JPWO2020169719A5 - Methods of Analyte Concentration Monitoring Using Harmonic Relationships - Google Patents

Methods of Analyte Concentration Monitoring Using Harmonic Relationships Download PDF

Info

Publication number
JPWO2020169719A5
JPWO2020169719A5 JP2021549382A JP2021549382A JPWO2020169719A5 JP WO2020169719 A5 JPWO2020169719 A5 JP WO2020169719A5 JP 2021549382 A JP2021549382 A JP 2021549382A JP 2021549382 A JP2021549382 A JP 2021549382A JP WO2020169719 A5 JPWO2020169719 A5 JP WO2020169719A5
Authority
JP
Japan
Prior art keywords
harmonic
analyte
circuit
containing fluid
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021549382A
Other languages
Japanese (ja)
Other versions
JP2022521409A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/EP2020/054459 external-priority patent/WO2020169719A1/en
Publication of JP2022521409A publication Critical patent/JP2022521409A/en
Publication of JPWO2020169719A5 publication Critical patent/JPWO2020169719A5/en
Pending legal-status Critical Current

Links

Claims (15)

分析物含有流体中の酸化還元反応を電子的に精査する方法であって、
第1の回路によって、周期的電圧励起信号を前記分析物含有流体に印加するステップであって、前記周期的電圧励起信号が基本周波数を有する、ステップと、
前記第1の回路が前記周期的電圧励起信号を印加している間に、第2の回路によって、電流測定信号を生成するステップであって、前記電流測定信号が、前記分析物含有流体中の酸化還元反応によって生成される電流を示す大きさを有し、前記大きさが、少なくとも部分的に、前記分析物含有流体中の分析対象物濃度に依存する、ステップと、
第3の回路によって、前記電流測定信号をサンプリングするステップと、
前記第3の回路によって、前記電流測定信号を表すデジタル化された時間領域サンプルデータを提供するステップと、
前記デジタル化された時間領域サンプルデータに少なくとも部分的に基づいて複数の高調波信号を抽出するステップであって、前記高調波信号が前記基本周波数の高調波であり、各高調波信号が対応する強度を有し、高調波関係のセットが1つまたは複数の高調波比に基づく、ステップと、
前記複数の高調波信号の少なくとも一部に基づいて、高調波関係のセットを計算するステップと、
高調波関係データベースにアクセスするステップであって、前記高調波関係データベースが、複数の高調波関係のセットを含み、高調波関係の各セットが、対応する分析対象物濃度に関連付けられる、ステップと、
前記高調波関係データベースおよび前記計算された高調波関係のセットに基づいて、前記分析物含有流体中の分析対象物濃度の大きさを決定するステップと
を備える、方法。
A method of electronically probing redox reactions in an analyte-containing fluid, comprising:
applying a periodic voltage excitation signal to the analyte-containing fluid by a first circuit, wherein the periodic voltage excitation signal has a fundamental frequency;
generating, by a second circuit, an amperometric signal while the first circuit applies the periodic voltage excitation signal, the amperometric signal in the analyte-containing fluid; having a magnitude indicative of a current produced by a redox reaction, said magnitude depending, at least in part, on analyte concentration in said analyte-containing fluid;
sampling the current measurement signal by a third circuit;
providing, by the third circuit, digitized time domain sample data representing the current measurement signal;
extracting a plurality of harmonic signals based at least in part on the digitized time domain sample data, wherein the harmonic signals are harmonics of the fundamental frequency, each harmonic signal corresponding to having an intensity, wherein the set of harmonic relationships is based on one or more harmonic ratios;
calculating a set of harmonic relationships based at least in part on the plurality of harmonic signals;
accessing a harmonic relationship database, wherein the harmonic relationship database includes a plurality of harmonic relationship sets, each set of harmonic relationships being associated with a corresponding analyte concentration;
and determining a magnitude of analyte concentration in said analyte-containing fluid based on said harmonic relation database and said set of calculated harmonic relations.
前記デジタル化された周波数領域データからパワースペクトル密度データを生成するステップをさらに備える、請求項1に記載の方法。 2. The method of claim 1, further comprising generating power spectral density data from said digitized frequency domain data. 前記高調波関係データベースにアクセスするステップが、
ルックアップテーブルにアクセスするステップを備える、請求項1に記載の方法。
Accessing the harmonic relation database comprises:
2. The method of claim 1, comprising accessing a lookup table.
前記電流測定信号を表す前記デジタル化された時間領域サンプルデータをウェアラブルの持続グルコースモニタリングデバイスからスマートフォンにワイヤレスで送信するステップをさらに備える、請求項1に記載の方法。 2. The method of claim 1, further comprising wirelessly transmitting the digitized time domain sample data representing the amperometric signal from a wearable continuous glucose monitoring device to a smart phone. 前記電流測定信号をサンプリングするステップが、第1の時間の期間の毎秒10サンプルから毎秒1000サンプルの範囲の第1のサンプリングレートでサンプリングするステップを含む、請求項1に記載の方法。 2. The method of claim 1, wherein sampling the current measurement signal comprises sampling at a first sampling rate ranging from 10 samples per second to 1000 samples per second for a first period of time. 前記第1の時間の期間が10秒から300秒の範囲である、請求項5に記載の方法。 6. The method of claim 5, wherein the first period of time ranges from 10 seconds to 300 seconds. 前記周期的電圧励起信号の前記基本周波数が0.1Hz~10Hzの範囲である、および/または、前記周期的電圧励起信号の振幅が、150ミリボルトから500ミリボルトの範囲である、請求項1に記載の方法。 2. The claim 1, wherein the fundamental frequency of the periodic voltage excitation signal ranges from 0.1 Hz to 10 Hz and/or the amplitude of the periodic voltage excitation signal ranges from 150 millivolts to 500 millivolts. Method. 前記分析物含有流体がグルコースを含む、請求項1に記載の方法。 2. The method of claim 1, wherein said analyte-containing fluid comprises glucose. 前記分析物含有流体中の前記分析対象物濃度の前記大きさを決定するステップが、分析物モニタリングシステムのウェアラブル部分によって実行される、請求項1に記載の方法。 2. The method of claim 1, wherein determining the magnitude of the analyte concentration in the analyte-containing fluid is performed by a wearable portion of an analyte monitoring system. 前記ウェアラブル部分のディスプレイ上に前記分析対象物濃度を表示するステップをさらに備える、請求項9に記載の方法。 10. The method of Claim 9, further comprising displaying the analyte concentration on a display of the wearable portion. 前記分析物を少なくとも1つの分析物干渉物から区別するために、前記計算された高調波関係を採用するステップをさらに備える、請求項1に記載の方法。 2. The method of Claim 1, further comprising employing said calculated harmonic relationship to distinguish said analyte from at least one analyte interferent. 持続的分析物モニタリング(CAM)システムであって、
分析物含有流体に周期的電圧励起信号を印加するように構成された第1の回路と、
電流測定信号を生成するように構成された第2の回路であって、前記電流測定信号が、前記分析物含有流体中の電流を示す大きさを有し、前記大きさが、前記分析物含有流体中の分析対象物濃度に少なくとも部分的に依存する、第2の回路と、
前記電流測定信号をサンプリングするように構成された第3の回路であって、デジタル化された時間領域サンプルデータを生成するようにさらに構成された、第3の回路と、
メモリに結合されたプロセッサであって、前記メモリが、記憶された高調波関係データベースを有し、前記プロセッサによって実行されると、前記プロセッサに、
前記デジタル化された時間領域サンプルデータから複数の高調波信号を抽出することであって、前記デジタル化された時間領域サンプルデータを周波数領域データに変換することを含む、抽出することと、
前記複数の高調波信号の少なくとも一部に基づいて、高調波関係のセットを計算することであって、高調波関係の前記セットが1つまたは複数の高調波比に基づく、計算することと、
前記高調波関係データベースにアクセスすることであって、前記高調波関係データベースが、複数の高調波関係のセットを含み、高調波関係の各セットが、対応する分析対象物濃度に関連付けられる、アクセスすることと、
前記高調波関係データベースおよび前記計算された高調波関係のセットに基づいて、前記分析物含有流体中の前記分析対象物濃度の大きさを決定することと
を行わせる、記憶された命令をさらに有する、プロセッサと
を備える、持続的分析物モニタリング(CAM)システム。
A continuous analyte monitoring (CAM) system comprising:
a first circuit configured to apply a periodic voltage excitation signal to the analyte-containing fluid;
A second circuit configured to generate an amperometric signal, wherein the amperometric signal has a magnitude indicative of a current in the analyte-containing fluid, wherein the magnitude is a second circuit that depends at least in part on the analyte concentration in the fluid;
a third circuit configured to sample the current measurement signal, the third circuit further configured to generate digitized time domain sample data;
A processor coupled to a memory, said memory having a stored harmonic relation database, and when executed by said processor, causing said processor to:
extracting a plurality of harmonic signals from the digitized time domain sample data, including converting the digitized time domain sample data to frequency domain data;
calculating a set of harmonic relationships based at least in part on the plurality of harmonic signals, wherein the set of harmonic relationships is based on one or more harmonic ratios;
accessing the harmonic relationship database, the harmonic relationship database comprising a plurality of harmonic relationship sets, each set of harmonic relationships being associated with a corresponding analyte concentration; and
determining the magnitude of the analyte concentration in the analyte-containing fluid based on the harmonic relationship database and the calculated set of harmonic relationships; and , a processor, and a continuous analyte monitoring (CAM) system.
前記第1の回路、前記第2の回路、および前記第3の回路がウェアラブルデバイスに配置されている、請求項12に記載のCAMシステム。 13. The CAM system of claim 12, wherein said first circuit, said second circuit, and said third circuit are located on a wearable device. 前記プロセッサおよび前記メモリが前記ウェアラブルデバイスに配置されている、請求項13に記載のCAMシステム。 14. The CAM system of claim 13, wherein said processor and said memory are located on said wearable device. 前記命令が、前記プロセッサによって実行されると、前記プロセッサに、前記分析対象物濃度を送信するようにワイヤレス送信機にさらに指示させる、請求項12に記載のCAMシステム。 13. The CAM system of claim 12, wherein the instructions, when executed by the processor, cause the processor to further direct a wireless transmitter to transmit the analyte concentration.
JP2021549382A 2019-02-22 2020-02-20 Method and device for monitoring the concentration of the object to be analyzed using harmonic relations Pending JP2022521409A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962809039P 2019-02-22 2019-02-22
US62/809,039 2019-02-22
PCT/EP2020/054459 WO2020169719A1 (en) 2019-02-22 2020-02-20 Methods and apparatus for analyte concentration monitoring using harmonic relationships

Publications (2)

Publication Number Publication Date
JP2022521409A JP2022521409A (en) 2022-04-07
JPWO2020169719A5 true JPWO2020169719A5 (en) 2023-03-01

Family

ID=69714012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021549382A Pending JP2022521409A (en) 2019-02-22 2020-02-20 Method and device for monitoring the concentration of the object to be analyzed using harmonic relations

Country Status (5)

Country Link
US (2) US11666253B2 (en)
EP (1) EP3928089A1 (en)
JP (1) JP2022521409A (en)
CN (1) CN113646625A (en)
WO (1) WO2020169719A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113490454A (en) 2019-02-05 2021-10-08 安晟信医疗科技控股公司 Apparatus and method for sensor operation for detecting continuous analyte sensing and auto-correction
US11666253B2 (en) * 2019-02-22 2023-06-06 Ascensia Diabetes Care Holdings Ag Methods and apparatus for analyte concentration monitoring using harmonic relationships
US11678820B2 (en) 2019-09-10 2023-06-20 Ascensia Diabetes Care Holdings Ag Methods and apparatus for information gathering, error detection and analyte concentration determination during continuous analyte sensing

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5792668A (en) * 1993-08-06 1998-08-11 Solid State Farms, Inc. Radio frequency spectral analysis for in-vitro or in-vivo environments
CA2385842C (en) 1999-09-20 2008-12-09 Roche Diagnostics Corporation Small volume biosensor for continuous analyte monitoring
US6885883B2 (en) 2000-05-16 2005-04-26 Cygnus, Inc. Methods for improving performance and reliability of biosensors
WO2003060154A2 (en) * 2002-01-15 2003-07-24 Agamatrix, Inc. Method and apparatus for processing electrochemical signals
JP4083689B2 (en) 2002-03-22 2008-04-30 アニマス テクノロジーズ エルエルシー Improved performance of analyte monitoring devices
US20070264721A1 (en) * 2003-10-17 2007-11-15 Buck Harvey B System and method for analyte measurement using a nonlinear sample response
US7299082B2 (en) 2003-10-31 2007-11-20 Abbott Diabetes Care, Inc. Method of calibrating an analyte-measurement device, and associated methods, devices and systems
WO2005057175A2 (en) 2003-12-09 2005-06-23 Dexcom, Inc. Signal processing for continuous analyte sensor
US8057401B2 (en) 2005-02-24 2011-11-15 Erich Wolf System for transcutaneous monitoring of intracranial pressure
US8224414B2 (en) 2004-10-28 2012-07-17 Echo Therapeutics, Inc. System and method for analyte sampling and analysis with hydrogel
MX2008000836A (en) 2005-07-20 2008-03-26 Bayer Healthcare Llc Gated amperometry.
US20080074307A1 (en) 2006-05-17 2008-03-27 Olga Boric-Lubecke Determining presence and/or physiological motion of one or more subjects within a doppler radar system
US8126554B2 (en) 2006-05-17 2012-02-28 Cardiac Pacemakers, Inc. Implantable medical device with chemical sensor and related methods
US20070299617A1 (en) 2006-06-27 2007-12-27 Willis John P Biofouling self-compensating biosensor
BRPI0923342A2 (en) 2008-12-08 2016-01-12 Bayer Healthcare Llc biosensor system with signal adjustment
WO2010121229A1 (en) 2009-04-16 2010-10-21 Abbott Diabetes Care Inc. Analyte sensor calibration management
US20110168575A1 (en) * 2010-01-08 2011-07-14 Roche Diaagnostics Operations, Inc. Sample characterization based on ac measurement methods
ES2700100T3 (en) 2010-06-07 2019-02-14 Ascensia Diabetes Care Holding Ag Compensation based on slope including secondary output signals
US9008744B2 (en) 2011-05-06 2015-04-14 Medtronic Minimed, Inc. Method and apparatus for continuous analyte monitoring
EP3586831A1 (en) 2011-09-21 2020-01-01 Ascensia Diabetes Care Holdings AG Analysis compensation including segmented signals
WO2014046318A1 (en) 2012-09-21 2014-03-27 ㈜ 더바이오 Sample recognition method and biosensor using same
EP2986214B1 (en) 2013-02-20 2020-02-12 DexCom, Inc. Retrospective retrofitting method to generate a continuous glucose concentration profile
US9486171B2 (en) 2013-03-15 2016-11-08 Tandem Diabetes Care, Inc. Predictive calibration
US20150073718A1 (en) * 2013-09-10 2015-03-12 Lifescan Scotland Limited Phase-difference determination using test meter
EP3151732A1 (en) 2014-06-06 2017-04-12 Dexcom, Inc. Fault discrimination and responsive processing based on data and context
US9459201B2 (en) * 2014-09-29 2016-10-04 Zyomed Corp. Systems and methods for noninvasive blood glucose and other analyte detection and measurement using collision computing
JP6909231B2 (en) * 2016-03-18 2021-07-28 ラ トローブ ユニバーシティLa Trobe University Mobile voltammetry analysis
ES2960443T3 (en) 2017-07-03 2024-03-04 Hoffmann La Roche Method and electronic unit to detect in vivo properties of a biosensor
CN109199403A (en) * 2017-07-04 2019-01-15 爱科来株式会社 Measurement device, computer-readable recording medium and measuring method
WO2019089976A1 (en) 2017-11-01 2019-05-09 Waveform Technologies, Inc. Method for conditioning of a sensor
US11666253B2 (en) 2019-02-22 2023-06-06 Ascensia Diabetes Care Holdings Ag Methods and apparatus for analyte concentration monitoring using harmonic relationships

Similar Documents

Publication Publication Date Title
CN102283654B (en) Muscle-activity diagnosis apparatus and determining method
US6556001B1 (en) Highly time resolved impedance spectroscopy
Du et al. Application of infrared photoacoustic spectroscopy in soil analysis
ATE455184T1 (en) DETECTION OF ANALYTES
CN104042191A (en) Wrist watch type multi-parameter biosensor
RU2008147646A (en) INSUFFICIENT FILLING DETECTION SYSTEM FOR ELECTROCHEMICAL BIOSENSOR
JP2005515413A5 (en)
KR20040077722A (en) Method and apparatus for processing electrochemical signals
US10001450B2 (en) Nonlinear mapping technique for a physiological characteristic sensor
Liu et al. Measuring a frequency spectrum for single-molecule interactions with a confined nanopore
Economou et al. A “virtual” electroanalytical instrument for square wave voltammetry
Kankare et al. Electroglottographic contact quotient in different phonation types using different amplitude threshold levels
CN109073589B (en) Mobile voltammetric analysis
Aiassa et al. Optimized sampling rate for voltammetry-based electrochemical sensing in wearable and IoT applications
JP2022521409A (en) Method and device for monitoring the concentration of the object to be analyzed using harmonic relations
JPWO2020169719A5 (en) Methods of Analyte Concentration Monitoring Using Harmonic Relationships
Aliev et al. Robust correlation technology for online monitoring of changes in the state of the heart by means of laptops and smartphones
Angst et al. Measuring corrosion rates: A novel AC method based on processing and analysing signals recorded in the time domain
Jurczakowski et al. Limitations of the potential step technique to impedance measurements using discrete time Fourier transform
JP6454342B2 (en) Use of kinetic cyclic voltammetry to assess analyte kinetics and concentration
Baś et al. New multipurpose electrochemical analyzer for scientific and routine tasks
JP2005160944A (en) Apparatus and method for measuring blood flow rate
Harrison et al. The potential for photoplethysmographic (PPG)-based smart devices in atrial fibrillation detection
Arundell et al. Hilbert transform of voltammetric data
Mielech Simultaneous voltammetric determination of riboflavin and L-ascorbic acid in multivitamin pharmaceutical preparations