JPWO2020115486A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020115486A5
JPWO2020115486A5 JP2021531867A JP2021531867A JPWO2020115486A5 JP WO2020115486 A5 JPWO2020115486 A5 JP WO2020115486A5 JP 2021531867 A JP2021531867 A JP 2021531867A JP 2021531867 A JP2021531867 A JP 2021531867A JP WO2020115486 A5 JPWO2020115486 A5 JP WO2020115486A5
Authority
JP
Japan
Prior art keywords
polymer
opal
additive
surfactant
polymeric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021531867A
Other languages
Japanese (ja)
Other versions
JP2022510680A (en
JP7500082B2 (en
Publication date
Priority claimed from GBGB1819852.3A external-priority patent/GB201819852D0/en
Application filed filed Critical
Publication of JP2022510680A publication Critical patent/JP2022510680A/en
Publication of JPWO2020115486A5 publication Critical patent/JPWO2020115486A5/ja
Application granted granted Critical
Publication of JP7500082B2 publication Critical patent/JP7500082B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (15)

ポリマー及び添加剤を含むポリマーオパールであって、前記添加剤は、二次元(2D)材料及び/又はカーボンナノチューブを含み、そして前記ポリマーと前記添加剤との重量比は100:0.001~100:0.1である、ポリマーオパール。 A polymer opal comprising a polymer and an additive, wherein the additive comprises a two-dimensional (2D) material and/or carbon nanotubes, and the weight ratio of the polymer to the additive is 100:0.001-100. : polymer opal, which is 0.1. 前記ポリマーと前記添加剤との体積比は、100:0.0005~100:0.05、100:0.001~100:0.01、100:0.0025~100:0.0075又は100:0.004~100:0.006である、請求項1に記載のポリマーオパール。 The volume ratio of said polymer to said additive is 100:0.0005 to 100:0.05, 100:0.001 to 100:0.01, 100:0.0025 to 100:0.0075 or 100: The polymer opal of claim 1, which is 0.004-100:0.006. 前記添加剤は2D材料からなり、および/または、前記2D材料は、平均厚さが50nm未満であり、最大横寸法の平均サイズが30μm未満である複数の粒子を含み、および/または、前記2D材料は、グラフェン、六方晶窒化ホウ素(h-BN)及び遷移金属ジカルコゲナイドからなる群から選択される、請求項1又は2に記載のポリマーオパール。 The additive comprises a 2D material , and/or the 2D material comprises a plurality of particles having an average thickness of less than 50 nm and an average size of the largest lateral dimension of less than 30 μm, and/or 3. A polymer opal according to claim 1 or 2 , wherein the 2D material is selected from the group consisting of graphene, hexagonal boron nitride (h-BN) and transition metal dichalcogenides . 界面活性剤を含む、請求項1~3のいずれかに記載のポリマーオパール。 A polymeric opal according to any one of claims 1 to 3 , comprising a surfactant. 前記界面活性剤は、非イオン性界面活性剤を含む、請求項4に記載のポリマーオパール。 5. The polymeric opal of claim 4 , wherein said surfactant comprises a nonionic surfactant. 前記非イオン性界面活性剤は、
Figure 2020115486000001
(ここで、nは1~50の整数である)及び/又はポリソルベートを含み、
ここで、前記非イオン性界面活性剤は、TritonX-100及び/又はポリソルベート80を含んでもよい、請求項5に記載のポリマーオパール。
The nonionic surfactant is
Figure 2020115486000001
(where n is an integer from 1 to 50) and/or polysorbate ,
6. Polymer opal according to claim 5, wherein the non-ionic surfactant may comprise Triton X-100 and/or Polysorbate 80 .
前記ポリマーと前記非イオン性界面活性剤との体積比は、100:0.0001~100:2、100:0.001~100:1、100:0.01~100:0.75又は100:0.4~100:0.6である、請求項5または6のいずれかに記載のポリマーオパール。 The volume ratio of said polymer to said nonionic surfactant is 100:0.0001 to 100:2, 100:0.001 to 100:1, 100:0.01 to 100:0.75 or 100:0.001 to 100:1. Polymer opal according to any of claims 5 or 6 , which is 0.4-100:0.6. 前記ポリマーの乾燥ガラス転移温度(Tg)は0~100℃であって、および/または、前記ポリマーは、平均粒径が50nm~1000nmである複数の粒子を含み、および/または、前記ポリマーは、カルボン酸基を有する、請求項1~7のいずれかに記載のポリマーオパール。 The dry glass transition temperature (T g ) of the polymer is between 0 and 100° C. , and/or the polymer comprises a plurality of particles with an average particle size of 50 nm to 1000 nm, and/or the polymer A polymeric opal according to any one of claims 1 to 7, which has carboxylic acid groups . 間隙液を含む、および/または、ポリマーオパールは間隙液を0.5wt%~30wt%含み、
ここで前記間隙液は、水、アルコール又はアミンを含んでもよい、
請求項1~8のいずれかに記載のポリマーオパール。
contains interstitial fluid and/or the polymer opal contains 0.5 wt% to 30 wt% interstitial fluid,
wherein said interstitial fluid may contain water, alcohol or amine;
Polymer opal according to any one of claims 1-8 .
ポリマー被覆層を含む、および/または、200nm~1000nm波長で阻止帯域を示し、
前記ポリマー被覆層は、前記間隙液の蒸発速度を変化させるように構成されていてもよい、
請求項1~9のいずれかに記載のポリマーオパール。
comprising a polymer coating layer and/or exhibiting a stopband at wavelengths between 200 nm and 1000 nm;
The polymer coating layer may be configured to change the evaporation rate of the interstitial fluid.
Polymer opal according to any one of claims 1-9.
ポリマー及び添加剤を溶媒中に含む分散液であって、前記添加剤が、二次元(2D)材料及び/又はカーボンナノチューブを含み、前記ポリマーと前記添加剤との体積比が100:0.0001~100:0.1である分散液を供給する工程と、
前記ポリマー及び前記添加剤の拡散及び沈降に対して支配的な速度で前記溶媒を蒸発させることによってポリマーオパールを形成する工程と、を含む、ポリマーオパールの製造方法。
A dispersion comprising a polymer and an additive in a solvent, wherein the additive comprises a two-dimensional (2D) material and/or carbon nanotubes, and the volume ratio of the polymer to the additive is 100:0.0001. providing a dispersion that is ~100:0.1;
forming a polymeric opal by evaporating said solvent at a rate that dominates diffusion and settling of said polymer and said additive.
前記ポリマー及び前記添加剤の拡散及び沈降に対して支配的な速度で前記溶媒を蒸発させる工程が、ペクレ数(Pe)が0.25以上、沈降数(Ns)が10未満となるように、前記分散液を晒す条件を制御する工程を含む、および/または、前記分散液は、1~80℃の温度及び5%~99%の湿度で保持される、および/または、前記分散液は、界面活性剤を含む、請求項11に記載の方法。 evaporating the solvent at a rate that dominates the diffusion and settling of the polymer and the additive such that the Peclet number (P e ) is greater than or equal to 0.25 and the settling number (N s ) is less than 10; and/or the dispersion is maintained at a temperature of 1 to 80° C. and a humidity of 5% to 99%, and/or the dispersion comprises a surfactant . 請求項1~10のいずれかに記載のポリマーオパールを含むフォトニックペーパー、宝飾品、時間温度指示計、メカノクロミックセンサー、導波路、組織工学用スキャフォールド又はセンサー。 Photonic papers, jewelry, time-temperature indicators, mechanochromic sensors, waveguides, tissue engineering scaffolds or sensors comprising the polymer opal of any of claims 1-10 . 請求項13に記載のフォトニックペーパーと、溶媒を含むペンとを含む偽造防止キット。 An anti-counterfeiting kit comprising the photonic paper of claim 13 and a pen containing a solvent. 請求項1~10のいずれかに記載のポリマーオパールの、フォトニックペーパーとしての、宝飾品における、時間温度指示計としての、メカノクロミックセンサーにおける、導波路における、組織工学用スキャフォールドとしての、又はセンサーとしての使用。
Polymer opal according to any of claims 1 to 10 as photonic paper, in jewelry, as time-temperature indicator, in mechanochromic sensor, in waveguide, as scaffold for tissue engineering, or Use as a sensor.
JP2021531867A 2018-12-05 2019-12-05 Polymer Opal Active JP7500082B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1819852.3 2018-12-05
GBGB1819852.3A GB201819852D0 (en) 2018-12-05 2018-12-05 Polymeric opal
PCT/GB2019/053435 WO2020115486A1 (en) 2018-12-05 2019-12-05 Polymeric Opal

Publications (3)

Publication Number Publication Date
JP2022510680A JP2022510680A (en) 2022-01-27
JPWO2020115486A5 true JPWO2020115486A5 (en) 2022-11-29
JP7500082B2 JP7500082B2 (en) 2024-06-17

Family

ID=65030255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021531867A Active JP7500082B2 (en) 2018-12-05 2019-12-05 Polymer Opal

Country Status (9)

Country Link
US (1) US20220017719A1 (en)
EP (1) EP3891095B1 (en)
JP (1) JP7500082B2 (en)
KR (1) KR20210103493A (en)
CN (1) CN113382955B (en)
CA (1) CA3121737A1 (en)
ES (1) ES2952003T3 (en)
GB (1) GB201819852D0 (en)
WO (1) WO2020115486A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11828660B2 (en) * 2015-05-10 2023-11-28 Jp Laboratories, Inc. UV cured indicating devices
CN114664173B (en) * 2022-03-14 2024-01-16 复旦大学 Cold chain transportation visual photonic crystal time-temperature joint monitoring tag, preparation method and application

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271609A (en) 2006-03-08 2007-10-18 Hokkaido Univ Biosensor
KR101325127B1 (en) * 2011-11-09 2013-11-06 한국기초과학지원연구원 Method for producing photonic crystal solution and photonic crystal film using thereof
US9321919B2 (en) 2013-01-04 2016-04-26 The Texas A&M University System Surface-modified, exfoliated nanoplatelets as mesomorphic structures in solutions and polymeric matrices
CN103225103A (en) * 2013-03-28 2013-07-31 中国科学院化学研究所 Method for manufacturing self-supporting monocrystal photonic crystal
CN108912254A (en) * 2018-05-30 2018-11-30 华南理工大学 A kind of high contrast flawless colloidal photon crystal and preparation method thereof

Similar Documents

Publication Publication Date Title
Hu et al. Dual bio-inspired design of highly thermally conductive and superhydrophobic nanocellulose composite films
He et al. Colloidal diamond
He et al. Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers
Surudžić et al. The effect of graphene loading on mechanical, thermal and biological properties of poly (vinyl alcohol)/graphene nanocomposites
Peng et al. Responsive periodic mesoporous polydiacetylene/silica nanocomposites
Cai et al. Bio‐Inspired Multi‐Responsive Structural Color Hydrogel with Constant Volume and Wide Viewing Angles
EP1751331A4 (en) Fugitive viscosity and stability modifiers for carbon nanotube compositions
FR2975090A1 (en) NANOPARTICLES AUTODISPERSANTES
TW201534667A (en) Ink formulation
Small et al. Carbon nanotube network formation from evaporating sessile drops
Wu et al. Ultrathin amorphous alumina nanoparticles with quantum-confined oxygen-vacancy-induced blue photoluminescence as fluorescent biological labels
Zhou et al. Fabrication of binary colloidal crystals and non-close-packed structures by a sequential self-assembly method
TW201825396A (en) Method of producing graphene
Chan et al. Recent developments in carbon nanotubes-reinforced ceramic matrix composites: A review on dispersion and densification techniques
Liu et al. Reflux pretreatment-mediated sonication: A new universal route to obtain 2D quantum dots
JPWO2020115486A5 (en)
WO2015128457A1 (en) Method for preparing a suspension containing carbon nanotubes and stable suspension obtained in this way
JP2012111680A (en) Nanocarbon water-dispersion, method for manufacturing the same, and nanocarbon-containing structure
Xu et al. Optical limiting and enhanced optical nonlinearity in boron-doped carbon nanotubes
Frappa et al. Exfoliated Bi2Te3-enabled membranes for new concept water desalination: Freshwater production meets new routes
Lai et al. Strain-dependent fluorescence spectroscopy of nanocrystals and nanoclusters in Cr: YAG crystalline-core fibers and its impact on lasing behavior
Ahn et al. Optical properties of organic/inorganic nanocomposite sol-gel films containing LaPO4: Er, Yb nanocrystals
Zhao et al. Tellurite glass thin films on silica and polymer using UV (193 nm) pulsed laser ablation
Lai et al. Toward single-mode active crystal fibers for next-generation high-power fiber devices
Green et al. Layered graphene-mica substrates induce melting of DNA origami