JPWO2020128609A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020128609A5
JPWO2020128609A5 JP2021535268A JP2021535268A JPWO2020128609A5 JP WO2020128609 A5 JPWO2020128609 A5 JP WO2020128609A5 JP 2021535268 A JP2021535268 A JP 2021535268A JP 2021535268 A JP2021535268 A JP 2021535268A JP WO2020128609 A5 JPWO2020128609 A5 JP WO2020128609A5
Authority
JP
Japan
Prior art keywords
ser
receive
signal
npd
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021535268A
Other languages
Japanese (ja)
Other versions
JP7356504B2 (en
JP2022513520A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/IB2019/001329 external-priority patent/WO2020128609A1/en
Publication of JP2022513520A publication Critical patent/JP2022513520A/en
Publication of JPWO2020128609A5 publication Critical patent/JPWO2020128609A5/ja
Application granted granted Critical
Publication of JP7356504B2 publication Critical patent/JP7356504B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (18)

空間推定領域(SER)内における物質の局所的に変化する非線形弾性パラメータ(NEP)を、前記物質の前記SER内の位置の関数として1組の測定済み非線形伝搬遅延(NPD)から、前記SER内の空間的に変化するNEP値から前記SER内の空間的に変化するモデルNPDを生じさせる数学モデルの利用により推定する方法であって、前記方法は、
a)前記NPDを前記SER内の位置の関数として測定するステップを含み、前記測定は、
‐オーバーラップした低周波(LF)および高周波(HF)パルスで構成された少なくとも2つのパルス複合体を、少なくとも前記SER内でオーバーラップするLFおよびHF伝送ビームに沿って伝送し、
‐前記HF伝送ビームに沿う互いに異なるLFパルスを有する少なくとも2つの伝送パルス複合体からの前記SER内のHF伝送ビームに沿う1組の深さ領域内の物体構造からの散乱HFパルスからのHF受け取り信号を記録し、
‐前記HF伝送ビームに沿う前記1組の深さ領域から、互いに異なるLFパルスを有するパルス複合体の前記HFパルスから散乱したHF受け取り信号を比較して前記SER内の前記HF伝送ビームに沿う前記1組の深さ領域のところで前記NPDの推定値を生じさせることにより実施され、
b)入力としての1組のNEPと共に、
i)空間的に可変の距離重みによって重み付けられた前記NEP値についての前記測定済みNPDと前記モデルNPDとの差の距離関数と、
ii)空間的に可変の変化量重みによって重み付けられた前記SER内の前記NEP値の局所変化量の測定値との加重和を与える推定関数(EF)を生成するステップを含み、
c)所与の組をなす測定済みNPDについて、前記EFを前記1組のNEPに対して最小にし、前記EFを最小にする前記1組のNEPを用いて前記SER内の空間的に変化するNEPの推定値を生じさせるステップを含む、方法。
A locally varying nonlinear elastic parameter (NEP) of a material within a spatial estimation region (SER) as a function of the material's position within the SER from a set of measured nonlinear propagation delays (NPD) within the SER A method of estimating from spatially-varying NEP values of by using a mathematical model that produces a spatially-varying model NPD in said SER, said method comprising:
a) measuring said NPD as a function of position within said SER, said measuring comprising:
- transmitting at least two pulse complexes composed of overlapping low frequency (LF) and high frequency (HF) pulses along overlapping LF and HF transmission beams within at least said SER;
- HF reception from scattered HF pulses from object structures in a set of depth regions along the HF transmit beam in the SER from at least two transmit pulse complexes with different LF pulses along the HF transmit beam. record the signal,
- said along said HF transmit beam within said SER comparing HF received signals scattered from said HF pulses of pulse complexes having different LF pulses from said set of depth regions along said HF transmit beam; by generating an estimate of the NPD at a set of depth regions;
b) with a set of NEPs as input,
i) a distance function of the difference between the measured NPD and the model NPD for the NEP value weighted by a spatially variable distance weight;
ii) generating an estimation function (EF) that provides a weighted sum of the NEP value in the SER with a measure of local variation weighted by a spatially variable variation weight;
c) for a given set of measured NPDs, minimize the EF with respect to the set of NEPs, and vary spatially within the SER using the set of NEPs that minimize the EF; A method comprising generating an estimate of NEP.
前記距離重みおよび前記変化量重みの局所値は、i)前記受信HF信号中の強力な局所レフレクタの評価と、ii)一次散乱HF信号の局所大きさに対する多重散乱HFノイズの局所大きさの評価のうちの一方または両方から推定される、請求項1記載の方法。The local values of the range weight and the variation weight are i) an estimate of the strong local reflectors in the received HF signal and ii) an estimate of the local magnitude of the multiply scattered HF noise relative to the local magnitude of the primary scattered HF signal. 2. The method of claim 1, deduced from one or both of: 前記EFは、前記推定局所NEPに対するi)最大値制約と、ii)最小値制約のうちの一方または両方を受ける前記1組のNEPに対して最小にされ、前記最大および前記最小値制約を受ける前記EFを最初にする前記1組のNEPを用いて前記SER内の空間的に変化するNEPの推定値を生じさせる、請求項1記載の方法。 The EF is minimized over the set of NEPs subject to one or both of i) a maximum constraint on the estimated local NEP and ii) a minimum constraint, subject to the maximum and the minimum constraint. 2. The method of claim 1, wherein the set of NEPs starting with the EF is used to generate estimates of spatially varying NEPs in the SER. 前記距離重みは、前記SER内の前記受信HF信号のエンベロープの狭い領域平均値と広い領域の平均値の比として生成され、前記変化量重みは、前記距離重みの正の関数として生成され、前記正の関数の微分は負である、請求項1記載の方法。 The distance weight is generated as a ratio of a narrow area mean value to a wide area mean value of the envelope of the received HF signal in the SER, the variation weight is generated as a positive function of the distance weight, and the 2. The method of claim 1, wherein the derivative of the positive function is negative. 前記一次散乱HF信号の前記局所大きさに対する多重散乱HFノイズの局所大きさの前記評価は、前記測定済みNPDから得られる、請求項1記載の方法。 2. The method of claim 1, wherein said estimate of local magnitude of multiply scattered HF noise relative to said local magnitude of said primary scattered HF signal is obtained from said measured NPD. 前記一次散乱HF信号の前記局所大きさに対する多重散乱HFノイズの前記局所大きさの前記評価は、前記測定済みNPDの前記値から得られ、予想限度の何分の一か未満である、請求項記載の方法。 4. wherein said estimate of said local magnitude of multiple scattered HF noise relative to said local magnitude of said primary scattered HF signal is obtained from said value of said measured NPD and is less than a fraction of an expected limit. 5. The method described. 前記NPDを測定する前記HF受信信号は、i)前記HF送信ビームに沿う互いに異なる深さのところでの前記HF送信ビームを横切る1組のHF受信ビームと、ii)前記HF送信ビームとほぼ同一のビーム軸線を有するHF受信信号を用い、前記HF送信ビームに沿う互いに異なる深さのところでHF後方散乱受信信号の区間をゲートすることのうちの一方または両方から得られる、請求項1記載の方法。 The HF receive signals that measure the NPD are: i) a set of HF receive beams that traverse the HF transmit beam at different depths along the HF transmit beam; 2. The method of claim 1, derived from one or both of using an HF receive signal having a beam axis and gating intervals of the HF backscatter receive signal at different depths along the HF transmit beam. 前記距離関数は、前記SERの各点における前記測定出力と前記モデル出力との差の値xの関数f(x)に基づき、f(x)の微分の符号は、xの符号に等しい、請求項1記載の方法。 wherein said distance function is based on a function f(x) of the value x of the difference between said measured output and said model output at each point of said SER, wherein the sign of the derivative of f(x) is equal to the sign of x. Item 1. The method according to item 1. 前記測定済みNPDは、各送信ビームのための修正後、HF受信信号を生じさせるよう各送信ビームについて前記HF受信信号の修正のためにさらに処理されるとともに用いられ、少なくとも2つの修正済みHF受信信号は、i)多重散乱ノイズの抑制を含むHF受信信号と、ii)線形散乱が抑制され、非線形散乱が促進されるHF受信信号の一方または両方を生じさせるよう組み合わされた各送信ビームについてのものである、請求項1記載の方法。 The measured NPD is further processed and used for correction of the HF receive signal for each transmit beam to yield an HF receive signal after correction for each transmit beam, wherein at least two corrected HF receive The signals are for each transmit beam combined to produce one or both of i) an HF receive signal with suppression of multiple scattering noise and ii) an HF receive signal with suppressed linear scattering and enhanced nonlinear scattering. 2. The method of claim 1, wherein 前記HF受信レンジセルの合成側方集束は、1組のフィルタ係数を用いた多数の送信のための前記HF受信信号の側方フィルタリングによって多数の深さのところで得られ、前記フィルタ係数は、i)空間の定数、およびii)前記空間的に変化するNEPの推定値の関数のうちの一方である超音波伝搬速度を用いる前記HF送信ビームおよび前記HF受信ビームの積の計算により求められる、請求項1記載の方法。 The synthetic lateral focusing of said HF receive range cells is obtained at multiple depths by lateral filtering of said HF receive signal for multiple transmissions with a set of filter coefficients, said filter coefficients being i) by calculating the product of said HF transmit beam and said HF receive beam using a constant of space and ii) an ultrasonic propagation velocity that is one of a function of said spatially varying NEP estimate. 1. The method of claim 1. 前記距離重みおよび前記変化量重みの決定は、研究対象の物質物体の形式に対する前記受信HF信号に対する微分プログラミングの形態による機械学習により行われる、請求項1記載の方法。 2. The method of claim 1, wherein the determination of the distance weights and the variation weights is performed by machine learning in the form of differential programming of the received HF signal to the type of material object under study. 空間推定領域(SER)内の物質の局所的に変化する非線形弾性パラメータ(NEP)を前記物質の前記SER内の位置の関数として1組の測定済み非線形伝搬遅延(NPD)から、前記SER内の空間的に変化するNEP値から前記SER内の空間的に変化するモデルNPDを生じさせる数学モデルの利用により推定する器械であって、前記器械は、
a)多素子超音波プローブであって、
‐少なくとも前記SER内で互いにオーバーラップする低周波(LF)および高周波(HF)送信ビームに沿って互いにオーバーラップしているLFパルスとHFパルスを送信し、
‐各HF送信ビームに沿う互いに異なるLFパルスを有する少なくとも2つの送信パルス複合体からの前記SER内の物体構造体から散乱したHFパルスからHF素子受信信号を記録するための多素子超音波プローブを有し、
b)前記前記LFおよび前記HFパルス複合体を送信し、前記多素子プローブからHF素子受信信号を受信するために前記多素子プローブのためのHFおよびLF駆動信号を提供するマルチチャネルフロントエンドユニットを有し、前記マルチチャネルフロントエンドユニットは、前記HF素子受信信号を
c)HF受信ビーム‐フォーマに伝達し、前記HF受信ビーム‐フォーマは、前記HF送信ビームに沿う多数の深さからHF受信信号を生成し、前記HF受信信号を
d)測定ユニットセットアップに伝達し、前記測定ユニットセットアップは、少なくとも2つの互いに異なるパルス複合体からの各HF送信ビームに沿う前記多数の深さのためのHF受信信号を前記LFパルスの差と比較して前記HF送信ビームに沿う前記多数の深さについての測定済みNPDを提供し、前記測定済みNPDを
e)推定ユニットに伝達し、前記推定ユニットは前記測定済みNPEからの前記空間推定領域内の前記空間的に変化するNEPの推定値を生成し、前記推定ユニットは、
‐入力としての1組のNEPと共に、i)空間的に可変の距離重みによって重み付けられた前記NEP値についての前記測定済みNPDと前記モデルNPDとの差の距離関数と、ii)空間的に可変の変化量重みによって重み付けられた前記SER内の前記NEP値の局所変化量の測定値との加重和を与える推定関数(EF)を生成し、
‐所与の組をなす測定済みNPDについて、前記EFを前記1組のNEPに対して最小にし、前記EFを最小にする前記1組のNEPを用いて前記SER内の空間的に変化するNEPの推定値を生じさせるよう構成されている、器械。
A locally varying nonlinear elastic parameter (NEP) of a material within a spatial estimation region (SER) as a function of the material's position within the SER from a set of measured nonlinear propagation delays (NPD) within the SER. An instrument for estimating by use of a mathematical model to generate a spatially varying model NPD in said SER from spatially varying NEP values, said instrument comprising:
a) a multi-element ultrasound probe comprising:
- transmitting overlapping LF and HF pulses along overlapping low frequency (LF) and high frequency (HF) transmit beams at least within said SER;
- a multi-element ultrasound probe for recording HF element receive signals from HF pulses scattered from object structures in said SER from at least two transmit pulse complexes with different LF pulses along each HF transmit beam. have
b) a multi-channel front end unit providing HF and LF drive signals for said multi-element probe for transmitting said LF and said HF pulse complexes and for receiving HF element receive signals from said multi-element probe; c) the HF receive beam-former, the HF receive beam-former receiving HF receive signals from multiple depths along the HF transmit beam; and transmitting said HF receive signal to d) a measurement unit setup, said measurement unit setup for HF reception for said multiple depths along each HF transmit beam from at least two different pulse complexes comparing a signal to the difference of the LF pulses to provide measured NPDs for the multiple depths along the HF transmit beam, and e) communicating the measured NPDs to an estimation unit , the estimation unit performing the generating an estimate of the spatially varying NEP within the spatial estimation region from the measured NPE, the estimation unit comprising:
- with a set of NEPs as input, i) a distance function of the difference between the measured NPD and the model NPD for the NEP values weighted by a spatially variable distance weight, and ii) a spatially variable generating an estimation function (EF) that gives a weighted sum of the measured local variation of the NEP value in the SER weighted by the variation weight of
- for a given set of measured NPDs, minimize the EF with respect to the set of NEPs, and use the set of NEPs that minimize the EF to spatially vary the NEPs within the SER; An instrument configured to produce an estimate of .
前記推定ユニットは、i)前記受信HF信号中の強力な局所レフレクタの評価と、ii)一次散乱HF信号の局所大きさに対する多重散乱HFノイズの局所大きさの評価のうちの一方または両方から前記距離重みおよび前記変化量重みの局所値を生じさせるよう構成されている、請求項12記載の方法。the estimation unit from one or both of: i) an estimate of strong local reflectors in the received HF signal; 13. The method of claim 12, configured to generate local values of distance weights and said variation weights. 前記HF受信ビーム‐フォーマユニットは、前記HF送信ビームに沿う多数の深さから前記HF受信信号をi)前記多数の深さのところでの前記HF送信ビームと交差する1組のHF受信ビームから、ii)前記送信ビームの前記ビーム軸線の近くに位置するビーム軸線を備えたHF受信ビームからの後方散乱HF信号の前記多数の深さのところでの区間をゲートすることの一方または両方により得る、請求項12記載の器械。 The HF receive beam-former unit converts the HF receive signals from multiple depths along the HF transmit beams to: i) from a set of HF receive beams that intersect the HF transmit beams at the multiple depths; ii) by one or both of gating intervals at said multiple depths of a backscattered HF signal from an HF receive beam with a beam axis located near said beam axis of said transmit beam. 13. Apparatus according to clause 12 . 前記測定済みNPDは、各送信ビームについての前記HF受信信号を修正して、各送信ビームについて修正済みHF受信信号を生じさせるためにさらに処理されるとともに用いられ、少なくとも2つの修正済みHF受信信号は、i)多重散乱ノイズの抑制を含むHF受信信号と、ii)線形散乱が抑制され、非線形散乱が促進されるHF受信信号の一方または両方を生じさせるよう組み合わされた各送信ビームのためである、請求項12記載の器械。 The measured NPD is further processed and used to modify the HF received signal for each transmit beam to yield a modified HF received signal for each transmit beam, wherein at least two modified HF received signals for each transmit beam combined to produce one or both of i) an HF receive signal with suppression of multiple scattering noise and ii) an HF receive signal in which linear scattering is suppressed and nonlinear scattering is promoted. 13. The apparatus of claim 12 , comprising: i)前記HF受信ビーム‐形成ユニット、ii)前記測定ユニット、およびiii)前記推定ユニットのうちの少なくとも1つは、プログラム可能コンピュータのソフトウェアとして具体化される、請求項12の器械。 13. The apparatus of claim 12 , wherein at least one of i) the HF receive beam-forming unit, ii) the measurement unit, and iii) the estimation unit is embodied as software on a programmable computer. 前記HF受信レンジセルの合成集束多数の送信ビームのための前記HF受信信号の側方フィルタリングにより多数の深さのところで得られるようにするユニットをさらに有する、請求項11記載の器械。 12. The apparatus of claim 11, further comprising a unit for enabling a composite focus of said HF receive range cells to be obtained at multiple depths by lateral filtering of said HF receive signals for multiple transmit beams. 前記距離重みおよび前記変化量重みの決定は、研究対象の物質物体の形式に対する前記受信HF信号に対する微分プログラミングの形態で機械学習により行われる、請求項12記載の器械。 13. The apparatus of claim 12 , wherein the determination of said distance weights and said variation weights is performed by machine learning in the form of differential programming of said received HF signal to the type of material object under study.
JP2021535268A 2018-12-17 2019-12-17 Ultrasonic estimation of nonlinear bulk elasticity of materials Active JP7356504B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862780810P 2018-12-17 2018-12-17
US62/780,810 2018-12-17
PCT/IB2019/001329 WO2020128609A1 (en) 2018-12-17 2019-12-17 Ultrasound estimation of nonlinear bulk elasticity of materials

Publications (3)

Publication Number Publication Date
JP2022513520A JP2022513520A (en) 2022-02-08
JPWO2020128609A5 true JPWO2020128609A5 (en) 2022-12-27
JP7356504B2 JP7356504B2 (en) 2023-10-04

Family

ID=69743606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021535268A Active JP7356504B2 (en) 2018-12-17 2019-12-17 Ultrasonic estimation of nonlinear bulk elasticity of materials

Country Status (5)

Country Link
US (1) US11275006B2 (en)
EP (1) EP3881100A1 (en)
JP (1) JP7356504B2 (en)
KR (1) KR20210105946A (en)
WO (1) WO2020128609A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220105363A1 (en) 2020-10-07 2022-04-07 Surf Technology As Methods and System for Stimulating Immune Response Against an Existing Cancer in a Patient
WO2023047190A1 (en) 2021-09-24 2023-03-30 Surf Technology As Estimation of vibration amplitude and elastic properties of extra-capillary tissue with ultrasound driven vibration of intra-capillary gas bubbles

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62227332A (en) * 1986-03-28 1987-10-06 松下電器産業株式会社 Ultrasonic measuring apparatus
US6905465B2 (en) 2002-04-05 2005-06-14 Angelsen Bjoern A. J. Corrections for pulse reverberations and phasefront aberrations in ultrasound imaging
US20040267129A1 (en) 2003-05-30 2004-12-30 Angelsen Bjorn A.J. Ultrasonic contrast agent detection and imaging by low frequency manipulation of high frequency scattering properties
US8038616B2 (en) 2003-05-30 2011-10-18 Surf Technology As Acoustic imaging by nonlinear low frequency manipulation of high frequency scattering and propagation properties
WO2005008280A1 (en) 2003-07-17 2005-01-27 Angelsen Bjoern A J Corrections for wavefront aberrations in ultrasound imaging
CN101023376B (en) * 2004-07-23 2011-05-18 比约恩·A·J·安杰尔森 Ultrasound imaging
WO2007013814A2 (en) 2005-07-26 2007-02-01 Angelsen Bjoern A J Dual frequency band ultrasound transducer arrays
US8182428B2 (en) 2005-07-26 2012-05-22 Surf Technology As Dual frequency band ultrasound transducer arrays
US9939413B2 (en) * 2008-01-09 2018-04-10 Surf Technology As Measurement and imaging of scatterers with memory of scatterer parameters using at least two-frequency elastic wave pulse complexes
US20090178483A1 (en) * 2008-01-09 2009-07-16 Angelsen Bjorn A J Nonlinear Elastic Imaging With Two-Frequency Elastic Pulse Complexes
US8550998B2 (en) 2008-01-09 2013-10-08 Bjørn A. J. Angelsen Nonlinear elastic wave measurement and imaging with two-frequency elastic wave pulse complexes
JP5349115B2 (en) 2009-03-31 2013-11-20 株式会社東芝 Ultrasonic diagnostic apparatus and control program therefor
GB2484753B (en) 2010-08-20 2013-01-02 Surf Technology As Method for imaging of nonlinear interaction scattering
JP6013493B2 (en) 2011-10-03 2016-10-25 サーフ テクノロジー アクティーゼルスカブSurf Technology As Nonlinear imaging with dual-band pulse composites
EP3634579A1 (en) * 2017-06-08 2020-04-15 Gunnar Myhr System for the rejuvenation and removal of wrinkles of the skin
US11280906B2 (en) 2018-01-25 2022-03-22 Surf Technology As Methods and instrumentation for estimation of wave propagation and scattering parameters

Similar Documents

Publication Publication Date Title
US11446006B2 (en) Adjusting measurements of the effects of acoustic radiation force for background motion effects
Flax et al. Phase-aberration correction using signals from point reflectors and diffuse scatterers: Basic principles
CN111819467B (en) Method and apparatus for estimating wave propagation and scattering parameters
US10324063B2 (en) Methods and systems for measuring properties with ultrasound
EP2726861B1 (en) Non destructive testing apparatus and method using ultrasound imaging
JPH0246213B2 (en)
JP5692079B2 (en) Displacement estimation method and displacement estimation apparatus
EP2903530A1 (en) Shear wave attenuation from k-space analysis system
US20170281121A1 (en) Method of coherent flow imaging using synthetic transmit focusing and acoustic reciprocity
JP2004261572A (en) Ultrasonic imaging aberration correction using harmonic and non-harmonic signals
US20210286059A1 (en) Methods and Instrumentation for Estimation of Wave Propagation and Scattering Parameters
JP2022016414A (en) Method and system for estimating ultrasonic attenuation parameters
JP7356504B2 (en) Ultrasonic estimation of nonlinear bulk elasticity of materials
Måsøy et al. Iteration of transmit-beam aberration correction in medical ultrasound imaging
JPWO2020128609A5 (en)
JP7378429B2 (en) Synthetic transmit focusing ultrasound system with sound velocity mapping
US11977189B2 (en) Method and system for processing beamformed data preliminary class
JP6231547B2 (en) Shape detection apparatus and shape detection method
JP2020177011A5 (en) Structural analyzer
JP6492230B2 (en) SPECTRUM ANALYZER, SPECTRUM ANALYSIS METHOD, AND ULTRASONIC IMAGING DEVICE
Lacefield et al. Spatial coherence analysis applied to aberration correction using a two-dimensional array system
JP2023540954A (en) Method and system for ultrasonic characterization of media
EP4154031A1 (en) Methods and instrumentation for estimation of wave propagation and scattering parameters
Pinton Subresolution displacements in finite difference simulations of ultrasound propagation and imaging
Hatakeyama et al. Measurement of speed of sound in skull bone and its thickness using a focused ultrasonic wave