JPWO2020168008A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020168008A5
JPWO2020168008A5 JP2021547568A JP2021547568A JPWO2020168008A5 JP WO2020168008 A5 JPWO2020168008 A5 JP WO2020168008A5 JP 2021547568 A JP2021547568 A JP 2021547568A JP 2021547568 A JP2021547568 A JP 2021547568A JP WO2020168008 A5 JPWO2020168008 A5 JP WO2020168008A5
Authority
JP
Japan
Prior art keywords
subject
sequence reads
cancerous tissue
genome
cancer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021547568A
Other languages
Japanese (ja)
Other versions
JP2022521492A (en
JP7368483B2 (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2020/018002 external-priority patent/WO2020168008A1/en
Publication of JP2022521492A publication Critical patent/JP2022521492A/en
Publication of JPWO2020168008A5 publication Critical patent/JPWO2020168008A5/ja
Priority to JP2023176962A priority Critical patent/JP2024016039A/en
Application granted granted Critical
Publication of JP7368483B2 publication Critical patent/JP7368483B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (31)

試験対象におけるがんの相同組換え経路状態を判定する方法であって、
1つ以上のプロセッサと、前記1つ以上のプロセッサによって実行するための1つ以上のプログラムを記憶するメモリと、を有するコンピュータシステムにおいて、
(A)前記試験対象からの第1のDNAサンプルの第1の複数の配列読み取りを電子形式で取得することであって、前記第1のDNAサンプルが、前記対象のがん性組織からのDNA分子を含む、取得することと、
(B)前記試験対象からの第2のDNAサンプルの第2の複数の配列読み取りを電子で取得することであって、前記第2のDNAサンプルが、前記対象の非がん性組織からのDNA分子からなる、取得することと、
(C)前記第1の複数の配列読み取りの各配列と、前記第2の複数の配列読み取りの各配列とを、ヒトの参照ゲノムに対してアライメントし、それによって、対応する第1の複数のアライメントされた配列読み取りと、対応する第2の複数のアライメントされた配列読み取りとを生成することと、
(D)前記第1の複数のアライメントされた配列読み取りおよび前記第2の複数のアライメントされた配列読み取りに基づいて、前記対象のゲノムデータ構築物を生成することであって、前記ゲノムデータ構築物が、前記対象の前記がん性組織および前記非がん性組織のゲノムの複数の特徴を含み、前記複数の特徴が、(i)前記対象の前記がん性組織の前記ゲノムにおける第1の複数のDNA損傷修復遺伝子のヘテロ接合性状態、(ii)前記対象の前記がん性組織の前記ゲノム全体のヘテロ接合性の喪失の尺度、(iii)前記対象の前記がん性組織の前記ゲノム中の第2の複数のDNA損傷修復遺伝子において検出された変異型アレルの尺度、および(iv)前記対象の前記非がん性組織の前記ゲノム中の前記第2の複数のDNA損傷修復遺伝子において検出された変異型アレルの尺度、を含む、生成することと、
(E)相同組換え経路欠損のあるがんと相同組換え経路欠損のないがんとを区別するように訓練された分類器に前記ゲノムデータ構築物を入力し、それによって前記試験対象の前記相同組換え経路状態を判定することと、を含む、方法。
A method for determining the homologous recombination pathway status of a cancer in a test subject, comprising:
In a computer system having one or more processors and a memory storing one or more programs for execution by the one or more processors,
(A) obtaining in electronic form a first plurality of sequence reads of a first DNA sample from said test subject, wherein said first DNA sample is DNA from cancerous tissue of said subject; obtaining containing a molecule;
(B) electronically acquiring a second plurality of sequence reads of a second DNA sample from the test subject, wherein the second DNA sample is DNA from non-cancerous tissue of the subject; obtaining consisting of a molecule;
(C) aligning each sequence of said first plurality of sequence reads and each sequence of said second plurality of sequence reads to a human reference genome, thereby yielding a corresponding first plurality of sequence reads; generating aligned sequence reads and a corresponding second plurality of aligned sequence reads;
(D) generating a genomic data construct of said subject based on said first plurality of aligned sequence reads and said second plurality of aligned sequence reads, said genomic data construct comprising: a plurality of features of the genome of the cancerous tissue and the non-cancerous tissue of the subject, wherein the plurality of features comprises: (i) a first plurality of features in the genome of the cancerous tissue of the subject; (ii) a measure of loss of heterozygosity across the genome of the cancerous tissue of the subject; (iii) within the genome of the cancerous tissue of the subject; and (iv) a measure of mutant alleles detected in a second plurality of DNA damage repair genes detected in the second plurality of DNA damage repair genes in the genome of the non-cancerous tissue of the subject. generating a measure of the variant alleles obtained;
(E) inputting said genomic data constructs into a classifier trained to distinguish between cancers with homologous recombination pathway defects and cancers without homologous recombination pathway defects, thereby determining recombination pathway status.
前記第1のDNAサンプルが、前記対象の前記がん性組織の固形腫瘍生検からのものである、請求項1に記載の方法。 2. The method of claim 1, wherein said first DNA sample is from a solid tumor biopsy of said cancerous tissue of said subject. 前記第2のDNAサンプルが、前記対象からの血液サンプルのバフィーコート調製物からのものである、請求項1または2に記載の方法。 3. The method of claim 1 or 2, wherein said second DNA sample is from a buffy coat preparation of a blood sample from said subject. 前記第1の複数の配列読み取りが、ゲノム領域のパネルについて前記対象の前記がん性組織からの核酸を濃縮するために複数の核酸プローブを使用した標的化配列決定によって生成された、請求項1~3のいずれか一項に記載の方法。 2. The first plurality of sequence reads were generated by targeted sequencing using a plurality of nucleic acid probes to enrich nucleic acids from the cancerous tissue of the subject for a panel of genomic regions. 4. The method according to any one of 1 to 3. 前記第1の複数の配列読み取りが、前記対象の前記がん性組織からの核酸の全ゲノム配列決定によって生成された、請求項1~3のいずれか一項に記載の方法。 4. The method of any one of claims 1-3, wherein the first plurality of sequence reads was generated by whole genome sequencing of nucleic acid from the cancerous tissue of the subject. 前記第2の複数の配列読み取りが、ゲノム領域のパネルについて前記対象の前記非がん性組織からの核酸を濃縮するために複数の核酸プローブを使用する標的化配列決定によって生成された、請求項1~5のいずれか一項に記載の方法。 3. The second plurality of sequence reads were generated by targeted sequencing using a plurality of nucleic acid probes to enrich nucleic acids from the non-cancerous tissue of the subject for a panel of genomic regions. 6. The method according to any one of 1-5. 前記第2の複数の配列読み取りが、前記対象の前記非がん性組織からの核酸の全ゲノム配列決定によって生成された、請求項1~5のいずれか一項に記載の方法。 6. The method of any one of claims 1-5, wherein the second plurality of sequence reads was generated by whole genome sequencing of nucleic acid from the non-cancerous tissue of the subject. 前記対象の前記がん性組織の前記ゲノム全体の前記ヘテロ接合性の喪失の前記尺度が、
前記第1の複数の配列読み取りにおけるゲノムヘテロ接合性の喪失を判定すること、および
前記第1の複数の配列読み取りに対する腫瘍純度の推定により、前記判定されたヘテロ接合性の喪失を正規化することによって、判定され
前記腫瘍純度の推定は、前記第1の複数の配列読み取りと、前記第2の複数の配列読み取りとに基づく、請求項1~7のいずれか一項に記載の方法。
wherein said measure of said loss of heterozygosity across said genome of said cancerous tissue of said subject comprises
determining loss of genomic heterozygosity in said first plurality of sequence reads; and normalizing said determined loss of heterozygosity by an estimate of tumor purity for said first plurality of sequence reads. determined by
The method of any one of claims 1-7, wherein said tumor purity estimation is based on said first plurality of sequence reads and said second plurality of sequence reads.
前記第1の複数のDNA損傷修復遺伝子の前記ヘテロ接合性状態が、前記第1の複数のDNA損傷修復遺伝子において検出された固有のフレームシフト変異の数のカウントを含む、請求項1~8のいずれか一項に記載の方法。 9. The method of claims 1-8, wherein said heterozygosity status of said first plurality of DNA damage repair genes comprises counting the number of unique frameshift mutations detected in said first plurality of DNA damage repair genes. A method according to any one of paragraphs. 前記第1の複数のDNA損傷修復遺伝子の前記ヘテロ接合性状態が、前記第1の複数のDNA損傷修復遺伝子において検出された固有の短縮型変異の数のカウントを含む、請求項1~9のいずれか一項に記載の方法。 10. The method of claims 1-9, wherein said heterozygosity status of said first plurality of DNA damage repair genes comprises counting the number of unique truncation mutations detected in said first plurality of DNA damage repair genes. A method according to any one of paragraphs. 前記第1の複数のDNA損傷修復遺伝子が、BRCA1およびBRCA2を含む、請求項1~10のいずれか一項に記載の方法。 11. The method of any one of claims 1-10, wherein the first plurality of DNA damage repair genes comprises BRCAl and BRCA2. 前記対象の前記がん性組織の前記ゲノム中の前記第2の複数のDNA損傷修復遺伝子において検出された変異型アレルの前記尺度が、前記第1の複数の配列読み取りにおいて検出された相同組換えの喪失に関連する固有の変異の数のカウントを含む、請求項1~11のいずれか一項に記載の方法。 said measure of mutant alleles detected in said second plurality of DNA damage repair genes in said genome of said cancerous tissue of said subject is homologous recombination detected in said first plurality of sequence reads A method according to any one of claims 1 to 11, comprising counting the number of unique mutations associated with loss of . 前記対象の前記非がん性組織の前記ゲノム中の前記第2の複数のDNA損傷修復遺伝子において検出された変異型アレルの前記尺度が、前記第2の複数の配列読み取りにおいて検出された相同組換えの喪失に関連する固有の変異の数のカウントを含む、請求項1~12のいずれか一項に記載の方法。 said measure of mutant alleles detected in said second plurality of DNA damage repair genes in said genome of said non-cancerous tissue of said subject is a homologous set detected in said second plurality of sequence reads 13. The method of any one of claims 1-12, comprising counting the number of unique mutations associated with loss of recombination. 前記第2の複数のDNA損傷修復遺伝子が、BRCA1およびBRCA2を含む、請求項1~13のいずれか一項に記載の方法。 14. The method of any one of claims 1-13, wherein the second plurality of DNA damage repair genes comprises BRCAl and BRCA2. BRCA1およびBRCA2における相同組換えの喪失に関連する前記固有の変異が、表1に列挙された変異のうちの少なくとも50を含む、請求項14に記載の方法。 15. The method of claim 14, wherein the unique mutations associated with loss of homologous recombination in BRCA1 and BRCA2 comprise at least 50 of the mutations listed in Table 1. BRCA1およびBRCA2における相同組換えの喪失に関連する前記固有の変異が、表1に列挙された変異を含む、請求項14に記載の方法。 15. The method of claim 14, wherein the unique mutations associated with loss of homologous recombination in BRCA1 and BRCA2 comprise mutations listed in Table 1. 前記方法が、
前記試験対象の前記がんが相同組換え欠損であると判定されたときに、ポリADPリボースポリメラーゼ(PARP)阻害剤を前記試験対象に投与することにより前記がんを治療することと、
前記試験対象の前記がんが相同組換え欠損ではないと判定されたときに、PARP阻害剤を前記試験対象に投与することを含まない治療法で前記がんを治療することと、をさらに含む、請求項1~16のいずれか一項に記載の方法。
said method comprising:
treating the cancer by administering a poly ADP ribose polymerase (PARP) inhibitor to the test subject when the cancer of the test subject is determined to be homologous recombination deficient;
and treating the cancer with a therapy that does not include administering a PARP inhibitor to the test subject when the cancer of the test subject is determined not to be homologous recombination deficient. , a method according to any one of claims 1-16.
前記PARP阻害剤が、オラパリブ、ベリパリブ、ルカパリブ、ニラパリブ、およびタラゾパリブからなる群から選択される、請求項17に記載の方法。 18. The method of claim 17, wherein said PARP inhibitor is selected from the group consisting of olaparib, veliparib, rucaparib, niraparib, and talazoparib. 前記がんが乳がんである、請求項1~18のいずれか一項に記載の方法。 19. The method of any one of claims 1-18, wherein the cancer is breast cancer. 前記がんが卵巣がんである、請求項1~18のいずれか一項に記載の方法。 19. The method of any one of claims 1-18, wherein the cancer is ovarian cancer. 前記がんが結腸直腸がんである、請求項1~18のいずれか一項に記載の方法。 19. The method of any one of claims 1-18, wherein the cancer is colorectal cancer. 前記分類器が、ニューラルネットワークアルゴリズム、サポートベクトルマシンアルゴリズム、Naive Bayesアルゴリズム、最近傍アルゴリズム、ブーストツリーアルゴリズム、ランダムフォレストアルゴリズム、畳み込みニューラルネットワークアルゴリズム、決定ツリーアルゴリズム、回帰アルゴリズム、またはクラスタリングアルゴリズムである、請求項1~21のいずれか一項に記載の方法。 3. The classifier is a neural network algorithm, a support vector machine algorithm, a Naive Bayes algorithm, a nearest neighbor algorithm, a boosted tree algorithm, a random forest algorithm, a convolutional neural network algorithm, a decision tree algorithm, a regression algorithm, or a clustering algorithm. 22. The method according to any one of 1-21. 前記分類器がランダムフォレストアルゴリズムである、請求項1~21のいずれか一項に記載の方法。 A method according to any preceding claim, wherein said classifier is a random forest algorithm. 前記第1の複数の配列読み取りが、前記対象の前記がん性組織から生成されたcDNA分子のエクソーム配列決定によって生成された、請求項1~3および8~23のいずれか一項に記載の方法。 24. The method of any one of claims 1-3 and 8-23, wherein said first plurality of sequence reads was generated by exome sequencing of a cDNA molecule generated from said cancerous tissue of said subject. Method. 前記第2の複数の配列読み取りが、前記対象の前記非がん性組織から生成されたcDNA分子のエクソーム配列決定によって生成された、請求項1~3および8~23のいずれか一項に記載の方法。 24. Any one of claims 1-3 and 8-23, wherein said second plurality of sequence reads was generated by exome sequencing of a cDNA molecule generated from said non-cancerous tissue of said subject. the method of. 前記第1の複数の配列読み取りが、ヒトゲノム中の少なくとも10の異なる遺伝子座のそれぞれについて少なくとも300のそれぞれの固有の配列読み取りを含み、第2の複数の配列読み取りが、ヒトゲノム中の少なくとも10の異なる遺伝子座のそれぞれについて少なくとも300のそれぞれの固有の配列読み取りを含む、請求項1~25のいずれか一項に記載の方法。said first plurality of sequence reads comprises at least 300 each unique sequence reads for each of at least 10 different loci in the human genome, and the second plurality of sequence reads comprises at least 10 different sequence reads in the human genome 26. The method of any one of claims 1-25, comprising at least 300 respective unique sequence reads for each of the loci. コンピュータシステムであって、
1つ以上のプロセッサと、
前記1つ以上のプロセッサによって実行されるときに、前記プロセッサに請求項1~26のいずれか一項に記載の方法を実行させる、コンピュータ実行可能命令を含む非一時的なコンピュータ可読媒体と、を含む、コンピュータシステム。
a computer system,
one or more processors;
a non-transitory computer-readable medium containing computer-executable instructions which, when executed by said one or more processors, cause said processor to perform the method of any one of claims 1-26; computer system.
プロセッサによって実行されるときに、プロセッサに請求項1~26のいずれか一項に記載の方法を実行させるプログラムコード命令を記憶した非一時的なコンピュータ可読記憶媒体。 A non-transitory computer-readable storage medium storing program code instructions which, when executed by a processor, cause the processor to perform the method of any one of claims 1-26 . がんの相同組換え経路状態を判定するためのアルゴリズムを訓練するための方法であって、
少なくとも1つのプロセッサと、前記少なくとも1つのプロセッサによって実行するための少なくとも1つのプログラムを記憶するメモリと、を含むコンピュータシステムにおいて、
(A)がんを有する複数の訓練対象におけるそれぞれの訓練対象ごとに、前記それぞれの訓練対象の対応するゲノムデータ構築物を取得することであって、前記対応するゲノム訓練構築物が、(a)前記それぞれの訓練対象の前記がんの相同組換え経路状態、および(b)前記それぞれの訓練対象のがん性組織および非がん性組織のゲノムの複数の特徴を含み、前記複数の特徴が、(i)前記それぞれの訓練対象の前記がん性組織の前記ゲノムにおける第1の複数のDNA損傷修復遺伝子のヘテロ接合性状態、(ii)前記それぞれの訓練対象の前記がん性組織の前記ゲノム全体のヘテロ接合性の喪失の尺度、(iii)前記それぞれの訓練対象の前記がん性組織の前記ゲノム中の第2の複数のDNA損傷修復遺伝子において検出された変異型アレルの尺度、および(iv)前記それぞれの訓練対象の前記非がん性組織の前記ゲノム中の前記第2の複数のDNA損傷修復遺伝子において検出された変異型アレルの尺度を含む、取得することと、
(B)それぞれの訓練対象ごとに、少なくとも(a)前記それぞれの訓練対象の前記がんの前記相同組換え経路状態、および(b)前記それぞれの訓練対象の前記がん性組織からの前記対応するDNAサンプルから判定された前記複数の特徴に対して分類アルゴリズムを訓練することと、を含む、方法。
A method for training an algorithm for determining homologous recombination pathway status in a cancer, comprising:
A computer system comprising at least one processor and a memory storing at least one program for execution by the at least one processor,
(A) obtaining, for each training subject in a plurality of training subjects with cancer, a corresponding genomic data construct for each said training subject, wherein said corresponding genomic training construct comprises: (a) said homologous recombination pathway status of each of the cancers of each training subject; and (b) a plurality of genomic features of cancerous and non-cancerous tissues of each of said training subjects, wherein said plurality of features comprises: (i) the heterozygosity status of a first plurality of DNA damage repair genes in the genome of the cancerous tissue of each of the training subjects; (ii) the genome of the cancerous tissue of each of the training subjects. (iii) a measure of total loss of heterozygosity, (iii) a measure of mutant alleles detected in a second plurality of DNA damage repair genes in the genome of the cancerous tissue of each of the training subjects; and ( iv) obtaining, including a measure of mutant alleles detected in the second plurality of DNA damage repair genes in the genome of the non-cancerous tissue of each of the training subjects;
(B) for each training subject, at least (a) the homologous recombination pathway status of the cancer of the respective training subject; and (b) the correspondence from the cancerous tissue of the respective training subject. and training a classification algorithm on the plurality of features determined from the DNA samples.
コンピュータシステムであって、
1つ以上のプロセッサと、
前記1つ以上のプロセッサによって実行されるときに、前記プロセッサに請求項29に記載の方法を実行させる、コンピュータ実行可能命令を含む非一時的なコンピュータ可読媒体と、を含む、コンピュータシステム。
a computer system,
one or more processors;
and a non-transitory computer-readable medium containing computer-executable instructions that, when executed by the one or more processors, cause the processors to perform the method of claim 29 .
プロセッサによって実行されるときに、前記プロセッサに請求項29に記載の方法を実行させるプログラムコード命令を記憶した非一時的なコンピュータ可読記憶媒体。 30. A non-transitory computer readable storage medium storing program code instructions which, when executed by a processor, cause the processor to perform the method of claim 29 .
JP2021547568A 2019-02-12 2020-02-12 An integrated machine learning framework for estimating homologous recombination defects Active JP7368483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023176962A JP2024016039A (en) 2019-02-12 2023-10-12 An integrated machine learning framework for estimating homologous recombination defects

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201962804730P 2019-02-12 2019-02-12
US62/804,730 2019-02-12
US201962946347P 2019-12-10 2019-12-10
US62/946,347 2019-12-10
PCT/US2020/018002 WO2020168008A1 (en) 2019-02-12 2020-02-12 An integrated machine-learning framework to estimate homologous recombination deficiency

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023176962A Division JP2024016039A (en) 2019-02-12 2023-10-12 An integrated machine learning framework for estimating homologous recombination defects

Publications (3)

Publication Number Publication Date
JP2022521492A JP2022521492A (en) 2022-04-08
JPWO2020168008A5 true JPWO2020168008A5 (en) 2023-02-15
JP7368483B2 JP7368483B2 (en) 2023-10-24

Family

ID=71945081

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021547568A Active JP7368483B2 (en) 2019-02-12 2020-02-12 An integrated machine learning framework for estimating homologous recombination defects
JP2023176962A Pending JP2024016039A (en) 2019-02-12 2023-10-12 An integrated machine learning framework for estimating homologous recombination defects

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023176962A Pending JP2024016039A (en) 2019-02-12 2023-10-12 An integrated machine learning framework for estimating homologous recombination defects

Country Status (6)

Country Link
US (2) US10975445B2 (en)
EP (1) EP3924502A4 (en)
JP (2) JP7368483B2 (en)
AU (1) AU2020221845A1 (en)
CA (1) CA3129831A1 (en)
WO (1) WO2020168008A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11544574B1 (en) * 2019-07-25 2023-01-03 Cadence Design Systems, Inc. System, method, and computer program product for analog structure prediction associated with an electronic design
WO2021070039A2 (en) * 2019-10-09 2021-04-15 Immunitybio, Inc. Detecting homologous recombination deficiencies (hrd) in clinical samples
US20220392640A1 (en) * 2019-10-22 2022-12-08 Tempus Labs, Inc. Systems and methods for predicting therapeutic sensitivity
CA3174332A1 (en) 2020-04-21 2021-10-28 Jason PERERA Tcr/bcr profiling
EP4271837A1 (en) 2020-12-31 2023-11-08 Tempus Labs, Inc. Systems and methods for detecting multi-molecule biomarkers
WO2022150663A1 (en) 2021-01-07 2022-07-14 Tempus Labs, Inc Systems and methods for joint low-coverage whole genome sequencing and whole exome sequencing inference of copy number variation for clinical diagnostics
WO2022159774A2 (en) 2021-01-21 2022-07-28 Tempus Labs, Inc. METHODS AND SYSTEMS FOR mRNA BOUNDARY ANALYSIS IN NEXT GENERATION SEQUENCING
CN112820351A (en) * 2021-03-01 2021-05-18 江苏医联生物科技有限公司 Method for detecting mutation and HRD (high resolution contrast) score guiding medication of tumor patient
WO2022226186A1 (en) * 2021-04-22 2022-10-27 Personalis Inc. Detecting loss of heterozygosity in hla alleles using machine-learning models
WO2022271547A1 (en) 2021-06-21 2022-12-29 Tesaro, Inc. Combination treatment of cancer with a parp inhibitor and a lipophilic statin
TW202317774A (en) * 2021-06-25 2023-05-01 美商方得生醫療公司 System and method of classifying homologous repair deficiency
WO2023064309A1 (en) 2021-10-11 2023-04-20 Tempus Labs, Inc. Methods and systems for detecting alternative splicing in sequencing data
US20230162815A1 (en) 2021-11-19 2023-05-25 Tempus Labs, Inc. Methods and systems for accurate genotyping of repeat polymorphisms
CN114067908B (en) * 2021-11-23 2022-09-13 深圳吉因加医学检验实验室 Method, device and storage medium for evaluating single-sample homologous recombination defects
EP4239647A1 (en) 2022-03-03 2023-09-06 Tempus Labs, Inc. Systems and methods for deep orthogonal fusion for multimodal prognostic biomarker discovery
CN114694752B (en) * 2022-03-09 2023-03-10 至本医疗科技(上海)有限公司 Method, computing device and medium for predicting homologous recombination repair defects
CN114708916B (en) * 2022-03-15 2023-11-10 至本医疗科技(上海)有限公司 Method and device for detecting stability of microsatellite, computer equipment and storage medium
EP4297037A1 (en) * 2022-06-24 2023-12-27 Seqone Device for determining an indicator of presence of hrd in a genome of a subject
CN116030261A (en) * 2023-03-29 2023-04-28 浙江省肿瘤医院 Method for evaluating breast cancer homologous recombination repair defects by MRI (magnetic resonance imaging) images in multiple groups

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011057125A2 (en) 2009-11-05 2011-05-12 Myriad Genetics, Inc. Compositions and methods for determining cancer susceptibility
WO2014165785A2 (en) 2013-04-05 2014-10-09 Myriad Genetics, Inc. Methods and materials for assessing homologous recombination deficiency
US11203783B2 (en) 2013-11-21 2021-12-21 Repertoire Genesis Incorporation T cell receptor and B cell receptor repertoire analysis system, and use of same in treatment and diagnosis
EP3686288B1 (en) 2014-08-15 2023-03-08 Myriad Genetics, Inc. Methods and materials for assessing homologous recombination deficiency
WO2017165270A1 (en) 2016-03-21 2017-09-28 Myriad Genetics, Inc. Homologous recombination deficiency to predict neoadjuvant chemotherapy necessity in bladder cancer

Similar Documents

Publication Publication Date Title
JPWO2020168008A5 (en)
JP2020143146A5 (en)
McCreery et al. Evolution of metastasis revealed by mutational landscapes of chemically induced skin cancers
Turajlic et al. Inferring mutational timing and reconstructing tumour evolutionary histories
Xie et al. Patterns of somatic alterations between matched primary and metastatic colorectal tumors characterized by whole-genome sequencing
Sanders et al. The evolving molecular genetic landscape in acute myeloid leukaemia
WO2018009723A1 (en) Methods for fragmentome profiling of cell-free nucleic acids
ES2548690T3 (en) Consensus sequences coding for human colorectal cancers
Lindqvist et al. Deep targeted sequencing in pediatric acute lymphoblastic leukemia unveils distinct mutational patterns between genetic subtypes and novel relapse-associated genes
Sherborne et al. Mutational analysis of ionizing radiation induced neoplasms
Rouquier et al. Expression of the microtubule-associated protein MAP9/ASAP and its partners AURKA and PLK1 in colorectal and breast cancers
Bansidhar et al. History and pathogenesis of lynch syndrome
CN115176035A (en) Molecular predictors of patient response to radiation therapy
Mishra et al. Pan-cancer analysis for studying cancer stage using protein and gene expression data
McNamara et al. Circulating cell-free methylated DNA reveals tissue-specific, cellular damage from radiation treatment
Shi et al. Pan-cancer analysis of differential DNA methylation patterns
Jamieson et al. Cancer genetics and implications for clinical management
Wnuk et al. Deep learning implicitly handles tissue specific phenomena to predict tumor DNA accessibility and immune activity
Hawai et al. Dogs: active role model for cancer studies—a review
Fan et al. Comprehensive multigene mutation spectra of breast cancer patients from Northeast China obtained using the Ion Torrent sequencing platform
Pandey et al. Identification of Cancer Hotspot Residues and Driver Mutations Using Machine Learning
Dong et al. AeQTL: eQTL analysis using region-based aggregation of rare genomic variants
Knijn et al. Sequencing of RAS/RAF pathway genes in primary colorectal cancer and matched liver and lung metastases
US20180291460A1 (en) Homologus Recombination Deficiency-Interstitial Aberration (HRD-IA) Assay
CN117292752B (en) Device and method for detecting microsatellite instability based on cfDNA second-generation sequencing data and application of device and method