JPWO2020163892A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020163892A5
JPWO2020163892A5 JP2021546704A JP2021546704A JPWO2020163892A5 JP WO2020163892 A5 JPWO2020163892 A5 JP WO2020163892A5 JP 2021546704 A JP2021546704 A JP 2021546704A JP 2021546704 A JP2021546704 A JP 2021546704A JP WO2020163892 A5 JPWO2020163892 A5 JP WO2020163892A5
Authority
JP
Japan
Prior art keywords
magnet
diameter
coil structure
bore
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021546704A
Other languages
Japanese (ja)
Other versions
JP2022520767A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/AU2019/051285 external-priority patent/WO2020163892A1/en
Publication of JP2022520767A publication Critical patent/JP2022520767A/en
Publication of JPWO2020163892A5 publication Critical patent/JPWO2020163892A5/ja
Priority to JP2024030984A priority Critical patent/JP2024063146A/en
Pending legal-status Critical Current

Links

Description

ヒトの研究のための診断画像を生成するための典型的な磁気共鳴システムの基本的な構成要素は、主磁石 (通常、DSV内に実質的に均一な静磁場(B 0 磁場)を生成する超伝導磁石) 、1以上のシムコイルのセット、1の傾斜磁場コイルのセット、および1以上のRFコイルを含む。MRIの議論は、例えば、Haacke et al., Magnetic Resonance Imaging: Physical Principles and Sequence Design, John Wiley & Sons, Inc., New York, 1999に見出すことができる。Crozier et al.、米国特許第5,818,319号、Crozier et al.、米国特許第6,140,900号、Crozier et al.、米国特許第6,700,468号、Dorri et al.、米国特許第5,396,207号、Dorriet al.、米国特許第5,416,415号、Knuttel et al.、米国特許第5,646,532号、およびLaskaris et al.、米国特許第5,801,609号も参照されたい。これらの内容は、その全体がここに組み込まれる。 A basic component of a typical magnetic resonance system for producing diagnostic images for human research is the generation of a substantially uniform static magnetic field ( B0 magnetic field) within the main magnet, usually the DSV. superconducting magnet), including one or more sets of shim coils, one set of gradient coils, and one or more RF coils. A discussion of MRI can be found, for example, in Haacke et al., Magnetic Resonance Imaging: Physical Principles and Sequence Design, John Wiley & Sons, Inc., New York, 1999. Crozier et al., U.S. Patent No. 5,818,319; Crozier et al., U.S. Patent No. 6,140,900; Crozier et al., U.S. Patent No. 6,700,468; See also 5,416,415, Knuttel et al., US Patent 5,646,532, and Laskaris et al., US Patent 5,801,609. The contents of these are incorporated herein in their entirety.

補助的な構成要素 (傾斜磁場及び高周波コイル) を追加した後の従来のMRI装置の典型的な開口部は、約0.6~0.8メートルの直径、すなわち、対象者の肩を受け入れるのにちょうど十分な大きさを有し、約2.0メートル以上の長さを有する円筒形の空間である。驚くことではないが、多くの人がこのような空間に置かれると閉所恐怖症に苦しむ。また、撮像される対象者の身体の部分と磁石システムの端部との間の距離が大きいことは、医師がMRI の手順の間に対象者を容易に補助したり、個人的にモニターしたりすることができないことを意味する。従って、臨床応用においては、短い又はコンパクトな磁石システムが必要である。 A typical opening in a conventional MRI machine after adding ancillary components ( gradients and radio frequency coils) is about 0.6 to 0.8 meters in diameter, ie just enough to receive the subject's shoulder. A cylindrical space with a length of about 2.0 meters or more. Not surprisingly, many people suffer from claustrophobia when placed in such a space. Also, the large distance between the part of the subject's body being imaged and the end of the magnet system makes it easier for the physician to assist or personally monitor the subject during the MRI procedure. means that you cannot Therefore, short or compact magnet systems are needed in clinical applications.

第1の態様では、本発明は、人間の被験者を移動させることによって磁気共鳴画像を生成する磁気共鳴イメージングシステムに関する。このシステムは、ディスクタイプ均一磁場領域を生成する磁石、傾斜磁場コイル及び高周波 (Radio Frequency; RF) コイルを含む。 In a first aspect, the invention relates to a magnetic resonance imaging system for generating magnetic resonance images by moving a human subject. The system includes magnets, gradient coils and Radio Frequency (RF) coils that generate a disk-type homogeneous magnetic field region.

好ましくは、磁石またはMRIシステムは、一次コイルレイヤおよびシールドコイルレイヤを含む傾斜磁場コイル構造をさらに備える。好ましくは、傾斜磁場コイル構造の一次コイルレイヤの長さは、傾斜磁場コイル構造のシールドコイルレイヤの長さよりも短い。より好ましくは、傾斜磁場コイル構造の一次コイルレイヤの長さは、傾斜磁場コイル構造のシールドコイルレイヤの長さよりも著しく短い。有利には、シールドコイルレイヤは、良好な遮蔽性能を維持しながら傾斜磁場コイル厚さを減少させるために、一次コイルレイヤにより近い位置に配置することができる。 Preferably, the magnet or MRI system further comprises a gradient coil structure comprising a primary coil layer and a shield coil layer. Preferably, the length of the primary coil layer of the gradient coil structure is shorter than the length of the shield coil layer of the gradient coil structure. More preferably, the length of the primary coil layer of the gradient coil structure is significantly shorter than the length of the shield coil layer of the gradient coil structure. Advantageously, the shield coil layer can be placed closer to the primary coil layer to reduce the gradient coil thickness while maintaining good shielding performance.

好ましくは、傾斜磁場コイル構造は、磁石内に配置された傾斜体内に配置される。好ましくは、傾斜体は、ボアと磁石本体との間に配置される。 Preferably, the gradient coil structure is arranged within a gradient body arranged within the magnet. Preferably, the ramp is arranged between the bore and the magnet body.

好ましくは、磁石またはMRIシステムは、傾斜磁場コイル構造とボアとの間に配置された1以上の高周波 (RF) コイルをさらに含む。好ましくは、RFコイルは、円錐台状および/または円筒形であり、ボアの形状に適合する。好ましくは、RFコイルは、ボアを取り囲む傾斜体の内面に配置される。 Preferably, the magnet or MRI system further includes one or more radio frequency (RF) coils positioned between the gradient coil structure and the bore. Preferably, the RF coil is frusto-conical and/or cylindrical and conforms to the shape of the bore. Preferably, the RF coil is arranged on the inner surface of the ramp surrounding the bore.

好ましくは、システムは、1以上のシムポケットをさらに含む。好ましくは、シムポケットは円錐台状および/または円筒形である。好ましくは、シム部は、各シムポケット内に配置される。好ましくは、シム部は、鉄系または強磁性材料を含む。好ましくは、各一次コイルは、磁石本体および/またはボアの形状に適合する形状を有する付属のシムポケットおよびシム部を有する。好ましくは、シム部は、好ましい磁場(B0) 均一性レベルを達成するために、受動的に撮像領域にシムを入れる。好ましくは、シムは、一次コイル構造とシールドコイル構造との間に配置される。いくつかの実施形態では、シムは、シールドコイル構造の外側に配置される。好ましくは、シムは、磁石と傾斜磁場コイルとの間に配置される。 Preferably, the system further includes one or more shim pockets. Preferably, the shim pocket is frusto-conical and/or cylindrical. Preferably, a shim portion is positioned within each shim pocket. Preferably, the shim portion comprises a ferrous or ferromagnetic material. Preferably, each primary coil has an associated shim pocket and shim section with a shape that matches the shape of the magnet body and/or bore. Preferably, the shimming section passively shims the imaging region to achieve a preferred magnetic field (B 0 ) uniformity level. Preferably, the shim portion is positioned between the primary coil structure and the shield coil structure. In some embodiments, the shim portion is located outside the shield coil structure. Preferably , the shims are arranged between the magnets and the gradient coils.

好ましくは、ボアの長さは250mmから1000mmである。いくつかの好ましい実施態様において、ボアの長さは、300mm、570mm、600mm、800mm又は900mmである。 Preferably, the bore length is between 250mm and 1000mm. In some preferred embodiments, the length of the bore is 300mm, 570mm , 600mm, 800mm or 900mm.

好ましくは、磁気共鳴イメージングシステムは、患者を支持するように構成された可動プラットフォームまたは部分を含む。好ましくは、可動プラットフォームまたは可動部分は、磁気共鳴イメージングシステムのボアを通過するように構成される。 Preferably, the magnetic resonance imaging system includes a moveable platform or portion configured to support the patient. Preferably, the movable platform or movable portion is configured to pass through a bore of the magnetic resonance imaging system.

別の形態では、本発明は、磁気共鳴イメージングスキャンの方法に関し、この方法は、以下のステップを含む。
磁気共鳴イメージングシステムを通して、患者を支持するプラットフォームを移動させるものであり、磁気共鳴イメージングシステムは上記のような磁石を有する。
In another form, the invention relates to a method of magnetic resonance imaging scanning, the method comprising the following steps.
A platform for supporting a patient is moved through a magnetic resonance imaging system, the magnetic resonance imaging system having magnets as described above.

磁石101内には傾斜体102が配置されている。傾斜体102の内部には、一次傾斜磁場コイルレイヤ121およびシールド傾斜磁場コイルレイヤ122が配置され、3本の直交z、xおよびy軸において3つの直交傾斜磁場を生成する。 A tilting body 102 is arranged in the magnet 101 . Inside the gradient body 102, a primary gradient coil layer 121 and a shield gradient coil layer 122 are arranged to generate three orthogonal magnetic field gradients in three orthogonal z, x and y axes.

シールド傾斜磁場コイルレイヤ122のシールド傾斜磁場コイルにおける電流方向は、一次傾斜磁場コイルレイヤ121の該当する一次傾斜磁場コイルにおける電流方向と反対である。一次傾斜磁場コイルレイヤ121の長さ(Lp)は、シールド傾斜磁場コイルレイヤ122の長さ (Ls) よりも著しく短く、良好な遮蔽性能を維持しながら、一次レイヤとシールドレイヤとの間の半径方向距離をより近くすることが可能となる。RFコイル104も短いので、DSVが短いことにより効率的である。


The current direction in the shield gradient coils of the shield gradient coil layer 122 is opposite to the current direction in the corresponding primary gradient coils of the primary gradient coil layer 121 . The length (Lp) of the primary gradient coil layer 121 is significantly shorter than the length (Ls) of the shield gradient coil layer 122, maintaining good shielding performance while maintaining a radius between the primary and shield layers. It is possible to make the directional distance closer. Since the RF coil 104 is also short, it is efficient due to the short DSV.


Claims (15)

磁気共鳴イメージング(MRI)システムでの使用に適した磁石であって、前記磁石は、磁石本体を有し、前記磁石本体は、前記磁石本体の軸に沿って貫通して延びるボアを有し、前記磁石は、
前記磁石のボアの第一の端部に隣接する第一の端部コイルと、前記磁石の第二の端部に隣接する第二の端部コイルとを含む、前記軸に沿って配置された少なくとも4個の一次コイルを有する一次コイル構造を有し、
前記一次コイル構造の最大内径は700mmよりも大きく、
前記第一の端部コイルと前記第二の端部コイルとの間隔は1000mm以下であり、
前記一次コイルによって生成される撮像領域は、ディスクタイプであって、
前記ディスクタイプの撮像領域は、軸方向直径と半径方向直径とを有し、前記軸方向直径は、前記半径方向直径より小さく、前記半径方向直径は200mmよりも大きく、
前記ディスクタイプの撮像領域の前記半径方向直径に対する前記軸方向直径の比が0.60以下である、
磁石。
A magnet suitable for use in a magnetic resonance imaging (MRI) system, said magnet having a magnet body, said magnet body having a bore extending therethrough along an axis of said magnet body, The magnet is
arranged along the axis including a first end coil adjacent a first end of the magnet bore and a second end coil adjacent a second end of the magnet having a primary coil structure with at least four primary coils;
the maximum inner diameter of the primary coil structure is greater than 700 mm;
the distance between the first end coil and the second end coil is 1000 mm or less;
The imaging area generated by the primary coil is of disk type ,
The disk-type imaging area has an axial diameter and a radial diameter, wherein the axial diameter is less than the radial diameter and the radial diameter is greater than 200 mm;
wherein the ratio of the axial diameter to the radial diameter of the disk-type imaging area is 0.60 or less.
magnet.
x軸に沿った前記撮像領域の直径は200mmから500mmの間であり、
y軸に沿った前記撮像領域の直径は200mmから500mmの間であり、
z軸に沿った前記撮像領域の直径は20mmから350mmの間である、
請求項1記載の磁石。
the diameter of the imaging area along the x -axis is between 200 mm and 500 mm;
the diameter of the imaging area along the y-axis is between 200 mm and 500 mm;
the diameter of the imaging area along the z-axis is between 20mm and 350mm;
A magnet according to claim 1.
前記撮像領域は、250mm(x-)×250mm(y-)×40mm(z-)、320mm(x-)×320mm(y-)×100mm(z-)、450mm(x-)×450mm(y-)×100mm(z-)又は300mm(x-)×300mm(y-)×100mm(z-)のいずれかの寸法を有する、
請求項1又は2に記載の磁石。
The imaging area is 250 mm (x-) × 250 mm (y-) × 40 mm (z-) , 320 mm (x-) × 320 mm (y-) × 100 mm (z-), 450 mm (x-) × 450 mm (y -) x 100 mm (z-) or 300 mm (x-) x 300 mm (y-) x 100 mm (z-) ,
A magnet according to claim 1 or 2 .
前記第一の端部コイルと前記第二の端部コイルとの間隔は、300mmから1000mmの間であり、前記ボアの内径が700mmから1100mmの間であり、前記ボアの長さが300mmから1000mmの間である、
請求項1乃至のいずれか一項に記載の磁石。
The distance between the first end coil and the second end coil is between 300 mm and 1000 mm , the inner diameter of the bore is between 700 mm and 1100 mm, and the length of the bore is between 300 mm. is between 1000mm,
A magnet according to any one of claims 1 to 3 .
前記一次コイル構造は、4個から8個の前記一次コイルを有し、
前記一次コイルの各々は同じ電流極性を有するか、又は、前記第二の端部コイルに隣接する前記4個から8個の一次コイルのうちの1個は、前記第二の端部コイルと反対の電流極性を有する、
請求項1乃至のいずれか一項に記載の磁石。
The primary coil structure has 4 to 8 primary coils ,
Each of the primary coils has the same current polarity, or one of the four to eight primary coils adjacent to the second end coil is opposite the second end coil. with a current polarity of
A magnet according to any one of claims 1 to 4 .
前記磁石本体およびボア円筒状、円錐状、円錐台状、若しくは階段状であるか、又は、前記一次コイルが円筒状、円錐状、円錐台状、若しくは階段状であるか、の少なくともいずれであって、
前記磁石本体およびボアは、少なくとも一つの円筒部を含み、
前記円筒部が円錐台状部に隣接しているか、又は、第一の円筒部が、前記第一の円筒部の直径よりも小さい直径を有する第二の円筒部に隣接する、
請求項1乃至のいずれか一項に記載の磁石。
at least one of said magnet body and bore being cylindrical, conical, frustoconical or stepped ; and said primary coil being cylindrical, conical, frustoconical or stepped. There is
the magnet body and bore include at least one cylindrical portion;
The cylindrical portion is adjacent to a frusto-conical portion, or the first cylindrical portion is adjacent to a second cylindrical portion having a diameter smaller than the diameter of the first cylindrical portion.
A magnet according to any one of claims 1 to 5 .
複数の円錐台状部、又は複数の円筒部の少なくともいずれかは、階段状直径ボアを画定し、
前記一次コイル構造の少なくとも1個の前記一次コイルは、前記階段状直径ボアの第一段の周囲に配置され、
前記一次コイル構造の少なくとも1個の前記一次コイルは、前記階段状直径ボアの第二段の周囲に配置される、
請求項1乃至のいずれか一項に記載の磁石。
at least one of the plurality of frusto-conical portions and the plurality of cylindrical portions define a stepped diameter bore ;
at least one of the primary coils of the primary coil structure is disposed about a first step of the stepped diameter bore;
at least one of the primary coils of the primary coil structure is positioned about a second step of the stepped diameter bore;
A magnet according to any one of claims 1 to 5 .
前記磁石は、少なくとも1.0テスラの磁場を生成することができ、前記磁場は、所定の撮像領域にわたって実質的に均一であり、
前記撮像領域は、20ppm未満のピークトゥピークの撮像中心における長手方向磁場に対する前記長手方向磁場の計算された変動によって画定される外部表面を有する、
請求項1乃至のいずれか一項に記載の磁石。
said magnet is capable of producing a magnetic field of at least 1.0 Tesla , said magnetic field being substantially uniform over a predetermined imaging area;
The imaging region has an exterior surface defined by a calculated variation of the longitudinal magnetic field relative to the longitudinal magnetic field at the center of imaging of less than 20 ppm peak-to-peak.
A magnet according to any one of claims 1 to 7 .
前記磁石は、シールドコイル構造をさらに備え、前記シールドコイル構造は、前記一次コイル構造の周囲に配置され
前記シールドコイル構造は、前記一次コイルよりも大きい直径を有する少なくとも2個のシールドコイルを含み、
前記シールドコイル構造は、前記一次コイル構造の半径方向外側に配置され、
前記シールドコイルの各々は、前記一次コイル構造の前記第一および第二の端部コイルにおける電流の方向と反対の方向に電流を流し、
前記シールドコイルの各々は、超伝導性または強磁性である、
請求項1乃至のいずれか一項に記載の磁石。
said magnet further comprising a shield coil structure, said shield coil structure disposed around said primary coil structure ;
the shield coil structure includes at least two shield coils having a diameter larger than the primary coil;
The shield coil structure is arranged radially outward of the primary coil structure,
each of the shield coils conducts current in a direction opposite to the direction of current in the first and second end coils of the primary coil structure;
each of the shield coils is superconducting or ferromagnetic;
9. A magnet according to any one of claims 1-8 .
前記磁石が、一次コイルレイヤおよびシールドコイルレイヤを含む傾斜磁場コイル構造をさらに備え
前記傾斜磁場コイル構造の前記一次コイルレイヤの長さは、前記傾斜磁場コイル構造の前記シールドコイルレイヤの長さより短く、
前記傾斜磁場コイル構造は、前記磁石本体内に配置された傾斜体内に配置され、
前記傾斜体は、前記ボアと前記磁石本体との間に配置され、
前記磁石は、前記傾斜磁場コイル構造と前記ボアとの間に配置された1以上の高周波 (RF) コイルをさらに備え、
前記1以上のRFコイルは、前記ボアの形状に適合する円錐台状または円筒形であり、前記ボアを取り囲む前記傾斜体の内面に配置される、
請求項1乃至のいずれか一項に記載の磁石。
the magnet further comprising a gradient coil structure including a primary coil layer and a shield coil layer ;
the length of the primary coil layer of the gradient coil structure is shorter than the length of the shield coil layer of the gradient coil structure;
the gradient coil structure disposed within a gradient body disposed within the magnet body;
the tilting body is positioned between the bore and the magnet body;
the magnet further comprises one or more radio frequency (RF) coils positioned between the gradient coil structure and the bore;
the one or more RF coils are frusto-conical or cylindrical to match the shape of the bore and are disposed on the inner surface of the ramp surrounding the bore;
10. A magnet according to any one of claims 1-9 .
前記磁石は、シールドコイル構造と、1以上のシムポケットをさらに備え、
前記シールドコイル構造は、前記一次コイル構造の周囲に配置され、前記一次コイルよりも大きい直径を有する少なくとも1個のシールドコイルを含み、
前記シムポケットは、その内部に配置される鉄または強磁性材料のシム部を有し、
前記シムポケットは円錐台状または円筒形であり、
各前記一次コイルは、前記磁石本体または前記ボアの少なくともいずれかの形状に適合する形状を有する付属のシムポケットおよびシム部を有し、1以上の前記シム部は、好ましい磁場(B 0 )均一性レベルを達成するために、受動的に前記撮像領域にシムを入れ、
前記シム部は、前記一次コイル構造と前記シールドコイル構造との間に配置され、
前記シム部は、前記シールドコイル構造の外側に配置される、
請求項1乃至10のいずれか一項に記載の磁石。
the magnet further comprises a shielded coil structure and one or more shim pockets;
the shield coil structure includes at least one shield coil disposed around the primary coil structure and having a diameter larger than the primary coil;
each said shim pocket having a shim portion of ferrous or ferromagnetic material disposed therein;
the shim pocket is frusto-conical or cylindrical;
Each said primary coil has an associated shim pocket and shims having a shape that matches the shape of the magnet body and/or the bore, one or more of said shims having a desired magnetic field (B 0 ) uniformity. passively shimming the imaging region to achieve a sexual level;
The shim portion is arranged between the primary coil structure and the shield coil structure,
The shim portion is arranged outside the shield coil structure,
A magnet according to any one of claims 1 to 10 .
5ガウスラインの寸法が半径方向に1.5mから6mの間、軸方向に2.5mから9mの間であるか、又は、前記5ガウスラインの寸法は、
半径方向に3m、軸方向に5m;
半径方向に4.6m、軸方向に7.9m;
半径方向に4.8m、軸方向に7.0m;若しくは
半径方向に4.3m、軸方向に6.5m。
のいずれかである、
請求項1乃至11のいずれか一項に記載の磁石。
The dimension of the 5 Gauss line is between 1.5 m and 6 m radially and between 2.5 m and 9 m axially , or the dimension of said 5 Gauss line is
3m radially, 5m axially;
4.6m radially, 7.9m axially;
4.8m radially, 7.0m axially; or
4.3m radially, 6.5m axially.
is either
12. A magnet according to any one of claims 1-11 .
磁石を有する磁気共鳴イメージング(MRI)システムであって、前記磁石は、前記磁石の軸に沿って延びるボアを有し、前記磁石は、
前記磁石の前記ボアの第一の端部に隣接する第一の端部コイルと、前記磁石の第二の端部に隣接する第二の端部コイルとを含む、前記軸に沿って配置された少なくとも4個の一次コイルを有する一次コイル構造を有し、
前記一次コイル構造の最大内径は700mmよりも大きく、
前記第一の端部コイルと前記第二の端部コイルとの間隔は1000mm以下であり、
前記一次コイルによって生成される撮像領域は、ディスクタイプであって、
前記ディスクタイプの撮像領域は、軸方向直径と半径方向直径とを有し、前記軸方向直径は、前記半径方向直径より小さく、前記半径方向直径は200mmよりも大きく、
前記ディスクタイプの撮像領域の前記半径方向直径に対する前記軸方向直径の比が0.60以下である、
磁気共鳴イメージングシステム。
A magnetic resonance imaging (MRI) system having a magnet, the magnet having a bore extending along the axis of the magnet, the magnet comprising:
positioned along the axis including a first end coil adjacent a first end of the bore of the magnet and a second end coil adjacent a second end of the magnet; a primary coil structure having at least four primary coils;
the maximum inner diameter of the primary coil structure is greater than 700 mm;
the distance between the first end coil and the second end coil is 1000 mm or less;
The imaging area generated by the primary coil is of disk type ,
The disk-type imaging area has an axial diameter and a radial diameter, wherein the axial diameter is less than the radial diameter and the radial diameter is greater than 200 mm;
wherein the ratio of the axial diameter to the radial diameter of the disk-type imaging area is 0.60 or less.
Magnetic resonance imaging system.
前記磁気共鳴イメージングシステムが、患者を支持するように構成された可動プラットフォームまたは部分を備え
前記可動プラットフォームまたは部分は、前記磁気共鳴イメージングシステムの前記ボアを通過するように構成される、
請求項13に記載の磁気共鳴イメージングシステム。
said magnetic resonance imaging system comprising a movable platform or portion configured to support a patient ;
the movable platform or portion is configured to pass through the bore of the magnetic resonance imaging system;
14. The magnetic resonance imaging system of claim 13 .
磁気共鳴イメージングスキャンの方法であって、
請求項1乃至12のいずれか一項に記載の磁石を有する磁気共鳴イメージングシステムを通して、患者を支持するプラットフォームを移動させるステップを含む方法。
A method of magnetic resonance imaging scanning, comprising:
13. A method comprising moving a platform supporting a patient through a magnetic resonance imaging system having a magnet according to any one of claims 1-12 .
JP2021546704A 2019-02-12 2019-11-22 Magnet and magnetic resonance imaging system Pending JP2022520767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024030984A JP2024063146A (en) 2019-02-12 2024-03-01 Magnets and Magnetic Resonance Imaging Systems

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AU2019900450A AU2019900450A0 (en) 2019-02-12 Magnets and magnetic resonance imaging systems
AU2019900450 2019-02-12
PCT/AU2019/051285 WO2020163892A1 (en) 2019-02-12 2019-11-22 Magnets and magnetic resonance imaging systems

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024030984A Division JP2024063146A (en) 2019-02-12 2024-03-01 Magnets and Magnetic Resonance Imaging Systems

Publications (2)

Publication Number Publication Date
JP2022520767A JP2022520767A (en) 2022-04-01
JPWO2020163892A5 true JPWO2020163892A5 (en) 2022-10-18

Family

ID=72043734

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021546704A Pending JP2022520767A (en) 2019-02-12 2019-11-22 Magnet and magnetic resonance imaging system
JP2024030984A Pending JP2024063146A (en) 2019-02-12 2024-03-01 Magnets and Magnetic Resonance Imaging Systems

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024030984A Pending JP2024063146A (en) 2019-02-12 2024-03-01 Magnets and Magnetic Resonance Imaging Systems

Country Status (6)

Country Link
US (1) US11630174B2 (en)
EP (1) EP3924744A4 (en)
JP (2) JP2022520767A (en)
CN (1) CN113366328A (en)
AU (1) AU2019429503A1 (en)
WO (1) WO2020163892A1 (en)

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5307039A (en) * 1992-09-08 1994-04-26 General Electric Company Frustoconical magnet for magnetic resonance imaging
US5646532A (en) 1993-09-20 1997-07-08 Bruker Medizintechnik Gmbh Partial body tomograph
US5396207A (en) 1994-08-05 1995-03-07 General Electric Company On-shoulder MRI magnet for human brain imaging
US5416415A (en) 1994-08-05 1995-05-16 General Electric Company Over-shoulder MRI magnet for human brain imaging
US5818319A (en) 1995-12-21 1998-10-06 The University Of Queensland Magnets for magnetic resonance systems
US5801609A (en) 1997-04-25 1998-09-01 General Electric Company MRI head magnet
AUPQ198899A0 (en) 1999-08-03 1999-08-26 University Of Queensland, The A method of magnet design and magnet configuration
US6700468B2 (en) 2000-12-01 2004-03-02 Nmr Holdings No. 2 Pty Limited Asymmetric magnets for magnetic resonance imaging
US7230426B2 (en) * 2003-06-20 2007-06-12 General Electric Company Split-shield gradient coil with improved fringe-field
US7498810B2 (en) * 2004-09-11 2009-03-03 General Electric Company Systems, methods and apparatus for specialized magnetic resonance imaging with dual-access conical bore
US7466133B2 (en) * 2005-03-01 2008-12-16 General Electric Company Systems, methods and apparatus of a magnetic resonance imaging system to produce a stray field suitable for interventional use
US7212004B2 (en) * 2005-07-19 2007-05-01 Magnetica Limited Multi-layer magnet
US7579838B2 (en) * 2005-11-18 2009-08-25 General Electric Company Systems, methods and apparatus for a partially elongated field of view in a magnetic resonance imaging system
JP2007159741A (en) * 2005-12-12 2007-06-28 Hitachi Ltd Magnetic resonance imaging apparatus and electromagnet device
DE112007002511B4 (en) * 2006-10-27 2022-09-29 Nmr Holdings No. 2 Pty Limited magnets for use in magnetic resonance imaging
EP2230530A1 (en) * 2009-03-20 2010-09-22 Koninklijke Philips Electronics N.V. A tesseral shim coil for a magnetic resonance system
GB2489378B (en) * 2009-12-21 2016-01-06 Nmr Holdings No 2 Pty Ltd Open-bore magnet for use in magnetic resonance imaging
WO2012086644A1 (en) * 2010-12-20 2012-06-28 株式会社日立メディコ Static magnetic field coil device, nuclear magnetic resonance imaging device, and coil positioning method of static magnetic field coil device
KR101682198B1 (en) * 2013-08-13 2016-12-02 삼성전자주식회사 Magnetic resonance imaging device and manufacturing method thereof
CN103499797B (en) * 2013-09-09 2016-03-02 中国科学院电工研究所 Magnetic resonance image-forming superconducting magnet solenoid coil number and initial position acquisition methods
AU2015306082B2 (en) * 2014-08-18 2020-04-30 Magnetica Limited Magnet for head and extremity imaging
WO2018174726A2 (en) * 2017-03-24 2018-09-27 Victoria Link Limited Mri magnet and apparatus

Similar Documents

Publication Publication Date Title
US5532597A (en) Passive shimming technique for MRI magnets
US8125225B2 (en) Transmit profile control in MRI
US20030122546A1 (en) RF coil system for a magnetic resonance imaging apparatus
US6157281A (en) Permanent magnet assemblies for use in medical applications
US6150911A (en) Yoked permanent magnet assemblies for use in medical applications
JP2021524775A (en) Equipment and methods for B0 magnets for magnetic resonance imaging systems
EP1725886B1 (en) Asymmetric ultra-short gradient coil for magnetic resonance imaging system
US10060996B2 (en) Gradient magnetic field coil device and magnetic resonance imaging device
JPH03133428A (en) Magnetic coil inclined in perpendicular direction to axis for use in nuclear magnetic resonance tomographic device
US5939882A (en) Gradient coil arrangement for a nuclear magnetic resonance tomography apparatus
EP1472554B1 (en) Coil system for an mr apparatus and an mr apparatus provided with such a coil system
US7365540B2 (en) Hybrid magnet configuration
JP7362147B2 (en) gradient coil system
JPH1028682A (en) Magnet device for magnetic resonance device for diagnosis
JPH11276457A (en) Gradient coil assembly for magnetic resonance image formation system
US20030222650A1 (en) Shim tray, and gradient coils system and magnetic resonance apparatus for the acceptable of the shim tray
JPWO2020163892A5 (en)
US7898257B2 (en) Open yoke magnet assembly
WO2008100546A1 (en) Transmit profile control in mri
US6798205B2 (en) Shim tray, and gradient coils system and magnetic resonance apparatus for the acceptable of the shim tray
US11630174B2 (en) Magnets and magnetic resonance imaging systems
JP3372098B2 (en) Static magnetic field generator for magnetic resonance imaging
US5928147A (en) Magnetic resonance imaging apparatus
EP4300121A1 (en) Magnetic resonance imaging device with a gradient coil assembly
CN114504312A (en) Magnetic resonance imaging apparatus