JPWO2020151965A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020151965A5
JPWO2020151965A5 JP2021541449A JP2021541449A JPWO2020151965A5 JP WO2020151965 A5 JPWO2020151965 A5 JP WO2020151965A5 JP 2021541449 A JP2021541449 A JP 2021541449A JP 2021541449 A JP2021541449 A JP 2021541449A JP WO2020151965 A5 JPWO2020151965 A5 JP WO2020151965A5
Authority
JP
Japan
Prior art keywords
vessel
ultrasound data
ultrasound
motion
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021541449A
Other languages
Japanese (ja)
Other versions
JP2022517640A (en
JP7371105B2 (en
Publication date
Priority claimed from EP19290006.6A external-priority patent/EP3685756A1/en
Application filed filed Critical
Publication of JP2022517640A publication Critical patent/JP2022517640A/en
Publication of JPWO2020151965A5 publication Critical patent/JPWO2020151965A5/ja
Application granted granted Critical
Publication of JP7371105B2 publication Critical patent/JP7371105B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (15)

被検体の血管剛性の非侵襲的測定値を生成する方法であって、前記方法は、
第1の測定位置から血管の2D超音波データを取得するステップであって、前記2D超音波データは、前記血管の動きに関する情報を提供する、ステップと、
前記第1の測定位置から前記血管の3D超音波データを取得ステップであって、前記3D超音波データは、前記血管の3Dジオメトリを表す情報を提供し、前記2D超音波データ及び前記3D超音波データは、前記第1の測定位置で実行される2つの別個の超音波データ取得から得られる、ステップと、
前記2D超音波データから前記血管の動きに基づいて前記血管の前記運動を決定するステップと、
前記被検体から非侵襲的な血圧測定値を得るステップと、
前記決定される前記血管の運動、前記血管の前記3Dジオメトリ、及び前記非侵襲的血圧測定値を生体力学モデルに提供するステップと、
前記生体力学モデルに基づいて剛性の測定値を生成するステップと
を有する、方法。
A method of generating a non-invasive measurement of vascular stiffness in a subject, said method comprising:
acquiring 2D ultrasound data of a blood vessel from a first measurement location, said 2D ultrasound data providing information about movement of said blood vessel;
acquiring 3D ultrasound data of the blood vessel from the first measurement location, the 3D ultrasound data providing information representing a 3D geometry of the vessel, the 2D ultrasound data and the 3D ultrasound data is obtained from two separate ultrasound data acquisitions performed at the first measurement location ;
determining the motion of the vessel based on the motion of the vessel from the 2D ultrasound data;
obtaining a non-invasive blood pressure measurement from the subject;
providing the determined motion of the vessel, the 3D geometry of the vessel, and the non-invasive blood pressure measurement to a biomechanical model;
and generating stiffness measurements based on the biomechanical model.
前記2D超音波データはバイプレーン超音波データを有し、前記バイプレーン超音波データは、
第1の方向を表す第1のデータ面と、
第2の方向を表す第2のデータ面であって、前記第2の方向は前記第1の方向と直交する、データ面と
を有する、請求項1に記載の方法。
The 2D ultrasound data comprises biplane ultrasound data, the biplane ultrasound data comprising:
a first data surface representing a first direction;
2. The method of claim 1, comprising a second data plane representing a second direction, said second direction being orthogonal to said first direction.
前記2D超音波データは前記血管の長さに沿う異なる位置をそれぞれ表す複数のデータ面を有し、各データ面は血管断面を表す、請求項1乃至2の何れか一項に記載の方法。 3. The method of any one of claims 1-2, wherein the 2D ultrasound data comprises a plurality of data planes each representing a different position along the length of the blood vessel, each data plane representing a cross-section of the blood vessel. 前記方法は、
第2の測定位置から血管の更なる2D超音波データ及び/又は更なる3D超音波データを取得するステップと、
前記2D超音波データ及び/又は3D超音波データを前記更なる2D超音波データ及び/又は更なる3D超音波データと比較するステップと
を更に有する、請求項1乃至3の何れか一項に記載の方法。
The method includes
obtaining further 2D ultrasound data and/or further 3D ultrasound data of the blood vessel from the second measurement location;
and comparing said 2D ultrasound data and/or 3D ultrasound data with said further 2D ultrasound data and/or further 3D ultrasound data. the method of.
前記方法は、前記2D超音波データに基づいて前記血管のシネループを生成するステップをさらに有し、前記シネループは、心周期中の異なる時点でそれぞれ取得される前記血管の複数の超音波画像フレームを有する、請求項1乃至4の何れか一項に記載の方法。 The method further comprises generating a cine loop of the vessel based on the 2D ultrasound data, the cine loop comprising a plurality of ultrasound image frames of the vessel each acquired at a different point in time during a cardiac cycle. 5. The method of any one of claims 1-4, comprising: 前記方法は、
追跡アルゴリズムを前記シネループに適用し、それによって前記血管の前記複数の超音波画像フレームの少なくとも1つに対して初期血管境界を描写するステップと、
前記複数の超音波画像フレームの各々に対して、前記初期血管境界に基づいて血管境界を決定するステップと、
前記複数の血管境界に基づいて時間にわたる血管壁変位を決定するステップと
をさらに有する、請求項5に記載の方法。
The method includes
applying a tracking algorithm to the cineloop, thereby delineating an initial vessel boundary for at least one of the plurality of ultrasound image frames of the vessel;
determining a vessel boundary based on the initial vessel boundary for each of the plurality of ultrasound image frames;
6. The method of claim 5, further comprising determining vessel wall displacement over time based on the plurality of vessel boundaries.
前記方法は、時間にわたる前記血管壁変位に基づいて、最大血管壁変位及び/又は平均血管壁変位を決定するステップをさらに有する、請求項6に記載の方法。 7. The method of claim 6, wherein the method further comprises determining maximum vessel wall displacement and/or average vessel wall displacement based on the vessel wall displacement over time. 前記方法は、前記取得される2D超音波データに対して空間レジストレーションを実行するステップをさらに有し、前記3D超音波データを取得するステップは、前記空間レジストレーションに基づく、請求項1乃至7の何れか一項に記載の方法。 8. The method of claim 1, further comprising performing spatial registration on the acquired 2D ultrasound data, wherein acquiring the 3D ultrasound data is based on the spatial registration. The method according to any one of . 前記方法は、前記3D超音波データから前記血管の前記3D構造の表現をセグメント化するステップをさらに有する、請求項1乃至8の何れか一項に記載の方法。 9. The method of any one of claims 1-8, wherein the method further comprises segmenting a representation of the 3D structure of the vessel from the 3D ultrasound data. 前記非侵襲的血圧測定は上腕圧指数を有する、請求項1乃至9の何れか一項に記載の方法。 10. The method of any one of claims 1-9, wherein the non-invasive blood pressure measurement comprises a brachial pressure index. 前記生体力学モデルに基づいて剛性の尺度を生成するステップは、
試験血管剛性を生成するステップと、
前記試験血管剛性に基づいて前記血管の試験運動をシミュレートするステップと、
前記血管の前記試験運動を前記血管の前記測定される運動と比較するステップと、
前記血管の前記試験運動が前記血管の前記測定される運動と一致する場合、前記試験血管剛性を前記剛性の尺度として選択するステップと、
前記血管の前記試験運動が前記血管の前記測定される運動と一致しない場合、前記試験血管剛性を調整するステップと
を有する、請求項1乃至10の何れか一項に記載の方法。
Generating a stiffness measure based on the biomechanical model comprises:
generating a test vessel stiffness;
simulating a test motion of the vessel based on the test vessel stiffness;
comparing the test motion of the blood vessel to the measured motion of the blood vessel;
selecting the test vessel stiffness as a measure of the stiffness if the test motion of the blood vessel matches the measured motion of the blood vessel;
11. A method according to any preceding claim, comprising adjusting the test vessel stiffness if the test motion of the blood vessel does not match the measured motion of the blood vessel.
前記コンピュータプログラムがコンピュータ上で実行されるとき、請求項1乃至11の何れか一項に記載の方法を実施するように構成されるコンピュータプログラムコード手段を有するコンピュータプログラム。 Computer program comprising computer program code means adapted to implement the method of any one of claims 1 to 11 when said computer program is run on a computer. 処理ユニットであって、前記処理ユニットは、
第1の測定位置から血管の2D超音波データを取得し、前記2D超音波データは、前記血管の動きに関する情報を提供し、
前記第1の測定位置から前記血管の3D超音波データを取得し、前記3D超音波データは、前記血管の3Dジオメトリを表す情報を提供し、前記2D超音波データ及び前記3D超音波データは、前記第1の測定位置で実行される2つの別個の超音波データ取得から得られ、
前記2D超音波データから前記血管の前記動きに基づいて前記血管の運動を決定し、
非侵襲的血圧測定値を取得し、
前記血管の前記決定される運動、前記血管の前記3Dジオメトリ、及び前記非侵襲的血圧測定値を生体力学モデルに提供し、
前記生体力学モデルに基づいて剛性の測定値を生成する
ように構成される、処理ユニット。
A processing unit, the processing unit comprising:
obtaining 2D ultrasound data of a blood vessel from a first measurement location, said 2D ultrasound data providing information about movement of said blood vessel;
obtaining 3D ultrasound data of the vessel from the first measurement location, the 3D ultrasound data providing information representing a 3D geometry of the vessel, the 2D ultrasound data and the 3D ultrasound data comprising: obtained from two separate ultrasound data acquisitions performed at the first measurement location;
determining motion of the vessel based on the motion of the vessel from the 2D ultrasound data;
Obtain non-invasive blood pressure readings,
providing the determined motion of the vessel, the 3D geometry of the vessel, and the noninvasive blood pressure measurement to a biomechanical model;
A processing unit configured to generate a stiffness measurement based on the biomechanical model.
請求項13に記載の処理ユニットと、
超音波プローブであって、前記超音波プローブは、前記2D超音波データを取得するように構成され、前記プローブは前記3D超音波データを取得するようにさらに構成される、超音波プローブと
を有する、超音波システム。
a processing unit according to claim 13;
an ultrasound probe, said ultrasound probe configured to acquire said 2D ultrasound data, said probe further configured to acquire said 3D ultrasound data. , ultrasound system.
前記システムは、前記非侵襲的血圧測定値を取得するように構成される血圧測定デバイスをさらに有する、請求項14に記載のシステム。 15. The system of Claim 14, wherein said system further comprises a blood pressure measurement device configured to obtain said non-invasive blood pressure measurement.
JP2021541449A 2019-01-24 2020-01-13 Methods and systems for investigating vascular properties Active JP7371105B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP19290006.6 2019-01-24
EP19290006.6A EP3685756A1 (en) 2019-01-24 2019-01-24 Methods and systems for investigating blood vessel characteristics
PCT/EP2020/050617 WO2020151965A1 (en) 2019-01-24 2020-01-13 Methods and systems for investigating blood vessel characteristics

Publications (3)

Publication Number Publication Date
JP2022517640A JP2022517640A (en) 2022-03-09
JPWO2020151965A5 true JPWO2020151965A5 (en) 2022-11-18
JP7371105B2 JP7371105B2 (en) 2023-10-30

Family

ID=65409009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021541449A Active JP7371105B2 (en) 2019-01-24 2020-01-13 Methods and systems for investigating vascular properties

Country Status (5)

Country Link
US (1) US20220096048A1 (en)
EP (2) EP3685756A1 (en)
JP (1) JP7371105B2 (en)
CN (1) CN113382685A (en)
WO (1) WO2020151965A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023104489A1 (en) * 2021-12-09 2023-06-15 Medtronic Ireland Manufacturing Unlimited Company Identifying suitable candidates for denervation therapy
CN116705330B (en) * 2023-07-31 2023-11-10 柏意慧心(杭州)网络科技有限公司 Method, computing device and medium for determining elastic characteristics of a vessel wall

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6283919B1 (en) 1996-11-26 2001-09-04 Atl Ultrasound Ultrasonic diagnostic imaging with blended tissue harmonic signals
US6458083B1 (en) 1996-11-26 2002-10-01 Koninklijke Philips Electronics N.V. Ultrasonic harmonic imaging with adaptive image formation
US6013032A (en) 1998-03-13 2000-01-11 Hewlett-Packard Company Beamforming methods and apparatus for three-dimensional ultrasound imaging using two-dimensional transducer array
US5997479A (en) 1998-05-28 1999-12-07 Hewlett-Packard Company Phased array acoustic systems with intra-group processors
US6530885B1 (en) 2000-03-17 2003-03-11 Atl Ultrasound, Inc. Spatially compounded three dimensional ultrasonic images
US7374538B2 (en) * 2000-04-05 2008-05-20 Duke University Methods, systems, and computer program products for ultrasound measurements using receive mode parallel processing
US6443896B1 (en) 2000-08-17 2002-09-03 Koninklijke Philips Electronics N.V. Method for creating multiplanar ultrasonic images of a three dimensional object
US6468216B1 (en) 2000-08-24 2002-10-22 Kininklijke Philips Electronics N.V. Ultrasonic diagnostic imaging of the coronary arteries
EP1531725A4 (en) * 2002-07-01 2009-02-04 Physiosonics Inc Systems and methods for making noninvasive assessments of cardiac tissue and parameters
US7318804B2 (en) * 2003-12-09 2008-01-15 The Regents Of The University Of Michigan Methods and systems for measuring mechanical property of a vascular wall and method and system for determining health of a vascular structure
CA2457171A1 (en) * 2004-02-09 2005-08-09 Centre Hospitalier De L'universite De Montreal - Chum Imaging apparatus and methods
US7955265B2 (en) * 2005-08-15 2011-06-07 General Electric Company Method and apparatus for measuring anatomic structures
US8617074B2 (en) * 2005-08-18 2013-12-31 Stichting Katholieke Universiteit Method and apparatus for generating hardness and/or strain information of a tissue
JP4892732B2 (en) * 2007-03-28 2012-03-07 国立大学法人岐阜大学 Blood vessel imaging method, blood vessel imaging system, and blood vessel imaging program
US20090163785A1 (en) * 2007-12-20 2009-06-25 Nelson Riley H Virtual non-invasive blood analysis device workstation and associated methods
JP5495607B2 (en) * 2008-05-27 2014-05-21 キヤノン株式会社 Ultrasonic diagnostic equipment
US9826959B2 (en) * 2008-11-04 2017-11-28 Fujifilm Corporation Ultrasonic diagnostic device
FR2945201A1 (en) * 2009-05-05 2010-11-12 Cong Hoan Nguyen METHOD AND DEVICE FOR ESTABLISHING A RELATION BETWEEN THE STRESS AND THE DEFORMATION OF AN ARTERY BY NON-INVASIVE MEASUREMENTS
JP5486257B2 (en) 2009-09-28 2014-05-07 富士フイルム株式会社 Ultrasonic diagnostic apparatus and elasticity index calculation method
EP2579944B1 (en) * 2010-06-09 2018-04-04 Regents Of The University Of Minnesota Dual mode ultrasound transducer (dmut) system and method for controlling delivery of ultrasound therapy
JP5868052B2 (en) * 2010-07-21 2016-02-24 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Comprehensive patient-specific heart modeling method and system
US8682626B2 (en) * 2010-07-21 2014-03-25 Siemens Aktiengesellschaft Method and system for comprehensive patient-specific modeling of the heart
US8768019B2 (en) * 2011-02-03 2014-07-01 Medtronic, Inc. Display of an acquired cine loop for procedure navigation
EP2696771B8 (en) * 2011-04-14 2018-11-28 Regents of the University of Minnesota Vascular characterization using ultrasound imaging
WO2013161277A1 (en) 2012-04-23 2013-10-31 パナソニック株式会社 Ultrasonic diagnosis device and method for controlling same
JP2014100249A (en) * 2012-11-19 2014-06-05 Toshiba Corp Blood vessel analysis device, medical image diagnostic device, blood vessel analysis method, and blood vessel analysis program
JP6091870B2 (en) * 2012-12-07 2017-03-08 東芝メディカルシステムズ株式会社 Blood vessel analysis device, medical image diagnostic device, blood vessel analysis method, and blood vessel analysis program
EP3035852A4 (en) * 2013-08-19 2017-05-17 University of Utah Research Foundation Ultrasound apparatus, system, and method
KR102185723B1 (en) * 2013-08-26 2020-12-02 삼성메디슨 주식회사 Ultrasonic apparatus for measuring stiffness of carotid artery and measuring method for the same
US10206587B2 (en) * 2014-05-16 2019-02-19 Toshiba Medical Systems Corporation Image processing apparatus, image processing method, and storage medium
JP6275797B2 (en) 2016-10-13 2018-02-07 株式会社東芝 Tubular structure analysis device, tubular structure analysis method, and tubular structure analysis program
WO2018202899A1 (en) * 2017-05-04 2018-11-08 Koninklijke Philips N.V. System and method for concurrent visualization and quantification of wall shear stress in blood vessels
US20190000415A1 (en) * 2017-06-28 2019-01-03 Carestream Health, Inc. Ultrasound system and method for acquisition parameter determination
DE102021129128A1 (en) * 2020-11-09 2022-05-12 Canon Medical Systems Corporation Medical information processing apparatus, medical information processing system and medical information processing method

Similar Documents

Publication Publication Date Title
EP3723038B1 (en) Fast calculation method and system employing plaque stability index of medical image sequence
JP6152218B2 (en) Ultrasonic imaging apparatus and method
Jasaityte et al. Current state of three-dimensional myocardial strain estimation using echocardiography
CN111134651B (en) Method, device and system for calculating fractional flow reserve based on intracavity images and computer storage medium
Sugeng et al. Left ventricular assessment using real time three dimensional echocardiography
Gopal et al. Normal values of right ventricular size and function by real-time 3-dimensional echocardiography: comparison with cardiac magnetic resonance imaging
Anwar et al. Assessment of left atrial volume and function by real-time three-dimensional echocardiography
Gopal et al. Freehand three-dimensional echocardiography for determination of left ventricular volume and mass in patients with abnormal ventricles: comparison with magnetic resonance imaging
KR101939778B1 (en) Method and apparatus for determining blood flow requirement, method and apparatus for producing blood flow image, method and apparatus for processing myocardial perfusion image
Dragulescu et al. Echocardiographic assessment of right ventricular volumes after surgical repair of tetralogy of Fallot: clinical validation of a new echocardiographic method
WO1999055233A1 (en) Automated delineation of heart contours
Pemberton et al. Real-time 3-dimensional Doppler echocardiography for the assessment of stroke volume: an in vivo human study compared with standard 2-dimensional echocardiography
JP6436442B2 (en) Photoacoustic apparatus and image processing method
RU2691619C1 (en) Method of determining a poisson coefficient for a wall of a blood vessel based on endoscopic optical coherence tomography
KR101511300B1 (en) Method for measuring diameter of vessel
JPWO2020151965A5 (en)
Aziz et al. Assessment of left ventricular volume and function using real-time 3D echocardiography versus angiocardiography in children with tetralogy of Fallot
Tournoux et al. Estimation of radial strain and rotation using a new algorithm based on speckle tracking
Gonçalves et al. Valve anatomy and function with transthoracic three-dimensional echocardiography: advantages and limitations of instantaneous full-volume color Doppler imaging
Zheng et al. Reconstruction of coronary vessels from intravascular ultrasound image sequences based on compensation of the in-plane motion
Mor-Avi et al. Three-dimensional echocardiographic evaluation of the heart chambers: size, function, and mass
Sheehan et al. Three dimensional echocardiography system for quantitative analysis of the left ventricle
Corsi et al. Real-time 3D echocardiographic data analysis for left ventricular volume estimation
Alsadek et al. An Overview about Speckle-tracking imaging Values among asthmatic patients
Yu et al. Multiview 3D reconstruction with volumetric registration in a freehand ultrasound imaging system