :分類誤差
o:サンプルとターゲットとの交差率
k:しきい値に対する感度係数
oとpの値の範囲:0~1であり、
ステップ7)ステップ6で生じた難しいサンプルを訓練コレクションに入れ、ネットワークに対する再訓練を行い、ステップ5~7を繰り返して最適なFaster R-CNNモデルを取得し、
ステップ8)実際に採集した車載ビデオ画像を処理し、訓練しておいたFaster R-CNNモデルに入力し、当該画像におけるターゲット種類、信頼度及びターゲット位置を出力する。
Deep learning-based in-vehicle video target detection method comprising the following steps:
Step 1) Align the pixels under the depth coordinates under the color coordinates, extract the features of the depth image and the color image by CNN, and perform serial connection fusion of the feature maps output by each convolution layer in the channel dimension. The final RGB-D features are acquired to form a fused convolutional feature map , where the RGB-D features acquired by the series connection fusion are in matrix format as a fused convolutional feature map shared by RPN and Fast R-CNN. Is below,
Figure 2020181685000001

Among them
i, j, k: Intermediate variables
i ~ [0, h-1], j ~ [0, w-1], k ~ [0,2c-1],
h: Height of feature map
w: Feature map width
c: 3 RGB channels
Y RGB (i, j, k): Color image features
Y depth (i, j, kc): Depth image features
Y merge (i, j, k): A series-connected image feature that has been merged.
Create a region proposal network RPN, the region proposal network RPN contains one 3x3 convolution layer and two 1x1 parallel convolution layers, and the fused convolution feature map is a 3x3 convolution layer. Set anchor points for each pixel preset size on the entered feature map, and generate an anchor point bounding box with a predetermined dimension for each anchor point .
Input the generated anchor point bounding box into two 1x1 parallel convolution layers to perform bounding box regression and foreground background judgment, and output the foreground background reliability and anchor point bounding box position of the anchor point bounding box , respectively. Then, from the anchor point bounding box acquired according to the preset conditions, the preset number of regions satisfying the predetermined conditions are extracted, and the final region proposal collection C is acquired.
Step 2) Create a Fast R-CNN model and
The Fast R-CNN model described above consists of two ROI pooling layers, one fully connected layer and two parallel fully connected layers, the reliability and bounding box regression of the region , respectively. Output the completed position , input the fused convolutional feature map to the Fast R-CNN model, output the position and type and reliability of the target in the image,
Step 3) Create a cost function to train the RPN network and a cost function to train the Fast R-CNN network.
Step 4) Extract weights from the zero mean Gaussian distribution with standard deviation set to a given value and randomly initialize all new layers.
Step 5) Using the back propagation algorithm and stochastic gradient descent algorithm, train the model by alternating training for two networks , R PN and Fast R-CNN, and then train the neural network for each layer in order according to the preset parameters. Adjust and
Step 6) Test the Faster R-CNN model trained by the pre-acquired training collection, select the difficult sample by the difficult sample judgment formula, and select the difficult sample.
Here, the judgment formula of the difficult sample is as follows .
Figure 2020181685000002
Among them
L IoU : Bounding box regression error
L score : Classification error
o: Intersection rate between sample and target
k: Sensitivity coefficient for threshold value
Range of values for o and p: 0 to 1
Step 7) Put the difficult sample generated in step 6 into the training collection, retrain the network, and repeat steps 5-7 to get the optimal Faster R-CNN model.
Step 8) Process the actually collected in-vehicle video image, input it to the trained Faster R-CNN model, and output the target type, reliability, and target position in the image.
前記のRPNネットワークを訓練するコスト関数が下記であることを特徴とする請求項1に記載の深層学習に基づく車載ビデオターゲット検出方法。
Figure 2020181685000003

その中、
較正された真実なデータとの引渡し率最大または少なくとも0.7あるアンカーポイントバウンディングボックスを正サンプルに表示する。
i:想定信頼度
i *:ラベル値、1である場合に正サンプル、0である場合に負サンプルを表す。
i:アンカーポイントバウンディングボックスの索引
cls:アンカーポイントバウンディングボックス総数
reg:正サンプルの数
i:想定アンカーポイントバウンディングボックスの補正値
i *:実際のアンカーポイントバウンディングボックスの補正値
cls:分類コスト
regバウンディングボックス回帰コスト
λ:バランスウェイト
The in-vehicle video target detection method based on deep learning according to claim 1, wherein the cost function for training the RPN network is as follows.
Figure 2020181685000003

Among them
Display an anchor point bounding box with a positive sample that has a maximum or at least 0.7 delivery rate with calibrated true data.
P i : Assumed reliability P i * : Label value, 1 indicates a positive sample, 0 indicates a negative sample.
i: Anchor point bounding box index N cls : Total number of anchor point bounding boxes N reg : Number of positive samples t i : Assumed anchor point bounding box correction value t i * : Actual anchor point bounding box correction value L cls : Classification cost L reg : Bounding box regression cost λ: Balance weight
前記のFast R-CNNネットワークを訓練するコスト関数が下記であることを特徴とする請求項1に記載の深層学習に基づく車載ビデオターゲット検出方法。
Figure 2020181685000004
その中、
u: u類目
u:u類目のバウンディングボックス回帰想定補正値
v:実際の補正値
cls :分類コスト
regバウンディングボックス回帰コスト
p:分類想定結果
λ:バランスウェイト
The in-vehicle video target detection method based on deep learning according to claim 1, wherein the cost function for training the Fast R-CNN network is as follows.
Figure 2020181685000004
Among them
u: u-class t u : u-class bounding box regression assumption correction value
v: Actual correction value
L cls : Classification cost
L reg : Bounding box regression cost p: Assumed classification result
λ: Balance weight
ステップ5)の具体的なステップが下記であることを特徴とする請求項1に記載の深層学習に基づく車載ビデオターゲット検出方法:
(1)逆伝播アルゴリズム及び確率的勾配アルゴリズムによりRPNモデルを訓練し、この段階を80000回繰り返し
(2)RPNに生成したアンカーポイントバウンディングボックスをFast R-CNNの入力にし、独立した訓練を行い、この段階を40000回繰り返し
(3)(2)における結果によりRPNネットワークの構成の初期化を行い、共有畳み込み層を固定し(共有畳み込み層の学習率を0にする)、RPNネットワークのパラメータを更新し、この段階を80000回繰り返し
(4)共有畳み込み層を固定し(共有畳み込み層の学習率を0にする)、Fast R-CNNネットワークの構成を微調整し、その完全に接続されたレイヤーパラメータを更新し、この段階を40000回繰り返す
The in-vehicle video target detection method based on deep learning according to claim 1, wherein the specific step of step 5) is as follows:
(1) The RPN model is trained by the reverse polish notation algorithm and the stochastic gradient descent algorithm, and this step is repeated 80,000 times.
(2) Anchor point bounding box generated in RPN is used as input of Fast R-CNN, independent training is performed, and this stage is repeated 40,000 times.
(3) Initialize the RPN network configuration based on the results in (2) , fix the shared convolution layer (set the learning rate of the shared convolution layer to 0 ), update the parameters of the RPN network, and set this stage to 80,000. Repeated times,
(4) Fix the shared convolution layer (set the learning rate of the shared convolution layer to 0 ), fine-tune the configuration of the Fast R-CNN network, update the parameters of its fully connected layer, and perform this step. Repeat 40,000 times.
ステップ5)におけるパラメータ設定はネットワーク初期学習率を0.01、最低学習率を0.0001、勢いを0.9、重み減衰係数を0.0005、Dropout値を0.5に設定することを含むことを特徴とする請求項1に記載の深層学習に基づく車載ビデオターゲット検出方法。 The parameter setting in step 5) is described in claim 1, which includes setting the network initial learning rate to 0.01, the minimum learning rate to 0.0001, the momentum to 0.9, the weight attenuation coefficient to 0.0005, and the Dropout value to 0.5. In-vehicle video target detection method based on deep learning. 事前に訓練コレクション及びテストコレクションを取得する方法は下記のステップを含むことを特徴とする請求項1に記載の深層学習に基づく車載ビデオターゲット検出方法:
KITTIデータコレクションにより訓練サンプルコレクション及びテストサンプルコレクションを作成し、
PASCAL VOCフォーマットによりKITTIの種類を転換し、KITTIデータコレクションを車、歩行者及び交通という3種に分け、
ラベル情報を転換し、ラベルファイルをtxtファイルからxmlファイルに転換し、ラベルにおける他の情報を削除し、3種のみを保留し、最後に、訓練コレクション及びテストコレクションを生成する。
The in-vehicle video target detection method based on deep learning according to claim 1, wherein the method of acquiring the training collection and the test collection in advance includes the following steps.
Create training sample collection and test sample collection with KITTI data collection,
The PASCAL VOC format was used to convert the types of KITTI, and the KITTI data collection was divided into three types: cars, pedestrians, and traffic.
Convert label information, convert label file from txt file to xml file , remove other information in label, hold only 3 kinds, and finally generate training collection and test collection.
所定条件を満たすプリセットした数の領域を選出する方法が下記であることを特徴とする請求項1に記載の深層学習に基づく車載ビデオターゲット検出方法:
取得したアンカーポイントバウンディングボックスをsoftmaxの得点により降順で並べ替え、トップ2000領域を保留し、更に非最大値抑制アルゴリズムにより見込み信頼度が一番高いトップ所定数の領域を選出する。
The in-vehicle video target detection method based on deep learning according to claim 1, wherein a method for selecting a preset number of regions satisfying a predetermined condition is as follows:
The acquired anchor point bounding boxes are sorted in descending order according to the score of softmax, the top 2000 areas are reserved, and the top predetermined number of areas with the highest expected reliability are selected by the non-maximum value suppression algorithm.
ステップ4に記載の設定した標準偏差が0.01であることを特徴とする請求項1に記載の深層学習に基づく車載ビデオターゲット検出方法。 The in-vehicle video target detection method based on deep learning according to claim 1, wherein the set standard deviation set forth in step 4 is 0.01.
JP2021502766A 2019-03-12 2019-06-25 In-Vehicle Video Target Detection Method Based on Deep Learning Active JP7120689B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201910185300.4A CN109977812B (en) 2019-03-12 2019-03-12 Vehicle-mounted video target detection method based on deep learning
CN201910185300.4 2019-03-12
PCT/CN2019/092749 WO2020181685A1 (en) 2019-03-12 2019-06-25 Vehicle-mounted video target detection method based on deep learning

Publications (3)

Publication Number Publication Date
JP2021530062A JP2021530062A (en) 2021-11-04
JPWO2020181685A5 true JPWO2020181685A5 (en) 2022-06-03
JP7120689B2 JP7120689B2 (en) 2022-08-17

Family

ID=67078633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021502766A Active JP7120689B2 (en) 2019-03-12 2019-06-25 In-Vehicle Video Target Detection Method Based on Deep Learning

Country Status (3)

Country Link
JP (1) JP7120689B2 (en)
CN (1) CN109977812B (en)
WO (1) WO2020181685A1 (en)

Families Citing this family (264)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110399884B (en) * 2019-07-10 2021-08-20 浙江理工大学 Feature fusion self-adaptive anchor frame model vehicle detection method
CN110414389A (en) * 2019-07-12 2019-11-05 黑龙江御林湾科技有限公司 A kind of object detection method of the fast area search based on deep learning
CN110464611A (en) * 2019-07-23 2019-11-19 苏州国科视清医疗科技有限公司 A kind of digitlization amblyopia enhancing training device and system and its related algorithm
CN110503112B (en) * 2019-08-27 2023-02-03 电子科技大学 Small target detection and identification method for enhancing feature learning
CN110826391A (en) * 2019-09-10 2020-02-21 中国三峡建设管理有限公司 Bleeding area detection method, bleeding area detection system, computer device and storage medium
CN110689021A (en) * 2019-10-17 2020-01-14 哈尔滨理工大学 Real-time target detection method in low-visibility environment based on deep learning
CN111091144B (en) * 2019-11-27 2023-06-27 云南电网有限责任公司电力科学研究院 Image feature point matching method and device based on depth pseudo-twin network
CN110743818A (en) * 2019-11-29 2020-02-04 苏州嘉诺环境工程有限公司 Garbage sorting system and garbage sorting method based on vision and deep learning
CN111104885A (en) * 2019-12-10 2020-05-05 南京邮电大学 Vehicle identification method based on video deep learning
CN111104903B (en) * 2019-12-19 2022-07-26 南京邮电大学 Depth perception traffic scene multi-target detection method and system
CN111145239B (en) * 2019-12-30 2022-02-11 南京航空航天大学 Aircraft fuel tank redundancy automatic detection method based on deep learning
CN111182491B (en) * 2019-12-31 2022-03-22 淮安中科晶上智能网联研究院有限公司 Radio frequency tomography-based equipment-free target positioning method and device
CN111291747B (en) * 2020-01-10 2023-06-13 大连理工大学 Depth map-based color small target detection method in complex scene
CN111444816A (en) * 2020-01-14 2020-07-24 北京银河信通科技有限公司 Multi-scale dense pedestrian detection method based on fast RCNN
CN111292349B (en) * 2020-01-17 2023-04-18 北京大学深圳研究生院 Data enhancement method for target detection based on fusion of recommendation candidate boxes
CN111310607B (en) * 2020-01-22 2021-01-01 交通运输部公路科学研究所 Highway safety risk identification method and system based on computer vision and artificial intelligence
CN111310828B (en) * 2020-02-14 2023-01-03 开易(北京)科技有限公司 Target detection model fine-tuning method and device for ADAS scene
CN111310660B (en) * 2020-02-14 2024-05-17 开易(北京)科技有限公司 Target detection false alarm suppression method and device for ADAS scene
CN111291820B (en) * 2020-02-19 2023-05-30 中国电子科技集团公司第二十八研究所 Target detection method combining positioning information and classification information
CN111310850B (en) * 2020-03-02 2023-06-16 杭州雄迈集成电路技术股份有限公司 License plate detection model construction method and system, license plate detection method and system
CN111444973B (en) * 2020-03-31 2022-05-20 西安交通大学 Method for detecting commodities on unmanned retail shopping table
CN111507738B (en) * 2020-05-04 2021-06-04 宁波甜宝生物信息技术有限公司 Ink tracing and recycling process method based on block chain and 5G communication
CN112750194A (en) * 2020-05-15 2021-05-04 奕目(上海)科技有限公司 Obstacle avoidance method and device for unmanned automobile
CN111724392A (en) * 2020-05-25 2020-09-29 浙江工业大学 Data processing method for deep learning feature attention transfer
CN111666839A (en) * 2020-05-25 2020-09-15 东华大学 Road pedestrian detection system based on improved Faster RCNN
CN111881932B (en) * 2020-06-11 2023-09-15 中国人民解放军战略支援部队信息工程大学 FasterRCNN target detection algorithm for military aircraft
CN111738164B (en) * 2020-06-24 2021-02-26 广西计算中心有限责任公司 Pedestrian detection method based on deep learning
CN112016449A (en) * 2020-08-27 2020-12-01 西华大学 Vehicle identification and detection method based on deep learning
CN112183274A (en) * 2020-09-21 2021-01-05 深圳中兴网信科技有限公司 Mud car detection method and computer-readable storage medium
CN112132804B (en) * 2020-09-22 2023-10-31 苏州巨能图像检测技术有限公司 Anti-lifting detection method for hub of hub card
CN112233175B (en) * 2020-09-24 2023-10-24 西安交通大学 Chip positioning method and integrated positioning platform based on YOLOv3-tiny algorithm
CN112132042B (en) * 2020-09-24 2023-08-01 西安电子科技大学 SAR image target detection method based on contrast domain adaptation
CN112164017B (en) * 2020-09-27 2023-11-17 中国兵器工业集团第二一四研究所苏州研发中心 Polarization colorization method based on deep learning
CN112115913B (en) * 2020-09-28 2023-08-25 杭州海康威视数字技术股份有限公司 Image processing method, device and equipment and storage medium
CN112364687A (en) * 2020-09-29 2021-02-12 上善智城(苏州)信息科技有限公司 Improved Faster R-CNN gas station electrostatic sign identification method and system
CN112541389B (en) * 2020-09-29 2023-08-22 西安交通大学 Transmission line fault detection method based on EfficientDet network
CN112580424B (en) * 2020-09-29 2023-08-11 长安大学 Polarization characteristic multi-scale pooling classification algorithm for complex vehicle-road environment
CN112330591B (en) * 2020-09-30 2023-01-24 中国国家铁路集团有限公司 Steel rail surface defect detection method and device capable of achieving sample-less learning
CN112085126B (en) * 2020-09-30 2023-12-12 浙江大学 Single sample target detection method focusing on classification task
CN112215128B (en) * 2020-10-09 2024-04-05 武汉理工大学 FCOS-fused R-CNN urban road environment recognition method and device
CN112233090B (en) * 2020-10-15 2023-05-30 浙江工商大学 Film flaw detection method based on improved attention mechanism
CN112232214A (en) * 2020-10-16 2021-01-15 天津大学 Real-time target detection method based on depth feature fusion and attention mechanism
CN112329558B (en) * 2020-10-22 2022-10-25 上海交通大学 FeO content prediction method based on sintering machine tail section video
CN112241718B (en) * 2020-10-23 2024-05-24 北京百度网讯科技有限公司 Vehicle information detection method, detection model training method and device
CN112417981B (en) * 2020-10-28 2024-04-26 大连交通大学 Efficient recognition method for complex battlefield environment targets based on improved FasterR-CNN
CN112329588B (en) * 2020-10-30 2024-01-05 中海石油(中国)有限公司 Pipeline fault detection method based on Faster R-CNN
CN112287854A (en) * 2020-11-02 2021-01-29 湖北大学 Building indoor personnel detection method and system based on deep neural network
CN112183485B (en) * 2020-11-02 2024-03-05 北京信息科技大学 Deep learning-based traffic cone detection positioning method, system and storage medium
CN112200803B (en) * 2020-11-04 2023-10-10 成都朴华科技有限公司 Sperm nucleoprotein maturity detection method and device
CN112380962A (en) * 2020-11-11 2021-02-19 成都摘果子科技有限公司 Animal image identification method and system based on deep learning
CN112329871B (en) * 2020-11-11 2022-03-08 河北工业大学 Pulmonary nodule detection method based on self-correction convolution and channel attention mechanism
CN112396582B (en) * 2020-11-16 2024-04-26 南京工程学院 Mask RCNN-based equalizing ring skew detection method
CN112395975A (en) * 2020-11-17 2021-02-23 南京泓图人工智能技术研究院有限公司 Remote sensing image target detection method based on rotating area generation network
CN112381005A (en) * 2020-11-17 2021-02-19 温州大学 Safety helmet detection system for complex scene
CN112395987B (en) * 2020-11-18 2023-07-28 西安电子科技大学 SAR image target detection method based on unsupervised domain adaptive CNN
CN112580778A (en) * 2020-11-25 2021-03-30 江苏集萃未来城市应用技术研究所有限公司 Job worker mobile phone use detection method based on YOLOv5 and Pose-animation
CN112434740A (en) * 2020-11-26 2021-03-02 西北大学 Depth learning-based Qin tomb warriors fragment classification method
CN112668585B (en) * 2020-11-26 2024-04-09 厦门大学 Object identification and positioning method in dynamic environment
CN112434745B (en) * 2020-11-27 2023-01-24 西安电子科技大学 Occlusion target detection and identification method based on multi-source cognitive fusion
CN112446429B (en) * 2020-11-27 2022-06-21 广东电网有限责任公司肇庆供电局 CGAN (Carrier grade Access network) -based routing inspection image data small sample expansion method
CN112418117B (en) * 2020-11-27 2023-05-12 北京工商大学 Small target detection method based on unmanned aerial vehicle image
CN112396017B (en) * 2020-11-27 2023-04-07 上海建科工程咨询有限公司 Engineering potential safety hazard identification method and system based on image identification
CN112418114A (en) * 2020-11-27 2021-02-26 广州华多网络科技有限公司 Time sequence behavior detection and response method and device, equipment and medium
CN112528782B (en) * 2020-11-30 2024-02-23 北京农业信息技术研究中心 Underwater fish target detection method and device
CN112508091B (en) * 2020-12-03 2024-01-19 大连海事大学 Low-quality image classification method based on convolutional neural network
CN112507862B (en) * 2020-12-04 2023-05-26 东风汽车集团有限公司 Vehicle orientation detection method and system based on multitasking convolutional neural network
CN112464851A (en) * 2020-12-08 2021-03-09 国网陕西省电力公司电力科学研究院 Smart power grid foreign matter intrusion detection method and system based on visual perception
CN112528862B (en) * 2020-12-10 2023-02-10 西安电子科技大学 Remote sensing image target detection method based on improved cross entropy loss function
CN112488229B (en) * 2020-12-10 2024-04-05 西安交通大学 Domain self-adaptive unsupervised target detection method based on feature separation and alignment
CN112580647A (en) * 2020-12-11 2021-03-30 湖北工业大学 Stacked object oriented identification method and system
CN112598165B (en) * 2020-12-11 2023-09-26 湖南大学 Urban functional area transfer flow prediction method and device based on private car data
CN112507898B (en) * 2020-12-14 2022-07-01 重庆邮电大学 Multi-modal dynamic gesture recognition method based on lightweight 3D residual error network and TCN
CN112488066A (en) * 2020-12-18 2021-03-12 航天时代飞鸿技术有限公司 Real-time target detection method under unmanned aerial vehicle multi-machine cooperative reconnaissance
CN112528995B (en) * 2020-12-22 2023-08-04 北京百度网讯科技有限公司 Method for training target detection model, target detection method and device
CN112633177A (en) * 2020-12-24 2021-04-09 浙江大学 Lane line detection segmentation method based on attention space convolution neural network
CN112668696A (en) * 2020-12-25 2021-04-16 杭州中科先进技术研究院有限公司 Unmanned aerial vehicle power grid inspection method and system based on embedded deep learning
CN112861849B (en) * 2020-12-29 2023-01-10 北京航空航天大学 Tissue identification method in spinal deformity correction surgery
CN112699782A (en) * 2020-12-29 2021-04-23 杭州电子科技大学 Radar HRRP target identification method based on N2N and Bert
CN112712503B (en) * 2020-12-30 2023-05-02 厦门福信光电集成有限公司 Display panel appearance detection method based on deep learning
CN112651458B (en) * 2020-12-31 2024-04-02 深圳云天励飞技术股份有限公司 Classification model training method and device, electronic equipment and storage medium
CN112686188B (en) * 2021-01-05 2024-02-06 西安理工大学 Front windshield and driver area positioning method based on deep learning method
CN112668536B (en) * 2021-01-06 2023-08-25 北京理工大学 Lightweight rotary target detection and identification method based on airborne photoelectric video
CN113011417B (en) * 2021-01-08 2023-02-10 湖南大学 Target matching method based on intersection ratio coverage rate loss and repositioning strategy
CN112835008B (en) * 2021-01-12 2022-03-04 西安电子科技大学 High-resolution range profile target identification method based on attitude self-adaptive convolutional network
CN112669312A (en) * 2021-01-12 2021-04-16 中国计量大学 Chest radiography pneumonia detection method and system based on depth feature symmetric fusion
CN112733741A (en) * 2021-01-14 2021-04-30 苏州挚途科技有限公司 Traffic signboard identification method and device and electronic equipment
CN112784723A (en) * 2021-01-14 2021-05-11 金陵科技学院 Road traffic safety protection model based on IFast-RCNN algorithm
CN112733742B (en) * 2021-01-14 2022-02-01 哈尔滨市科佳通用机电股份有限公司 Deep learning-based fault detection method for round pin of lower pull rod of railway wagon
CN113173502B (en) * 2021-01-15 2023-06-06 福建电子口岸股份有限公司 Anticollision method and system based on laser vision fusion and deep learning
CN112861932B (en) * 2021-01-21 2024-02-02 上海应用技术大学 Rail plate crack detection method
CN112766170B (en) * 2021-01-21 2024-04-16 广西财经学院 Self-adaptive segmentation detection method and device based on cluster unmanned aerial vehicle image
CN112766176B (en) * 2021-01-21 2023-12-01 深圳市安软科技股份有限公司 Training method of lightweight convolutional neural network and face attribute recognition method
CN112766188B (en) * 2021-01-25 2024-05-10 浙江科技学院 Small target pedestrian detection method based on improved YOLO algorithm
CN112949849B (en) * 2021-01-27 2024-03-26 武汉星巡智能科技有限公司 Method and device for optimizing intelligent camera detection model by adopting edge calculation
CN112818837B (en) * 2021-01-29 2022-11-11 山东大学 Aerial photography vehicle weight recognition method based on attitude correction and difficult sample perception
CN112801187B (en) * 2021-01-29 2023-01-31 广东省科学院智能制造研究所 Hyperspectral data analysis method and system based on attention mechanism and ensemble learning
CN112766274B (en) * 2021-02-01 2023-07-07 长沙市盛唐科技有限公司 Water gauge image water level automatic reading method and system based on Mask RCNN algorithm
CN112884213B (en) * 2021-02-02 2024-04-19 华北电力大学 Coal-fired boiler NOx prediction method based on wavelet decomposition and dynamic mixed deep learning
CN112861700B (en) * 2021-02-03 2023-11-03 西安仁义智机电科技有限公司 Lane network identification model establishment and vehicle speed detection method based on deep Labv3+
CN112802006B (en) * 2021-02-07 2024-03-22 南通大学 Edge calculation motor oil stain identification method based on deep learning
CN112556682B (en) * 2021-02-07 2023-06-23 天津蓝鳍海洋工程有限公司 Automatic detection algorithm for underwater composite sensor target
CN112986210B (en) * 2021-02-10 2021-12-17 四川大学 Scale-adaptive microbial Raman spectrum detection method and system
CN113033609B (en) * 2021-02-16 2022-11-29 浙江大学 SAR image classification method based on multitask DCGAN
CN112964693A (en) * 2021-02-19 2021-06-15 山东捷讯通信技术有限公司 Raman spectrum band region segmentation method
CN112907621B (en) * 2021-02-24 2023-02-14 华南理工大学 Moving object extraction method based on difference and semantic information fusion
CN112927264B (en) * 2021-02-25 2022-12-16 华南理工大学 Unmanned aerial vehicle tracking shooting system and RGBD tracking method thereof
CN112926652B (en) * 2021-02-25 2023-10-24 青岛科技大学 Fish fine granularity image recognition method based on deep learning
CN112818932A (en) * 2021-02-26 2021-05-18 北京车和家信息技术有限公司 Image processing method, obstacle detection device, medium, and vehicle
CN112926457B (en) * 2021-02-26 2022-09-06 中国电子科技集团公司第二十八研究所 SAR image recognition method based on fusion frequency domain and space domain network model
CN112966598B (en) * 2021-03-04 2022-08-30 河南大学 Hyperspectral image classification method of dual-path small convolution network
CN112966747A (en) * 2021-03-04 2021-06-15 北京联合大学 Improved vehicle detection method based on anchor-frame-free detection network
CN112837315B (en) * 2021-03-05 2023-11-21 云南电网有限责任公司电力科学研究院 Deep learning-based transmission line insulator defect detection method
CN113129225A (en) * 2021-03-09 2021-07-16 西安理工大学 Computed ghost imaging reconstruction recovery method based on Dense Net network
CN112966611A (en) * 2021-03-09 2021-06-15 中国科学技术大学 Energy trace noise self-adaption method of DWT attention mechanism
CN113159021A (en) * 2021-03-10 2021-07-23 国网河北省电力有限公司 Text detection method based on context information
CN113052184B (en) * 2021-03-12 2022-11-18 电子科技大学 Target detection method based on two-stage local feature alignment
CN113032612B (en) * 2021-03-12 2023-04-11 西北大学 Construction method of multi-target image retrieval model, retrieval method and device
CN112990230B (en) * 2021-03-12 2023-05-09 西安电子科技大学 Spectral image compression reconstruction method based on two-stage grouping attention residual error mechanism
CN113095152B (en) * 2021-03-18 2023-08-22 西安交通大学 Regression-based lane line detection method and system
CN113011338B (en) * 2021-03-19 2023-08-22 华南理工大学 Lane line detection method and system
CN113128564B (en) * 2021-03-23 2022-03-22 武汉泰沃滋信息技术有限公司 Typical target detection method and system based on deep learning under complex background
CN113128563B (en) * 2021-03-23 2023-11-17 武汉泰沃滋信息技术有限公司 Method, device, equipment and storage medium for detecting high-speed engineering vehicle
CN112990065B (en) * 2021-03-31 2024-03-22 上海海事大学 Vehicle classification detection method based on optimized YOLOv5 model
CN113256507B (en) * 2021-04-01 2023-11-21 南京信息工程大学 Attention enhancement method for generating image aiming at binary flow data
US20240161461A1 (en) * 2021-04-01 2024-05-16 Boe Technology Group Co., Ltd. Object detection method, object detection apparatus, and object detection system
CN113077491B (en) * 2021-04-02 2023-05-02 安徽大学 RGBT target tracking method based on cross-modal sharing and specific representation form
CN113076898B (en) * 2021-04-09 2023-09-15 长安大学 Traffic vehicle target detection method, device, equipment and readable storage medium
CN113159159B (en) * 2021-04-15 2023-09-29 东北大学 Small sample image classification method based on improved CNN
CN113095417B (en) * 2021-04-16 2023-07-28 西安电子科技大学 SAR target recognition method based on fusion graph convolution and convolution neural network
CN113221668B (en) * 2021-04-20 2023-04-07 西安翔迅科技有限责任公司 Frame extraction method in wind generating set blade video monitoring
CN113191235B (en) * 2021-04-22 2024-05-17 上海东普信息科技有限公司 Sundry detection method, sundry detection device, sundry detection equipment and storage medium
CN113177133B (en) * 2021-04-23 2024-03-29 深圳依时货拉拉科技有限公司 Image retrieval method, device, equipment and storage medium
CN113205026B (en) * 2021-04-26 2022-08-16 武汉大学 Improved vehicle type recognition method based on fast RCNN deep learning network
CN113159198A (en) * 2021-04-27 2021-07-23 上海芯物科技有限公司 Target detection method, device, equipment and storage medium
CN113255737B (en) * 2021-04-30 2023-08-08 超节点创新科技(深圳)有限公司 Method for sorting baggage in folded package on civil aviation sorting line, electronic equipment and storage medium
CN113221993B (en) * 2021-05-06 2023-08-01 西安电子科技大学 Large-view-field small-sample target detection method based on meta-learning and cross-stage hourglass
CN113139615A (en) * 2021-05-08 2021-07-20 北京联合大学 Unmanned environment target detection method based on embedded equipment
CN113139497B (en) * 2021-05-08 2023-04-28 广东工业大学 System and method for identifying object on water surface and application based on 5G MEC
CN113327227B (en) * 2021-05-10 2022-11-11 桂林理工大学 MobileneetV 3-based wheat head rapid detection method
CN113128473A (en) * 2021-05-17 2021-07-16 哈尔滨商业大学 Underground comprehensive pipe gallery-oriented inspection system, method, equipment and storage medium
CN113240017B (en) * 2021-05-18 2023-09-12 西安理工大学 Multispectral and panchromatic image classification method based on attention mechanism
CN113269073B (en) * 2021-05-19 2022-11-15 青岛科技大学 Ship multi-target tracking method based on YOLO V5 algorithm
CN113408584B (en) * 2021-05-19 2022-07-26 成都理工大学 RGB-D multi-modal feature fusion 3D target detection method
CN113421222B (en) * 2021-05-21 2023-06-23 西安科技大学 Lightweight coal gangue target detection method
CN113379761B (en) * 2021-05-25 2023-04-28 重庆顺多利机车有限责任公司 Linkage method and system of multiple AGVs and automatic doors based on artificial intelligence
CN113240611B (en) * 2021-05-28 2024-05-07 中建材信息技术股份有限公司 Foreign matter detection method based on picture sequence
CN113343821B (en) * 2021-05-31 2022-08-30 合肥工业大学 Non-contact heart rate measurement method based on space-time attention network and input optimization
CN113240039B (en) * 2021-05-31 2023-08-15 西安电子科技大学 Small sample target detection method and system based on spatial position feature re-weighting
CN113468967B (en) * 2021-06-02 2023-08-18 北京邮电大学 Attention mechanism-based lane line detection method, attention mechanism-based lane line detection device, attention mechanism-based lane line detection equipment and attention mechanism-based lane line detection medium
CN113255797B (en) * 2021-06-02 2024-04-05 通号智慧城市研究设计院有限公司 Dangerous goods detection method and system based on deep learning model
CN113255682B (en) * 2021-06-04 2021-11-16 浙江智慧视频安防创新中心有限公司 Target detection system, method, device, equipment and medium
CN113506317B (en) * 2021-06-07 2022-04-22 北京百卓网络技术有限公司 Multi-target tracking method based on Mask R-CNN and apparent feature fusion
CN113362389B (en) * 2021-06-08 2024-02-27 长安大学 Shield tunnel deformation prediction method based on CNN-RNN coupling number-shape fusion
CN113240050B (en) * 2021-06-08 2024-05-03 南京师范大学 Metal printing molten pool detection method with adjustable feature fusion weight
CN113378918B (en) * 2021-06-09 2022-06-07 武汉大学 Insulator binding wire state detection method based on metric learning
CN113378936B (en) * 2021-06-11 2024-03-08 长沙军民先进技术研究有限公司 Faster RCNN-based few-sample target detection method
CN113343863B (en) * 2021-06-11 2023-01-03 北京邮电大学 Fusion characterization network model training method, fingerprint characterization method and equipment thereof
CN113313058B (en) * 2021-06-16 2022-08-02 北京航空航天大学 Unmanned aerial vehicle aerial image target detection method based on self-adaptive model integration
CN113239899B (en) * 2021-06-17 2024-05-28 阿波罗智联(北京)科技有限公司 Method for processing image and generating convolution kernel, road side equipment and cloud control platform
CN113421235B (en) * 2021-06-17 2023-06-20 中国电子科技集团公司第四十一研究所 Cigarette positioning device and method based on deep learning
CN113420643B (en) * 2021-06-21 2023-02-10 西北工业大学 Lightweight underwater target detection method based on depth separable cavity convolution
CN113408423B (en) * 2021-06-21 2023-09-05 西安工业大学 Aquatic product target real-time detection method suitable for TX2 embedded platform
CN113660484B (en) * 2021-06-29 2024-04-26 北京点众快看科技有限公司 Audio and video attribute comparison method, system, terminal and medium based on audio and video content
CN113449738B (en) * 2021-07-06 2023-06-23 国网信息通信产业集团有限公司 Priori frame parameter self-adaptive improved FRC detection method based on sample characteristics
CN113469071B (en) * 2021-07-06 2024-03-29 西安科技大学 Video detection method for foreign matters of coal conveying belt aiming at embedded equipment
CN113609911B (en) * 2021-07-07 2024-05-28 北京工业大学 Automatic pavement disease detection method and system based on deep learning
CN113361483B (en) * 2021-07-07 2023-04-14 合肥英睿系统技术有限公司 Traffic speed limit sign detection method, device, equipment and storage medium
CN113592906B (en) * 2021-07-12 2024-02-13 华中科技大学 Long video target tracking method and system based on annotation frame feature fusion
CN113449675B (en) * 2021-07-12 2024-03-29 西安科技大学 Method for detecting crossing of coal mine personnel
CN113673323B (en) * 2021-07-13 2023-10-27 中国船舶重工集团公司第七一五研究所 Aquatic target identification method based on multi-deep learning model joint judgment system
CN113591617B (en) * 2021-07-14 2023-11-28 武汉理工大学 Deep learning-based water surface small target detection and classification method
CN113537098A (en) * 2021-07-21 2021-10-22 北京航空航天大学 Method for detecting and identifying impact pits in landing image
CN113537105B (en) * 2021-07-23 2024-05-10 北京经纬恒润科技股份有限公司 Parking space detection method and device
CN113569702B (en) * 2021-07-23 2023-10-27 闽江学院 Truck single-double tire identification method based on deep learning
CN113591668B (en) * 2021-07-26 2023-11-21 南京大学 Wide area unknown dam automatic detection method using deep learning and space analysis
CN113534146B (en) * 2021-07-26 2023-12-01 中国人民解放军海军航空大学 Automatic detection method and system for radar video image target
CN113674216A (en) * 2021-07-27 2021-11-19 南京航空航天大学 Subway tunnel disease detection method based on deep learning
CN113537119B (en) * 2021-07-28 2022-08-30 国网河南省电力公司电力科学研究院 Transmission line connecting part detection method based on improved Yolov4-tiny
CN113808202B (en) * 2021-08-11 2024-05-24 浙江工商大学 Multi-target detection and space positioning method and system thereof
CN113780087B (en) * 2021-08-11 2024-04-26 同济大学 Postal package text detection method and equipment based on deep learning
CN113688830B (en) * 2021-08-13 2024-04-26 湖北工业大学 Deep learning target detection method based on center point regression
CN113658131A (en) * 2021-08-16 2021-11-16 东华大学 Tour type ring spinning broken yarn detection method based on machine vision
CN113569835A (en) * 2021-08-16 2021-10-29 浙江广厦建设职业技术大学 Water meter numerical value reading method based on target detection and segmentation identification
CN113643327B (en) * 2021-08-18 2023-10-20 江西理工大学 Nuclear correlation filtering target tracking method for response confidence coefficient multi-feature fusion
CN113706496B (en) * 2021-08-23 2024-04-12 中国飞机强度研究所 Aircraft structure crack detection method based on deep learning model
CN113689928B (en) * 2021-08-24 2023-06-20 深圳平安智慧医健科技有限公司 Recommended method, apparatus, device and storage medium for maintenance and prevention of illness
CN113688734B (en) * 2021-08-25 2023-09-22 燕山大学 FPGA heterogeneous acceleration-based old people falling detection method
CN113484908B (en) * 2021-08-25 2023-07-14 成都理工大学 Missing seismic data reconstruction method for deep learning network by combining partial convolution and attention mechanism
CN113688740B (en) * 2021-08-26 2024-02-27 燕山大学 Indoor gesture detection method based on multi-sensor fusion vision
CN113792774B (en) * 2021-09-01 2024-01-12 西北工业大学 Intelligent fusion sensing method for underwater targets
CN113689470B (en) * 2021-09-02 2023-08-11 重庆大学 Pedestrian motion trail prediction method under multi-scene fusion
CN113705716B (en) * 2021-09-03 2023-10-10 北京百度网讯科技有限公司 Image recognition model training method and device, cloud control platform and automatic driving vehicle
CN113763235A (en) * 2021-09-08 2021-12-07 北京琥珀创想科技有限公司 Method for converting picture into scanning piece and intelligent mobile terminal
CN113807236B (en) * 2021-09-15 2024-05-17 北京百度网讯科技有限公司 Method, device, equipment, storage medium and program product for lane line detection
CN113762200B (en) * 2021-09-16 2023-06-30 深圳大学 Mask detection method based on LFD
CN113792684B (en) * 2021-09-17 2024-03-29 中国科学技术大学 Multi-mode visual flame detection method for fire-fighting robot under weak alignment condition
CN113824658B (en) * 2021-09-22 2023-06-20 西华大学 Deep migration learning channel estimation method adopting DNSP scheme in OFDM system
CN113780462B (en) * 2021-09-24 2024-03-19 华中科技大学 Vehicle detection network establishment method based on unmanned aerial vehicle aerial image and application thereof
CN113705729A (en) * 2021-09-27 2021-11-26 中原动力智能机器人有限公司 Garbage classification model modeling method, garbage classification device and garbage classification medium
CN113808123B (en) * 2021-09-27 2024-03-29 杭州跨视科技有限公司 Dynamic detection method for liquid medicine bag based on machine vision
CN113807463B (en) * 2021-09-28 2023-10-17 中电万维信息技术有限责任公司 Method for detecting BI icon questions based on Faster-RCNN
CN113888595B (en) * 2021-09-29 2024-05-14 中国海洋大学 Twin network single-target visual tracking method based on difficult sample mining
CN113947774B (en) * 2021-10-08 2024-05-14 东北大学 Lightweight vehicle target detection system
CN114120246B (en) * 2021-10-12 2024-04-16 吉林大学 Front vehicle detection algorithm based on complex environment
CN113808128B (en) * 2021-10-14 2023-07-28 河北工业大学 Intelligent compaction whole process visualization control method based on relative coordinate positioning algorithm
CN113962261B (en) * 2021-10-21 2024-05-14 中国人民解放军空军航空大学 Deep network model construction method for radar signal sorting
CN113792827B (en) * 2021-11-18 2022-03-25 北京的卢深视科技有限公司 Target object recognition method, electronic device, and computer-readable storage medium
CN114092448B (en) * 2021-11-22 2023-12-01 浙大城市学院 Plug-in electrolytic capacitor mixed detection method based on deep learning
CN114119562B (en) * 2021-11-29 2024-05-24 青岛理工大学 Brake disc outer surface defect detection method and system based on deep learning
CN114419925B (en) * 2021-12-01 2022-11-04 合肥工业大学 Vehicle-road cooperative collision-prevention early warning system and method
CN114201533A (en) * 2021-12-14 2022-03-18 中国平安财产保险股份有限公司 Vehicle wading depth detection method and device, electronic equipment and storage medium
CN114220053B (en) * 2021-12-15 2022-06-03 北京建筑大学 Unmanned aerial vehicle video vehicle retrieval method based on vehicle feature matching
CN113947766B (en) * 2021-12-21 2022-04-22 之江实验室 Real-time license plate detection method based on convolutional neural network
CN114332701B (en) * 2021-12-27 2024-05-28 北京航空航天大学 Target tracking method based on task distinguishing detection and re-identification combined network
CN115529475A (en) * 2021-12-29 2022-12-27 北京智美互联科技有限公司 Method and system for detecting video flow content and controlling wind
CN114528911A (en) * 2022-01-10 2022-05-24 西北大学 Multi-label image classification method and model construction method and device for multi-branch structure
CN114445689A (en) * 2022-01-29 2022-05-06 福州大学 Multi-scale weighted fusion target detection method and system guided by target prior information
CN114519819B (en) * 2022-02-10 2024-04-02 西北工业大学 Remote sensing image target detection method based on global context awareness
CN114529951B (en) * 2022-02-22 2024-04-02 北京工业大学 On-site fingerprint feature point extraction method based on deep learning
CN114565878B (en) * 2022-03-01 2024-05-03 北京赛思信安技术股份有限公司 Video marker detection method with configurable support categories
CN114692487B (en) * 2022-03-11 2023-05-26 中国电子科技集团公司第二十九研究所 Electronic equipment maintenance spare part pre-casting method, device, equipment and storage medium
CN114898327B (en) * 2022-03-15 2024-04-26 武汉理工大学 Vehicle detection method based on lightweight deep learning network
CN114842220B (en) * 2022-03-24 2024-02-27 西北工业大学 Unmanned aerial vehicle visual positioning method based on multi-source image matching
CN114743045B (en) * 2022-03-31 2023-09-26 电子科技大学 Small sample target detection method based on double-branch area suggestion network
CN114882376B (en) * 2022-05-06 2024-03-22 自然资源部第一海洋研究所 Convolutional neural network remote sensing image target detection method based on optimal anchor point scale
CN114821654A (en) * 2022-05-09 2022-07-29 福州大学 Human hand detection method fusing local and depth space-time diagram network
CN114913419B (en) * 2022-05-10 2023-07-18 西南石油大学 Intelligent parking target detection method and system
CN114742822A (en) * 2022-05-20 2022-07-12 青岛农业大学 Construction method and application of strawberry identification and counting model
CN115131622B (en) * 2022-05-22 2024-03-29 北京工业大学 Night open fire detection method based on video time sequence correlation
CN115014748B (en) * 2022-05-31 2023-05-23 南京林业大学 Fault diagnosis method for seed cotton sorting spray valve
CN114943922B (en) * 2022-06-02 2024-04-02 浙大城市学院 Machine examination suspicious behavior identification method based on deep learning
CN114913587B (en) * 2022-06-14 2024-02-13 合肥工业大学 Non-contact heart rate measurement uncertainty quantization method based on Bayesian deep learning
CN115050028B (en) * 2022-06-15 2024-03-29 松立控股集团股份有限公司 Small sample license plate detection method in severe weather
CN114818838B (en) * 2022-06-30 2022-09-13 中国科学院国家空间科学中心 Low signal-to-noise ratio moving point target detection method based on pixel time domain distribution learning
CN115273044B (en) * 2022-07-15 2023-04-07 哈尔滨市科佳通用机电股份有限公司 Vehicle door damage fault identification and detection method based on improved graph convolution network
CN115131760B (en) * 2022-07-17 2024-04-19 西北工业大学 Lightweight vehicle tracking method based on improved feature matching strategy
CN114982739A (en) * 2022-07-18 2022-09-02 江苏合力四通智能科技股份有限公司 Intelligent laser bird repelling device and method based on deep learning
CN115294244B (en) * 2022-08-11 2023-10-31 北京理工大学 Honeycomb structure patterning self-adaptive filling method based on machine learning
CN115393634B (en) * 2022-08-11 2023-12-26 重庆邮电大学 Small sample target real-time detection method based on migration learning strategy
CN115331086B (en) * 2022-08-17 2023-08-08 哈尔滨市科佳通用机电股份有限公司 Brake shoe breakage and rivet loss fault detection method
CN115359094B (en) * 2022-09-05 2023-04-18 珠海安联锐视科技股份有限公司 Moving target detection method based on deep learning
CN115484410B (en) * 2022-09-15 2023-11-24 天津大学 Event camera video reconstruction method based on deep learning
CN115439835A (en) * 2022-10-13 2022-12-06 中国矿业大学 Real-time call-making and call-receiving behavior detection method for improved YOLO-PAI
CN115578615B (en) * 2022-10-31 2023-05-09 成都信息工程大学 Night traffic sign image detection model building method based on deep learning
CN115641510B (en) * 2022-11-18 2023-08-08 中国人民解放军战略支援部队航天工程大学士官学校 Remote sensing image ship detection and identification method
CN115601688B (en) * 2022-12-15 2023-02-21 中译文娱科技(青岛)有限公司 Video main content detection method and system based on deep learning
CN116385953B (en) * 2023-01-11 2023-12-15 哈尔滨市科佳通用机电股份有限公司 Railway wagon door hinge breaking fault image identification method
CN116524017B (en) * 2023-03-13 2023-09-19 明创慧远科技集团有限公司 Underground detection, identification and positioning system for mine
CN115953405B (en) * 2023-03-14 2023-05-26 中国科学院计算机网络信息中心 Bridge crack identification method and device for augmented reality equipment
CN116403071B (en) * 2023-03-23 2024-03-26 河海大学 Method and device for detecting few-sample concrete defects based on feature reconstruction
CN116106899B (en) * 2023-04-14 2023-06-23 青岛杰瑞工控技术有限公司 Port channel small target identification method based on machine learning
CN116452878B (en) * 2023-04-20 2024-02-02 广东工业大学 Attendance checking method and system based on deep learning algorithm and binocular vision
CN116434124B (en) * 2023-06-13 2023-09-05 江西云眼视界科技股份有限公司 Video motion enhancement detection method based on space-time filtering
CN116778362B (en) * 2023-06-21 2024-03-05 广东电网有限责任公司汕尾供电局 Electric power tower acceptance component identification method based on field knowledge and deep learning
CN116843907B (en) * 2023-06-26 2024-02-13 中国信息通信研究院 Enhancement and target detection method and system based on deep learning
CN116503517B (en) * 2023-06-27 2023-09-05 江西农业大学 Method and system for generating image by long text
CN116524474B (en) * 2023-07-04 2023-09-15 武汉大学 Vehicle target detection method and system based on artificial intelligence
CN116977931A (en) * 2023-07-31 2023-10-31 深圳市星河智善科技有限公司 High-altitude parabolic identification method based on deep learning
CN117011772B (en) * 2023-07-31 2024-04-30 广东电网有限责任公司 Risk prompting method, device and storage medium for power transmission line
CN116993779B (en) * 2023-08-03 2024-05-14 重庆大学 Vehicle target tracking method suitable for monitoring video
CN116912238B (en) * 2023-09-11 2023-11-28 湖北工业大学 Weld joint pipeline identification method and system based on multidimensional identification network cascade fusion
CN117237369B (en) * 2023-11-16 2024-02-27 苏州视智冶科技有限公司 Blast furnace iron notch opening depth measurement method based on computer vision
CN117372935B (en) * 2023-12-07 2024-02-20 神思电子技术股份有限公司 Video target detection method, device and medium
CN117788871A (en) * 2023-12-26 2024-03-29 海南言发高科技有限公司 Vehicle-mounted weighing management method and platform based on artificial intelligence

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9881234B2 (en) 2015-11-25 2018-01-30 Baidu Usa Llc. Systems and methods for end-to-end object detection
US9858496B2 (en) * 2016-01-20 2018-01-02 Microsoft Technology Licensing, Llc Object detection and classification in images
CN107507172A (en) * 2017-08-08 2017-12-22 国网上海市电力公司 Merge the extra high voltage line insulator chain deep learning recognition methods of infrared visible ray
CN107680106A (en) * 2017-10-13 2018-02-09 南京航空航天大学 A kind of conspicuousness object detection method based on Faster R CNN
CN108563977A (en) 2017-12-18 2018-09-21 华南理工大学 A kind of the pedestrian's method for early warning and system of expressway entrance and exit
CN108416287B (en) * 2018-03-04 2022-04-01 南京理工大学 Pedestrian detection method based on missing negative sample mining
CN108648233B (en) 2018-03-24 2022-04-12 北京工业大学 Target identification and capture positioning method based on deep learning
CN108830188B (en) * 2018-05-30 2022-03-04 西安理工大学 Vehicle detection method based on deep learning
CN109447018B (en) * 2018-11-08 2021-08-03 天津理工大学 Road environment visual perception method based on improved Faster R-CNN
CN109377555B (en) * 2018-11-14 2023-07-25 江苏科技大学 Method for extracting and identifying three-dimensional reconstruction target features of foreground visual field of autonomous underwater robot

Similar Documents

Publication Publication Date Title
JP7120689B2 (en) In-Vehicle Video Target Detection Method Based on Deep Learning
JPWO2020181685A5 (en)
CN110956094B (en) RGB-D multi-mode fusion personnel detection method based on asymmetric double-flow network
CN110163187B (en) F-RCNN-based remote traffic sign detection and identification method
CN108830188B (en) Vehicle detection method based on deep learning
CN107609602A (en) A kind of Driving Scene sorting technique based on convolutional neural networks
CN108694386B (en) Lane line detection method based on parallel convolution neural network
CN103902976B (en) A kind of pedestrian detection method based on infrared image
CN104050827B (en) A kind of traffic lights of view-based access control model detect recognition methods automatically
CN109447033A (en) Vehicle front obstacle detection method based on YOLO
CN110378196A (en) A kind of road vision detection method of combination laser point cloud data
CN108509954A (en) A kind of more car plate dynamic identifying methods of real-time traffic scene
CN109344701A (en) A kind of dynamic gesture identification method based on Kinect
CN106096561A (en) Infrared pedestrian detection method based on image block degree of depth learning characteristic
CN107085696A (en) A kind of vehicle location and type identifier method based on bayonet socket image
CN109766936A (en) Image change detection method based on information transmitting and attention mechanism
CN101900566A (en) Pixel-based texture-rich clear path detection
CN107273832A (en) Licence plate recognition method and system based on integrating channel feature and convolutional neural networks
CN101900567A (en) No-texture clear path detection based on pixel
CN113160062B (en) Infrared image target detection method, device, equipment and storage medium
CN108021879A (en) A kind of vehicular traffic kind identification method based on video image
CN112733815B (en) Traffic light identification method based on RGB outdoor road scene image
CN109583349A (en) A kind of method and system for being identified in color of the true environment to target vehicle
CN110738132A (en) target detection quality blind evaluation method with discriminant perception capability
CN112434723A (en) Day/night image classification and object detection method based on attention network