JPWO2020111239A1 - Anti-inflammatory agent - Google Patents

Anti-inflammatory agent Download PDF

Info

Publication number
JPWO2020111239A1
JPWO2020111239A1 JP2020557857A JP2020557857A JPWO2020111239A1 JP WO2020111239 A1 JPWO2020111239 A1 JP WO2020111239A1 JP 2020557857 A JP2020557857 A JP 2020557857A JP 2020557857 A JP2020557857 A JP 2020557857A JP WO2020111239 A1 JPWO2020111239 A1 JP WO2020111239A1
Authority
JP
Japan
Prior art keywords
inflammatory agent
inflammatory
test substance
hydroxyindoleacetic acid
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020557857A
Other languages
Japanese (ja)
Inventor
真嗣 福田
一己 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Publication of JPWO2020111239A1 publication Critical patent/JPWO2020111239A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • A61K31/405Indole-alkanecarboxylic acids; Derivatives thereof, e.g. tryptophan, indomethacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Genetics & Genomics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Pain & Pain Management (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • General Engineering & Computer Science (AREA)
  • Virology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Rheumatology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本発明は、炎症の抑制(例、炎症性腸疾患の予防・治療)に有用な手段および方法を提供する。より具体的には、本発明は、以下の発明を提供する。
〔I〕5−ヒドロキシインドール酢酸を含む抗炎症剤。
〔II〕以下を含む、抗炎症剤のスクリーニング方法:
(1)被験物質が投与された哺乳動物から採取されたサンプル中の5−ヒドロキシインドール酢酸の量を測定すること;および
(2)サンプル中の5−ヒドロキシインドール酢酸の量を増加させる被験物質を、抗炎症剤として選択すること。
〔III〕以下を含む、抗炎症剤のスクリーニング方法:
(1)被験物質を含む培地中で、5−ヒドロキシインドール酢酸の産生能を有する哺乳動物由来細胞を培養すること;
(2)培地中の5−ヒドロキシインドール酢酸の量を測定すること;
(3)培地中の5−ヒドロキシインドール酢酸の量を増加させる被験物質を、抗炎症剤として選択すること。
The present invention provides means and methods useful for suppressing inflammation (eg, prevention and treatment of inflammatory bowel disease). More specifically, the present invention provides the following inventions.
[I] An anti-inflammatory agent containing 5-hydroxyindoleacetic acid.
[II] Screening method for anti-inflammatory agents, including:
(1) Measure the amount of 5-hydroxyindoleacetic acid in a sample taken from a mammal to which the test substance was administered; and (2) Test substance that increases the amount of 5-hydroxyindoleacetic acid in the sample. , To be selected as an anti-inflammatory agent.
[III] Screening method for anti-inflammatory agents, including:
(1) Culturing mammalian-derived cells capable of producing 5-hydroxyindoleacetic acid in a medium containing a test substance;
(2) Measuring the amount of 5-hydroxyindoleacetic acid in the medium;
(3) Select a test substance that increases the amount of 5-hydroxyindoleacetic acid in the medium as an anti-inflammatory agent.

Description

本発明は、抗炎症剤などに関する。 The present invention relates to anti-inflammatory agents and the like.

近年、栄養介入による生活習慣病〔例、メタボリックシンドローム、2型糖尿病(T2D)および炎症性腸疾患(IBD)〕の予防が一般的であり、消費者は健康を維持するために栄養摂取を意識している。納豆、味噌、抹茶などの伝統的な日本食は、健康増進のために有名である。それらは腸内環境にプラスの影響を及ぼし、健全な宿主の状態を維持することによってプレバイオティクスおよび/またはプロバイオティクスとして作用する。 In recent years, prevention of lifestyle-related diseases [eg, metabolic syndrome, type 2 diabetes (T2D) and inflammatory bowel disease (IBD)] by nutritional intervention has become common, and consumers are conscious of nutrition intake to maintain their health. doing. Traditional Japanese foods such as natto, miso, and matcha are famous for improving health. They have a positive effect on the intestinal environment and act as prebiotics and / or probiotics by maintaining a healthy host state.

例えば、玄米に含まれる米糠(RB)は、一般的に消費される日本食の一つであり、大腸炎を抑制できることが報告されている(非特許文献1〜4)。RBは、食物繊維、ビタミン、遊離アミノ酸、および胃腸の健康および抗大腸炎の効果を促進する可能性のある抗酸化物質(γ−オリザノールおよびフェルラ酸)等の生物活性成分の豊富な供給源である(非特許文献2、3、5,6)。しかしながら、RBの構成成分の複雑さのために、RBによる大腸炎抑制の分子メカニズムは未だ解明されていない。 For example, rice bran (RB) contained in brown rice is one of the commonly consumed Japanese foods, and it has been reported that it can suppress colitis (Non-Patent Documents 1 to 4). RB is a rich source of dietary fiber, vitamins, free amino acids, and bioactive ingredients such as antioxidants (γ-oryzanol and ferulic acid) that may promote gastrointestinal health and anti-colitis effects. Yes (Non-Patent Documents 2, 3, 5, 6). However, due to the complexity of the constituents of RB, the molecular mechanism by which RB suppresses colitis has not yet been elucidated.

Al−Fayez M et al.,Cancer Chemother Pharmacol.2006;58(6):816−25.Al-Fayez M et al. , Cancer Chemother Pharmacol. 2006; 58 (6): 816-25. Islam MS et al.,Br J Pharmacol.2008;154(4):812−24.Islam MS et al. , Br J Pharmacol. 2008; 154 (4): 812-24. Komiyama Y et al.,Scand J Gastroenterol.2011;46(1):40−52.Komiyama Y et al. , Scand J Gastroenterol. 2011; 46 (1): 40-52. Shafie NH et al.,Int J Mol Sci.2013;14(12):23545−58.Shafie NH et al. , Int J Mol Sci. 2013; 14 (12): 23454-58. Choi J et al.,Nutr J.2014;13(1):35.Choi J et al. , Nutr J. et al. 2014; 13 (1): 35. Islam J et al.,Nutrients.2017;9(7):747.Islam J et al. , Nutrients. 2017; 9 (7): 747.

本発明の目的は、炎症の抑制(例、炎症性腸疾患の予防・治療)に有用な手段および方法を提供することである。 An object of the present invention is to provide means and methods useful for suppressing inflammation (eg, prevention / treatment of inflammatory bowel disease).

本発明者らは、鋭意検討した結果、RBによる大腸炎の抑制が腸内細菌による5−ヒドロキシインドール酢酸(5−HIAA)の産生により引き起こされ得るものであり、5−HIAAが抗炎症作用を有することを見出した。
本発明者らはまた、5−HIAAが抗炎症作用を有することに照らすと、哺乳動物または哺乳動物由来細胞における5−HIAAの量を増加させる被験物質をスクリーニングすることにより、抗炎症剤を開発できることを見出した。
As a result of diligent studies, the present inventors have found that suppression of colitis by RB can be caused by the production of 5-hydroxyindoleacetic acid (5-HIAA) by intestinal bacteria, and 5-HIAA has an anti-inflammatory effect. Found to have.
We also developed anti-inflammatory agents by screening for test substances that increase the amount of 5-HIAA in mammals or mammalian-derived cells in light of the anti-inflammatory activity of 5-HIAA. I found out what I could do.

すなわち、本発明は、以下のとおりである。
〔1〕5−ヒドロキシインドール酢酸を含む抗炎症剤。
〔2〕抗炎症剤が腸内の炎症に対する抗炎症剤である、〔1〕の抗炎症剤。
〔3〕腸内の炎症が炎症性腸疾患である、〔2〕の抗炎症剤。
〔4〕経口用組成物または経直腸投与用組成物である、〔1〕〜〔3〕のいずれかの抗炎症剤。
〔5〕医薬または食品である、〔1〕〜〔4〕のいずれかの抗炎症剤。
〔6〕以下を含む、抗炎症剤のスクリーニング方法:
(1)被験物質が投与された哺乳動物から採取されたサンプル中の5−ヒドロキシインドール酢酸の量を測定すること;および
(2)サンプル中の5−ヒドロキシインドール酢酸の量を増加させる被験物質を、抗炎症剤として選択すること。
〔7〕サンプルが糞便である、〔6〕の方法。
〔8〕以下を含む、抗炎症剤のスクリーニング方法:
(1)被験物質を含む培地中で哺乳動物由来細胞を培養すること;
(2)培地中の5−ヒドロキシインドール酢酸の量を測定すること;
(3)培地中の5−ヒドロキシインドール酢酸の量を増加させる被験物質を、抗炎症剤として選択すること。
〔9〕5−ヒドロキシインドール酢酸の産生能を有する哺乳動物由来細胞が腸内細菌である、〔8〕の方法。
That is, the present invention is as follows.
[1] An anti-inflammatory agent containing 5-hydroxyindoleacetic acid.
[2] The anti-inflammatory agent according to [1], wherein the anti-inflammatory agent is an anti-inflammatory agent against inflammation in the intestine.
[3] The anti-inflammatory agent according to [2], wherein the inflammation in the intestine is an inflammatory bowel disease.
[4] The anti-inflammatory agent according to any one of [1] to [3], which is an oral composition or a composition for transrectal administration.
[5] The anti-inflammatory agent according to any one of [1] to [4], which is a medicine or food.
[6] Screening method for anti-inflammatory agents including the following:
(1) Measure the amount of 5-hydroxyindoleacetic acid in a sample taken from a mammal to which the test substance was administered; and (2) Test substance that increases the amount of 5-hydroxyindoleacetic acid in the sample. , To be selected as an anti-inflammatory agent.
[7] The method of [6], wherein the sample is feces.
[8] Screening method for anti-inflammatory agents including the following:
(1) Culturing mammalian-derived cells in a medium containing a test substance;
(2) Measuring the amount of 5-hydroxyindoleacetic acid in the medium;
(3) Select a test substance that increases the amount of 5-hydroxyindoleacetic acid in the medium as an anti-inflammatory agent.
[9] The method of [8], wherein the mammalian-derived cells capable of producing 5-hydroxyindoleacetic acid are enterobacteria.

本発明によれば、5−HIAAにより、炎症の抑制(例、炎症性腸疾患の予防・治療)を実現することができる。
また、本発明によれば、5−HIAA量を指標にすることにより、抗炎症剤をスクリーニングすることができる。
According to the present invention, 5-HIAA can realize suppression of inflammation (eg, prevention / treatment of inflammatory bowel disease).
Further, according to the present invention, an anti-inflammatory agent can be screened by using the amount of 5-HIAA as an index.

図1は、動物実験の概要を示す図である。FIG. 1 is a diagram showing an outline of an animal experiment. 図2−1は、体重減少に対する米糠(RB)食の影響を示す図である。図2−1〜図2−3において、コントロールと各グループの間の有意性が示される。P<0.05、**P<0.01、***P<0.001。FIG. 2-1 is a diagram showing the effect of a rice bran (RB) diet on weight loss. In FIGS. 2-1 to 2-3, the significance between the control and each group is shown. * P <0.05, ** P <0.01, *** P <0.001. 図2−2は、疾患活性指数(DAI)に対するRB食の影響を示す図である。有意性については図2−1を参照。FIG. 2-2 is a diagram showing the effect of the RB diet on the disease activity index (DAI). See Figure 2-1 for significance. 図2−3は、大腸長に対するRB食の影響を示す図である。有意性については図2−1を参照。FIG. 2-3 is a diagram showing the effect of the RB diet on the length of the large intestine. See Figure 2-1 for significance. 図2−4は、大腸形態に対するRB食の影響を示す図である。FIG. 2-4 is a diagram showing the effect of the RB diet on the morphology of the large intestine. 図2−5は、大腸組織学に対するRB食の影響を示す図である。倍率200xであり、棒は100μmを示す。FIG. 2-5 is a diagram showing the effect of the RB diet on colorectal histology. The magnification is 200x and the bar indicates 100 μm. 図2−6は、遺伝子発現量に対するRB食の影響を示す図である。FIG. 2-6 is a diagram showing the effect of the RB diet on the gene expression level. 図3−1は、体重減少に対するRB食の分画成分の影響を示す図である。図3−1〜図3−3において、コントロールと各グループの間の有意性が示される。P<0.05、**P<0.01、***P<0.001。FIG. 3-1 is a diagram showing the effect of the fractionation component of the RB diet on weight loss. In FIGS. 3-1 to 3-3, the significance between the control and each group is shown. * P <0.05, ** P <0.01, *** P <0.001. 図3−2は、DAIに対するRB食の分画成分の影響を示す図である。FIG. 3-2 is a diagram showing the effect of the fractionation component of the RB diet on DAI. 図3−3は、大腸長に対するRB食の分画成分の影響を示す図である。FIG. 3-3 is a diagram showing the effect of the fractionation component of the RB diet on the length of the large intestine. 図3−4は、大腸形態に対するRB食の分画成分の影響を示す図である。FIG. 3-4 is a diagram showing the effect of the fractionation component of the RB diet on the morphology of the large intestine. 図3−5は、腸内細菌叢に対するRB食の分画成分の影響を示す図である。FIG. 3-5 is a diagram showing the effect of the fractionation component of the RB diet on the intestinal bacterial flora. 図4−1は、DSS誘発性大腸炎マウスについて、RBによる、糞便中細菌叢の組成の変化を示す図である。相対存在量が全配列の1%を超える上位20個で検出された糞便細菌科の相対存在量が棒グラフにより表される。FIG. 4-1 is a diagram showing changes in the composition of the fecal bacterial flora by RB in DSS-induced colitis mice. The relative abundance of Enterobacteriaceae detected in the top 20 with a relative abundance exceeding 1% of the total sequence is represented by a bar graph. 図4−2は、Simpsonの多様性の変化を示す図である。図4−2および図4−3において、コントロールと各グループの間の有意性が示される。*P<0.05、**P<0.01。FIG. 4-2 is a diagram showing changes in the diversity of Simpson. In FIGS. 4-2 and 4-3, the significance between the control and each group is shown. * P <0.05, ** P <0.01. 図4−3は、0日目に有意に変化した細菌科の一部のボックスプロットを示す図である。FIG. 4-3 is a diagram showing a box plot of a part of Enterobacteriaceae that changed significantly on day 0. 図5−1は、糞便中代謝物データの主成分分析(PCA)を示す図である。FIG. 5-1 is a diagram showing principal component analysis (PCA) of fecal metabolite data. 図5−2は、糞便中代謝物データの主成分分析(PCA)のPC2の因子負荷量の上位10個と下位10個を示す図である。FIG. 5-2 is a diagram showing the top 10 and bottom 10 factor loadings of PC2 in the principal component analysis (PCA) of fecal metabolite data. 図5−3は、糞便中のトリプトファン代謝関連の代謝物を示す図である。FIG. 5-3 is a diagram showing metabolites related to tryptophan metabolism in feces. 図5−4は、糞便中5−HIAAの濃度を示す図である。図5−5において、コントロールと各グループの間の有意性が示される。*P<0.05、**P<0.01。FIG. 5-4 is a diagram showing the concentration of 5-HIAA in feces. In FIG. 5-5, the significance between the control and each group is shown. * P <0.05, ** P <0.01. 図6−1は、AhR強制発現RAW264.7を5−HIAAで処理したときのCyp1a1の相対発現量を示す図である。FIG. 6-1 is a diagram showing the relative expression level of Cyp1a1 when AhR forced expression RAW264.7 was treated with 5-HIAA. 図6−2は、各細菌群を定着させたGFマウスの糞便中の5−HIAA濃度を示す図である。FIG. 6-2 is a diagram showing the 5-HIAA concentration in feces of GF mice in which each bacterial group has been established.

1.抗炎症剤
本発明は、5−HIAAを含む抗炎症剤を提供する。
1. 1. Anti-inflammatory agents The present invention provides anti-inflammatory agents, including 5-HIAA.

5−HIAAは、セロトニンの代謝産物であり、所定の細胞(例、セロトニン産生能を有する哺乳動物細胞、腸内細菌等の常在微生物)内でセロトニンから生合成される。したがって、5−HIAAは、セロトニン産生細胞(例、天然細胞、または上記のような生合成系を組込んだ形質転換細胞)を用いて調製することができる。5−HIAAはまた、有機化学的方法により合成することもできる。あるいは、5−HIAAとしては、市販されているものを利用してもよい。 5-HIAA is a metabolite of serotonin and is biosynthesized from serotonin in a given cell (eg, a mammalian cell capable of producing serotonin, a resident microorganism such as an intestinal bacterium). Therefore, 5-HIAA can be prepared using serotonin-producing cells (eg, natural cells, or transformed cells incorporating a biosynthetic system as described above). 5-HIAA can also be synthesized by organic chemical methods. Alternatively, as 5-HIAA, a commercially available product may be used.

本発明の抗炎症剤が適用され得る炎症としては、哺乳動物において発生し得る任意の炎症である限り特に限定されない。このような炎症が発生し得る部位としては、例えば、腸内(例、小腸内、大腸内)、鼻腔内、気管支内、皮膚、口腔内が挙げられる。部位としては、腸内が好ましく、大腸内がより好ましい。 The inflammation to which the anti-inflammatory agent of the present invention can be applied is not particularly limited as long as it is any inflammation that can occur in mammals. Examples of sites where such inflammation can occur include the intestine (eg, small intestine, large intestine), nasal cavity, bronchi, skin, and oral cavity. As the site, the inside of the intestine is preferable, and the inside of the large intestine is more preferable.

好ましくは、炎症は、炎症性疾患における炎症である。このような炎症性疾患としては、例えば、炎症性腸疾患(例、潰瘍性大腸炎、クローン病、ベーチェット病)、口内炎、腎炎、自己免疫疾患(例、アレルギー性疾患)が挙げられる。炎症としては、炎症性腸疾患が好ましい。したがって、本発明の抗炎症剤は、このような炎症性疾患の予防または治療剤として使用することができる。 Preferably, the inflammation is inflammation in an inflammatory disease. Examples of such inflammatory diseases include inflammatory bowel diseases (eg, ulcerative colitis, Crohn's disease, Behcet's disease), stomatitis, nephritis, and autoimmune diseases (eg, allergic diseases). As inflammation, inflammatory bowel disease is preferable. Therefore, the anti-inflammatory agent of the present invention can be used as a prophylactic or therapeutic agent for such inflammatory diseases.

抗炎症剤として使用される5−HIAAの量は、抗炎症作用を発揮できる限り、特に限定されないが目安として説明すると以下のとおりである。実施例において、炎症性腸疾患モデルの哺乳動物(マウス)から採取された糞便中の5−HIAAの濃度は約100nmol/g、RB摂食哺乳動物(マウス)から採取された糞便中の5−HIAAの濃度は約800nmol/gであることが確認されている。すなわち、哺乳動物の対象部位の5−HIAAの濃度は300nmol/g以上(例、300〜1500nmol/g)の範囲にあることが望ましいと考えられる。例えば哺乳動物の腸内において当該範囲の濃度を達成するためには、哺乳動物における5−HIAAの投与または摂取量は、例えば0.01〜100g/kgであり、好ましくは0.5〜50g/kgであり、より好ましくは1〜10g/kgである。したがって、本発明の抗炎症剤は、このような量の5−HIAAを含んでいてもよい。あるいは、哺乳動物の腸内または腸内以外の部位に5−HIAAが適用される場合、例えば0.01〜1000mg/mlであり、好ましくは0.1〜100mg/mlであり、より好ましくは1〜10mg/mlの濃度範囲において5−HIAAが適用されるように、本発明の抗炎症剤は、このような濃度範囲の5−HIAAを含んでいてもよい。 The amount of 5-HIAA used as an anti-inflammatory agent is not particularly limited as long as it can exert an anti-inflammatory effect, but is as follows as a guide. In the examples, the concentration of 5-HIAA in feces collected from a mammal (mouse) of an inflammatory bowel disease model was about 100 nmol / g, 5- in feces collected from an RB feeding mammal (mouse). It has been confirmed that the concentration of HIAA is about 800 mM / g. That is, it is considered desirable that the concentration of 5-HIAA in the target site of the mammal is in the range of 300 nmol / g or more (eg, 300 to 1500 nmol / g). For example, in order to achieve a concentration in this range in the intestine of a mammal, the dose or intake of 5-HIAA in the mammal is, for example, 0.01-100 g / kg, preferably 0.5-50 g / kg. It is kg, more preferably 1 to 10 g / kg. Therefore, the anti-inflammatory agent of the present invention may contain such an amount of 5-HIAA. Alternatively, when 5-HIAA is applied to the intestinal or non-intestinal site of a mammal, it is, for example, 0.01 to 1000 mg / ml, preferably 0.1 to 100 mg / ml, and more preferably 1. As 5-HIAA is applied in a concentration range of 10 mg / ml, the anti-inflammatory agent of the present invention may contain 5-HIAA in such a concentration range.

特定の実施形態では、本発明の抗炎症剤は、組成物の形態で提供されてもよい。 In certain embodiments, the anti-inflammatory agents of the invention may be provided in the form of compositions.

例えば、本発明の抗炎症剤は、医薬組成物の形態で提供される場合、5−HIAAに加えて、医薬上許容され得る担体を含んでいてもよい。医薬上許容され得る担体としては、例えば、ショ糖、デンプン、マンニット、ソルビット、乳糖、グルコース、セルロース、タルク、リン酸カルシウム、炭酸カルシウム等の賦形剤、セルロース、メチルセルロース、ヒドロキシプロピルセルロース、ポリプロピルピロリドン、ゼラチン、アラビアゴム、ポリエチレングリコール、ショ糖、デンプン等の結合剤、デンプン、カルボキシメチルセルロース、ヒドロキシプロピルスターチ、炭酸水素ナトリウム、リン酸カルシウム、クエン酸カルシウム等の崩壊剤、ステアリン酸マグネシウム、エアロジル、タルク、ラウリル硫酸ナトリウム等の滑剤、クエン酸、メントール、グリシルリシン・アンモニウム塩、グリシン、オレンジ粉等の芳香剤、安息香酸ナトリウム、亜硫酸水素ナトリウム、メチルパラベン、プロピルパラベン等の保存剤、クエン酸、クエン酸ナトリウム、酢酸等の安定剤、メチルセルロース、ポリビニルピロリドン、ステアリン酸アルミニウム等の懸濁剤、界面活性剤等の分散剤、水、生理食塩水、オレンジジュース等の希釈剤、カカオ脂、ポリエチレングリコール、白灯油等のベースワックスなどが挙げられるが、それらに限定されるものではない。医薬組成物は、固形物(例、カプセル剤、錠剤、粉末剤、顆粒剤)、半固形物(例、ゲル剤)、液状物(例、経口用液剤、または経直腸用液剤、点眼剤、点耳剤、経鼻用剤等の非経口用液剤)が挙げられる。 For example, the anti-inflammatory agent of the present invention may include a pharmaceutically acceptable carrier in addition to 5-HIAA when provided in the form of a pharmaceutical composition. Pharmaceutically acceptable carriers include, for example, excipients such as sucrose, starch, mannit, sorbit, lactose, glucose, cellulose, talc, calcium phosphate, calcium carbonate, cellulose, methylcellulose, hydroxypropylcellulose, polypropylpyrrolidone. , Gelatin, gum arabic, polyethylene glycol, sucrose, starch and other binders, starch, carboxymethyl cellulose, hydroxypropyl starch, sodium hydrogen carbonate, calcium phosphate, calcium citrate and other disintegrants, magnesium stearate, aerodyl, talc, lauryl Lubricants such as sodium sulfate, citric acid, menthol, glycyrrhizin / ammonium salt, glycine, fragrances such as orange powder, preservatives such as sodium benzoate, sodium hydrogen sulfite, methylparaben, propylparaben, citric acid, sodium citrate, acetic acid Stabilizers such as, methyl cellulose, polyvinylpyrrolidone, suspending agents such as aluminum stearate, dispersants such as surfactants, diluents such as water, physiological saline, orange juice, cocoa butter, polyethylene glycol, white kerosene, etc. Examples include, but are not limited to, base waxes. Pharmaceutical compositions include solids (eg capsules, tablets, powders, granules), semi-solids (eg gels), liquids (eg oral solutions, or transrectal solutions, eye drops, etc. Parenteral liquids such as ear drops and nasal drops).

特定の好ましい実施形態では、医薬組成物の形態である本発明の抗炎症剤は、5−HIAAに加えて、抗炎症作用を有する他の物質、および/または抗炎症作用を有する微生物を含んでいてもよい。抗炎症作用を有する他の物質としては、例えば、ステロイド性抗炎症薬、非ステロイド性抗炎症薬(NSAIDs)等の薬物;動植物等の天然物からの抽出物;抗体医薬が挙げられる。抗炎症作用を有する微生物としては、例えば、クロストリジウム属細菌、バクテロイデス属細菌、ラクトバチルス属細菌、ビフィドバクテリウム属細菌等が挙げられる。 In certain preferred embodiments, the anti-inflammatory agent of the invention, which is in the form of a pharmaceutical composition, comprises, in addition to 5-HIAA, other substances having anti-inflammatory activity and / or microorganisms having anti-inflammatory activity. You may. Examples of other substances having an anti-inflammatory effect include drugs such as steroidal anti-inflammatory drugs and non-steroidal anti-inflammatory drugs (NSAIDs); extracts from natural products such as animals and plants; antibody drugs. Examples of microorganisms having an anti-inflammatory effect include Clostridium bacteria, Bacteroides bacteria, Lactobacillus bacteria, Bifidobacterium bacteria and the like.

本発明の抗炎症剤が食品組成物の形態で提供される場合、5−HIAAは、食品に添加された形態で提供されてもよく、あるいは、サプリメントのように主成分として用いられてもよい。食品としては、例えば、液状物(例、飲料、アルコール類)、半固形物(例、ヨーグルト、ゼリー)、固形物(例、スナック、チョコレート)が挙げられる。 When the anti-inflammatory agent of the present invention is provided in the form of a food composition, 5-HIAA may be provided in the form of being added to the food, or may be used as a main component such as a supplement. .. Examples of foods include liquids (eg, beverages, alcohols), semi-solids (eg, yogurt, jelly), solids (eg, snacks, chocolate).

特定の好ましい実施形態では、食品組成物の形態である本発明の抗炎症剤は、5−HIAAに加えて、抗炎症作用を有する他の物質、および/または抗炎症作用を有する微生物を含んでいてもよい。このような他の物質および微生物は、上述したものと同様である。 In certain preferred embodiments, the anti-inflammatory agent of the invention, which is in the form of a food composition, comprises, in addition to 5-HIAA, other substances having anti-inflammatory activity and / or microorganisms having anti-inflammatory activity. You may. Such other substances and microorganisms are similar to those described above.

好ましい実施形態では、本発明の抗炎症剤は、経口用組成物または経直腸投与用組成物であってもよい。このような本発明の抗炎症剤は、哺乳動物の腸内において、抗炎症作用を発揮することができる。経口用組成物および経直腸投与用組成物における5−HIAAの含有量は、5−HIAAの上記投与または摂取量と同様である。経口用組成物は、医薬組成物および食品組成物において上述したような固形物、半固形物、または液状物として使用することができる。経直腸投与用組成物は、半固形物、または液状物として使用することができる。 In a preferred embodiment, the anti-inflammatory agent of the present invention may be an oral composition or a transrectal administration composition. Such an anti-inflammatory agent of the present invention can exert an anti-inflammatory effect in the intestine of a mammal. The content of 5-HIAA in the oral composition and the transrectal administration composition is similar to the above-mentioned administration or intake of 5-HIAA. Oral compositions can be used as solids, semi-solids, or liquids as described above in pharmaceutical and food compositions. The composition for transrectal administration can be used as a semi-solid or liquid.

本発明の抗炎症剤は、任意の哺乳動物に適用することができる。このような哺乳動物としては、例えば、霊長類(例、ヒト、サル、チンパンジー)、齧歯類(例、マウス、ラット、ウサギ)、家畜および使役動物(例、ウシ、ブタ、ウマ、ヤギ、ヒツジ)が挙げられる。哺乳動物としては、霊長類または齧歯類が好ましく、霊長類がより好ましく、臨床応用の観点からはヒトがさらにより好ましい。 The anti-inflammatory agent of the present invention can be applied to any mammal. Such mammals include, for example, primates (eg, humans, monkeys, chimpanzees), rodents (eg, mice, rats, rabbits), livestock and working animals (eg, cows, pigs, horses, goats, etc.). Sheep). As mammals, primates or rodents are preferable, primates are more preferable, and humans are even more preferable from the viewpoint of clinical application.

2.抗炎症剤のスクリーニング方法
本発明は、哺乳動物から採取されたサンプル、または哺乳動物由来細胞を用いる、抗炎症剤のスクリーニング方法を提供する。哺乳動物、および抗炎症剤は、上述したものと同様である。
2. Anti-inflammatory agent screening method The present invention provides an anti-inflammatory agent screening method using a sample collected from a mammal or a mammalian-derived cell. Mammals and anti-inflammatory agents are similar to those described above.

一実施形態では、本発明のスクリーニング方法は、以下を含む:
(1)被験物質が投与された哺乳動物から採取されたサンプル中の5−HIAAの量を測定すること;および
(2)サンプル中の5−HIAAの量を増加させる被験物質を、抗炎症剤として選択すること。
In one embodiment, the screening method of the present invention includes:
(1) Measure the amount of 5-HIAA in a sample taken from a mammal to which the test substance was administered; and (2) The test substance that increases the amount of 5-HIAA in the sample is an anti-inflammatory agent. To select as.

工程(1)では、被験物質は、公知物質および新規物質を含む任意の物質である。このような被験物質としては、例えば、有機低分子化合物、コンビナトリアルケミストリー技術を用いて作製された化合物ライブラリー、核酸(例、ヌクレオシド、オリゴヌクレオチド、ポリヌクレオチド)、糖質(例、単糖、二糖、オリゴ糖、多糖)、脂質(例、飽和または不飽和の直鎖、分岐鎖および/または環を含む脂肪酸)、アミノ酸、蛋白質(例、オリゴペプチド、ポリペプチド、抗体またはその断片)、固相合成やファージディスプレイ法により作製されたランダムペプチドライブラリー、あるいは微生物、動植物、海洋生物等由来の天然成分等が挙げられる。あるいは、被験物質としては、微生物(例、腸内細菌等の常在微生物)が利用されてもよい。 In step (1), the test substance is any substance, including known substances and novel substances. Such test substances include, for example, organic low molecular weight compounds, compound libraries prepared using combinatorial chemistry techniques, nucleic acids (eg, nucleosides, oligonucleotides, polypeptides), sugars (eg, monosaccharides, di). Sugars, oligosaccharides, polysaccharides), lipids (eg, fatty acids containing saturated or unsaturated linear, branched and / or rings), amino acids, proteins (eg, oligopeptides, polypeptides, antibodies or fragments thereof), solids Examples thereof include a random peptide library prepared by phase synthesis or a phage display method, or natural components derived from microorganisms, animals and plants, marine organisms, and the like. Alternatively, as the test substance, a microorganism (eg, a resident microorganism such as an intestinal bacterium) may be used.

サンプルは、哺乳動物から非侵襲的に採取可能であるサンプル、または哺乳動物から侵襲的に採取可能なサンプルである。哺乳動物から非侵襲的に採取可能であるサンプルとしては、例えば、排泄物サンプル(例、糞便、尿)、液体サンプル(例、唾液、涙液、汗)、粘膜サンプル(例、鼻腔内粘膜、口腔内粘膜)が挙げられる。哺乳動物から侵襲的に採取可能であるサンプル(例、生検サンプル)としては、例えば、皮膚、気管支、血液、小腸、大腸、盲腸、腎臓から採取可能なサンプルが挙げられる。サンプルとしては、哺乳動物から非侵襲的に採取可能であるサンプルが好ましく、糞便がより好ましい。サンプルは、予備処理に付されてもよい。このような予備処理としては、例えば、液体への溶解、遠心分離、抽出、加熱、凍結、冷蔵が挙げられる。 The sample is a sample that can be collected non-invasively from a mammal, or a sample that can be collected invasively from a mammal. Samples that can be collected non-invasively from mammals include, for example, excrement samples (eg, feces, urine), liquid samples (eg, saliva, tears, sweat), mucosal samples (eg, intranasal mucosa, etc.) Oral mucosa). Samples that can be invasively collected from mammals (eg, biopsy samples) include, for example, samples that can be collected from the skin, bronchi, blood, small intestine, large intestine, cecum, and kidney. As the sample, a sample that can be collected non-invasively from a mammal is preferable, and feces are more preferable. The sample may be subjected to pretreatment. Examples of such pretreatment include dissolution in a liquid, centrifugation, extraction, heating, freezing, and refrigeration.

5−HIAAの量の測定は、任意の方法により行うことができる。このような方法としては、例えば、高速液体クロマトグラフィー(HPLC)、質量分析、イムノアッセイ、比色法が挙げられる。5−HIAAの量は、サンプルの単位量あたりの5−HIAA濃度として測定されてもよい。 The amount of 5-HIAA can be measured by any method. Examples of such a method include high performance liquid chromatography (HPLC), mass spectrometry, immunoassay, and colorimetric method. The amount of 5-HIAA may be measured as the 5-HIAA concentration per unit amount of sample.

本実施形態では、工程(1)の前に、哺乳動物に被験物質を投与することをさらに含むことができる。投与されるべき被験物質の量は、適宜調整することができる。例えば、効力が強い抗炎症剤のスクリーニングが特に所望される場合、投与されるべき被験物質の量は、低量(例、0.05〜10g/kg)に設定することができる。あるいは、効力が強い抗炎症剤のスクリーニングが特に所望されない場合には、投与されるべき被験物質の量は、より高量(例、10〜100g/kg)に設定されてもよい。 The present embodiment can further include administering the test substance to the mammal prior to step (1). The amount of test substance to be administered can be adjusted as appropriate. For example, the amount of test substance to be administered can be set to a low amount (eg, 0.05-10 g / kg) if screening for a potent anti-inflammatory agent is particularly desired. Alternatively, the amount of test substance to be administered may be set to a higher amount (eg, 10-100 g / kg) if screening for a potent anti-inflammatory agent is not particularly desired.

別の実施形態では、本発明のスクリーニング方法は、以下を含む:
(1)被験物質を含む培地中で、5−HIAAの産生能を有する哺乳動物由来細胞を培養すること;
(2)培地中の5−HIAAの量を測定すること;
(3)培地中の5−HIAAの量を増加させる被験物質を、抗炎症剤として選択すること。
In another embodiment, the screening method of the present invention includes:
(1) Culturing mammalian-derived cells capable of producing 5-HIAA in a medium containing a test substance;
(2) Measuring the amount of 5-HIAA in the medium;
(3) Select a test substance that increases the amount of 5-HIAA in the medium as an anti-inflammatory agent.

工程(1)では、被験物質を含む培地中で哺乳動物由来細胞が培養される。被験物質は、上述したものと同様である。培地中の被験物質の濃度は、適宜調整することができる。例えば、効力が強い抗炎症剤のスクリーニングが特に所望される場合、培地中の被験物質の濃度は、低濃度(例、1nM〜10μM)に設定することができる。あるいは、効力が強い抗炎症剤のスクリーニングが特に所望されない場合には、培地中の被験物質の濃度は、より高濃度(例、100nM〜10mM)に設定されてもよい。 In step (1), mammalian-derived cells are cultured in a medium containing the test substance. The test substance is the same as that described above. The concentration of the test substance in the medium can be adjusted as appropriate. For example, the concentration of the test substance in the medium can be set to a low concentration (eg, 1 nM-10 μM) if screening for a highly potent anti-inflammatory agent is particularly desired. Alternatively, the concentration of the test substance in the medium may be set to a higher concentration (eg, 100 nM-10 mM) if screening for a potent anti-inflammatory agent is not particularly desired.

工程(1)で用いられる哺乳動物由来細胞は、5−HIAAの産生能を有する限り特に限定されない。このような哺乳動物由来細胞は、哺乳動物細胞、または哺乳動物に存在する微生物であり、好ましくは、哺乳動物に存在する微生物である。哺乳動物に存在する微生物は、哺乳動物において炎症が発生し得る部位(例、上述の部位)に存在する常在微生物であり、好ましくは、腸内細菌である。 The mammalian-derived cells used in step (1) are not particularly limited as long as they have the ability to produce 5-HIAA. Such mammalian-derived cells are mammalian cells, or microorganisms present in mammals, preferably microorganisms present in mammals. The microorganism present in the mammal is a resident microorganism present in a site where inflammation can occur in the mammal (eg, the above-mentioned site), and is preferably an intestinal bacterium.

腸内細菌等の常在微生物は、他の微生物との混合物の形態において、または他の微生物との非混合物の形態において、培養することができる。例えば、特定の腸内細菌が他の腸内細菌との混合物の形態において培養される場合、このような混合物は、哺乳動物の糞便から上述のとおり回収することにより入手することができる。 Indigenous microorganisms such as Gut microbiota can be cultivated in the form of a mixture with other microorganisms or in the form of a non-mixture with other microorganisms. For example, if certain gut microbiota are cultured in the form of a mixture with other gut microbiota, such a mixture can be obtained by recovering from mammalian feces as described above.

腸内細菌等の常在微生物の培養は、常在微生物の培養に用いられる一般的な培地と同様の培地を用いて、常在微生物の一般的な培養条件下で行うことができる。例えば、腸内細菌の一般的な培地および培養条件は、周知である(例、(1)Fukuda S. et al.,J Vet Med Sci.,2002 Nov;64(11):987−92、(2)Fukuda S. et al.,J Gen Appl Microbiol.,2005 Apr;51(2):105−13、(iii)Fukuda S. et al.,Sci Rep.,2018 Jan 11;8(1):435)。 Culturing of indigenous microorganisms such as intestinal bacteria can be carried out under general culture conditions of indigenous microorganisms using the same medium as the general medium used for culturing indigenous microorganisms. For example, common media and culture conditions for gut microbiota are well known (eg, (1) Fukuda S. et al., J Vet Med Sci., 2002 Nov; 64 (11): 987-92, (. 2) Fukuda S. et al., J Gen Appl Microbiol., 2005 Appr; 51 (2): 105-13, (iii) Fukuda S. et al., Sci Rep., 2018 Jan 11; 8 (1) :. 435).

例えば、培地は、炭素源、窒素源、有機微量栄養源、ビタミン、無機イオン等の成分を含むことができる。炭素源としては、例えば、単糖類(例、グルコース)、二糖類、オリゴ糖類、多糖類等の炭水化物;ショ糖を加水分解した転化糖;グリセロール;メタノール、ホルムアルデヒド、ギ酸塩、一酸化炭素、二酸化炭素等の炭素数が1の化合物;コーン油、パーム油、大豆油等のオイル;酢酸、プロピオン酸、酪酸等の短鎖脂肪酸;コハク酸、乳酸などの有機酸;動物油脂;動物オイル;飽和脂肪酸、不飽和脂肪酸等の脂肪酸;脂質;リン脂質;グリセロ脂質;モノグリセライド、ジグリセライド、トリグリセライド等のグリセリン脂肪酸エステル;微生物性タンパク質、植物性タンパク質等のポリペプチド;加水分解されたバイオマス炭素源等の再生可能な炭素源;酵母エキス;馬血清;糞便抽出物;肉エキス;野菜エキス;胃内容物抽出物;又はこれらを組み合わせたものが挙げられる。窒素源としては、例えば、硫酸アンモニウム、塩化アンモニウム、リン酸アンモニウム等の無機アンモニウム塩、大豆加水分解物などの有機窒素、アンモニアガス、アンモニア水が挙げられる。有機微量栄養源としては、例えば、L−ホモセリンなどの要求物質または酵母エキス等を適量含有させることが望ましい。ビタミンとしては、例えば、ビタミンB1、B2、B3、B6、B12、C、K1が挙げられる。無機イオンとしては、例えば、リン酸カリウム、硫酸マグネシウム、鉄イオン、マンガンイオンが挙げられる。 For example, the medium can contain components such as carbon sources, nitrogen sources, organic micronutrient sources, vitamins and inorganic ions. Examples of carbon sources include carbohydrates such as monosaccharides (eg, glucose), disaccharides, oligosaccharides, and polysaccharides; converted sugars obtained by hydrolyzing sucrose; glycerol; methanol, formaldehyde, formates, carbon monoxide, and dioxide. Compounds with 1 carbon number such as carbon; Oils such as corn oil, palm oil, soybean oil; Short-chain fatty acids such as acetic acid, propionic acid, butyric acid; Organic acids such as succinic acid and lactic acid; Animal fats and oils; Animal oils; Saturated Fatty acids such as fatty acids and unsaturated fatty acids; lipids; phospholipids; glycerolipids; glycerin fatty acid esters such as monoglyceride, diglyceride, triglyceride; polypeptides such as microbial proteins and vegetable proteins; regeneration of hydrolyzed biomass carbon sources, etc. Possible sources of carbon; yeast extract; horse serum; fecal extract; meat extract; vegetable extract; stomach content extract; or a combination thereof. Examples of the nitrogen source include inorganic ammonium salts such as ammonium sulfate, ammonium chloride and ammonium phosphate, organic nitrogen such as soybean hydrolyzate, ammonia gas and aqueous ammonia. As the organic micronutrient source, for example, it is desirable to contain an appropriate amount of a required substance such as L-homoserine or yeast extract. Examples of vitamins include vitamins B1, B2, B3, B6, B12, C and K1. Examples of the inorganic ions include potassium phosphate, magnesium sulfate, iron ions, and manganese ions.

培養条件について説明すると、例えば、培地における腸内細菌密度は、例えば1×10〜1×1011細胞/mLであり、好ましくは1×10〜1×1010細胞/mLであり、より好ましくは1×10〜1×10細胞/mLである。培養温度は、例えば30〜40℃である。培養期間は、例えば1〜7日である。嫌気的培養条件または好気的培養条件のいずれも利用することができるが、嫌気的培養条件が好ましい。嫌気的培養条件下の酸素濃度は、例えば0〜5%、好ましくは0〜3%、より好ましくは0〜2%、さらにより好ましくは0〜1%である。Explaining the culture conditions, for example, the intestinal bacterial density in the medium is, for example, 1 × 10 6 to 1 × 10 11 cells / mL, preferably 1 × 10 7 to 1 × 10 10 cells / mL, and more. It is preferably 1 × 10 8 to 1 × 10 9 cells / mL. The culture temperature is, for example, 30-40 ° C. The culture period is, for example, 1 to 7 days. Either anaerobic or aerobic culture conditions can be utilized, but anaerobic culture conditions are preferred. The oxygen concentration under anaerobic culture conditions is, for example, 0 to 5%, preferably 0 to 3%, more preferably 0 to 2%, and even more preferably 0 to 1%.

本発明のスクリーニング方法は、例えば、抗炎症作用を有する新規医薬または食品の開発、ならびに既存の作用に加え、抗炎症作用をさらに有する複合的な作用を発揮できる医薬または食品の開発のために有用である。 The screening method of the present invention is useful, for example, for the development of a new drug or food having an anti-inflammatory action, and for the development of a drug or food capable of exerting a complex action having an anti-inflammatory action in addition to the existing action. Is.

次に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Next, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.

(方法)
(1)マウスと飼料
5週齢の雌のC57BL/6JマウスをClea Japan, Inc.から購入した。制御された光条件下(12時間明/12時間暗サイクル)でマウスを飼育した。水道水または2.0%DSS(分子量36,000〜50,000;MP Bio Japan)を与え、AIN−93G(オリエンタル酵母)または5%RB、10%RB、20%RB、γ−オリザノール、RBオイルおよび脱脂RB(AIN−93G)を与えた。RBサンプルはRicetech Inc.によって提供され、γ−オリザノール、RBオイルおよび脱脂RBは、Oryza Oil&Fat Chemical Inc.によって提供された。
(Method)
(1) Mice and feed Five-week-old female C57BL / 6J mice were obtained from Clear Japan, Inc. I bought from. Mice were bred under controlled light conditions (12 hour light / 12 hour dark cycle). Feed tap water or 2.0% DSS (molecular weight 36,000-50,000; MP Bio Japan), AIN-93G (Oriental yeast) or 5% RB, 10% RB, 20% RB, γ-oryzanol, RB Oil and defatted RB (AIN-93G) were given. RB samples are from Richech Inc. Γ-Oryzanol, RB oil and degreased RB provided by Oryzanol & Fat Chemical Inc. Provided by.

(2)動物実験
この研究では、2回の動物実験を行った。第1の実験では、米糠(RB)の効果を検証し、RB濃度依存性を調べた。第2の実験では、RBの成分を分画して、どの成分がRBの大腸炎抑制効果に寄与するかを調べた。両方の実験において、1週間の馴化期間の後、以下のようにマウスを無作為に4または6のグループ(各グループでn=5〜7)に割り当てた:コントロール:AIN−93G食および2.0%(w/v)DSS水を10週間投与することにより大腸炎を誘発した。5%RB、10%RB、20%RB、RB、RBG(ガンマオリザノール)、RBO(RBオイル)およびRBD(脱脂RB):5%RB、10%RB、20%RB、20%RB、γ−オリザノール、RB オイルおよび脱脂RBを添加したAIN−93G食および水道水を1週間、次いで2.0%DSS水をそれぞれ10日間間投与した。実験期間中、全てのマウスからの糞便試料を、16S rRNA遺伝子分析のために毎日収集した。さらに、DSS投与期間中、大腸炎の重篤度は、後述のDAI評価に記載されているように評価した。DSS投与後10日目に、全てのマウスを解剖した。大腸および大腸内容物を収集し、大腸長を測定した。すべてのサンプルを−80℃で保存した。
(2) Animal experiments In this study, two animal experiments were conducted. In the first experiment, the effect of rice bran (RB) was verified and the RB concentration dependence was investigated. In the second experiment, the components of RB were fractionated to investigate which component contributed to the colitis-suppressing effect of RB. In both experiments, after a 1 week acclimation period, mice were randomly assigned to groups 4 or 6 (n = 5-7 in each group) as follows: Control: AIN-93G diet and 2. Colitis was induced by administration of 0% (w / v) DSS water for 10 weeks. 5% RB, 10% RB, 20% RB, RB, RBG (gamma-oryzanol), RBO (RB oil) and RBD (defatted RB): 5% RB, 10% RB, 20% RB, 20% RB, γ- AIN-93G diet supplemented with oryzanol, RB oil and defatted RB and tap water were administered for 1 week, followed by 2.0% DSS water for 10 days each. Fecal samples from all mice were collected daily for 16S rRNA gene analysis during the experiment. In addition, during the DSS administration period, the severity of colitis was assessed as described in the DAI assessment below. All mice were dissected 10 days after DSS administration. The large intestine and the contents of the large intestine were collected and the length of the large intestine was measured. All samples were stored at −80 ° C.

(3)糞便収集
糞便試料を、キャピラリー電気泳動エレクトロスプレーイオン化飛行時間型質量分析(CETOFMS)および16S rRNA遺伝子解析のために収集した。すべてのマウスを別々のケージに入れた。毎日マウス1匹につき5個の糞便ペレットを、オートクレーブされたピンセットでチューブに採取し、氷上に置いた。これらのサンプルは、その後分析するまで−80℃で保存した。
(3) Fecal collection Fecal samples were collected for capillary electrophoresis electrospray ionization time-of-flight mass spectrometry (CETOFMS) and 16S rRNA gene analysis. All mice were placed in separate cages. Every day, 5 fecal pellets per mouse were collected in tubes with autoclaved tweezers and placed on ice. These samples were stored at -80 ° C until subsequent analysis.

(4)DAI評価
疾患活性指数(DAI)を毎日測定し、大腸炎の重篤度を評価した。DAIは、体重変化(0:<1%;1:1−5%;2:5−10%;3:10−15%;4:>15%)、糞便(0:陰性、1:+、2:++、3:+++、4:++++)、および糞便の硬さ(0:正常、2:軟質、4:下痢)の3つのパラメータの平均を計算することによって決定した。
(4) DAI evaluation The disease activity index (DAI) was measured daily to evaluate the severity of colitis. DAI was weight change (0: <1%; 1: 1-5%; 2: 5-10%; 3: 10-15%; 4:> 15%), feces (0: negative, 1: +, It was determined by calculating the average of three parameters: 2: ++, 3: ++++, 4: ++++), and stool hardness (0: normal, 2: soft, 4: diarrhea).

(5)組織病理学
組織病理学的分析のために、大腸の中央部からの代表的なサンプルを10%ホルマリン中に固定し、パラフィンに包埋し、切片にし、ヘマトキシリンおよびエオシン(H&E)で染色し、倍率×200で調べた。
(5) Histopathology For histopathological analysis, a representative sample from the central part of the large intestine was fixed in 10% formalin, embedded in paraffin, sectioned, and with hematoxylin and eosin (H & E). It was stained and examined at a magnification of 200.

(6)DNA抽出
糞便DNA抽出は、いくつかの改変を伴って以前に記載された方法に従って実施された(Furusawa Y et al.,Nature.2013;504(7480):446−50.)。VD−800R凍結乾燥機(TAITEC)を用いて糞便サンプルを24時間凍結乾燥した。凍結乾燥した糞便を、Shake Master(Biomedical Science)を用いて3.0mmジルコニアビーズ(Biomedical Science)で激しく振とう(1,500r.p.m.10分間)して破壊した。糞便試料(10mg)を、1.0%(w/v)SDS/TE(10mM Tris−HCl、1mM EDTA、pH8.0)溶液400μLとフェノール/クロロホルム/イソアミルアルコール(25:24:1)400μLで懸濁した。混合液中に0.1mmジルコニア/シリカビーズを加えてシェイクマスターを用いて激しく振とう(1,500r.p.m.5分間)してさらに破壊した。17,800×gで5分間室温にて遠心分離した後、標準のフェノール/クロロホルム/イソアミルアルコール法により糞便抽出物から細菌ゲノムDNAを精製した。RNAをRNase A処理によりサンプルから除去し、次いで標準的なフェノール/クロロホルム/イソアミルアルコール法によりDNAサンプルをもう1回精製した。
(6) DNA extraction Fecal DNA extraction was performed according to a previously described method with some modifications (Furusawa Y et al., Nature. 2013; 504 (7480): 446-50.). Fecal samples were lyophilized for 24 hours using a VD-800R lyophilizer (TAITEC). The lyophilized feces were destroyed by vigorous shaking (1,500 rpm for 10 minutes) with 3.0 mm zirconia beads (Biomedical Science) using Shake Master (Biomedical Science). Fecal sample (10 mg) in 1.0% (w / v) SDS / TE (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) 400 μL and phenol / chloroform / isoamyl alcohol (25: 24: 1) 400 μL. Suspended. 0.1 mm zirconia / silica beads were added to the mixed solution and shaken vigorously using a shake master (1,500 rpm for 5 minutes) to further destroy the mixture. After centrifugation at 17,800 xg for 5 minutes at room temperature, bacterial genomic DNA was purified from the fecal extract by the standard phenol / chloroform / isoamyl alcohol method. RNA was removed from the sample by RNase A treatment and then the DNA sample was purified once more by the standard phenol / chloroform / isoamyl alcohol method.

(7)16S rRNA遺伝子シークエンシング
糞便DNAサンプル中の16S rRNA遺伝子は、いくつかの改変を伴って以前に記載された方法に従ってMiSeqシーケンサー(Illumina)を用いて分析した(Murakami S et al.,Altern Med.2015;2015:824395.)。要約すると、16S rRNA遺伝子のV1−V2領域は、バクテリアユニバーサルプライマーセット27Fmod(5’−AGRGTTTGATYMTGGCTCAG−3’(配列番号1))(Kim SW et al.,DNA Res.2013;20(3):241−53.)および338R(5’−TGCTGCCTCCCGTAGGAGT−3’(配列番号2))を用いて糞便から単離されたDNAから増幅された。Tks Gflex DNA Polymerase(Takara Bio社製)を用いてPCRを行い、98℃で1分間、98℃で10秒間、55℃で15秒間、および68℃で30秒間で30サイクルの増幅を行った後、68℃で3分間最後に伸張させた。増幅産物をアガロースゲル電気泳動で確認し、Agencourt AMPure XP(Beckman Coulter)を用いて精製し、次に各サンプルに固有の8bpのバーコード配列(Nで示される)であるP5配列を含むフォワードプライマー(5’−NNNNNNNNTATGGTAAATTGTAGRGTTTGATYMTGGCTCAGT−3’(配列番号3))、Rd1 SP配列及び27Fmodプライマー及びユニークな8bpのバーコード配列(Nで示される)を含む、P7配列を含有するリバースプライマー(5’−CAAGCAGAA−GACGGCTATACGAGATNNNNNNN−AGTCAGTCAGCCTGCTGCCTC CCGAGGAGT−3’(配列番号4))、Rd2 SP配列、および338Rプライマー。Agencourt AMPure XPを用いて精製した増幅産物を、Quant−iTPicoGreen DNAアッセイ(Invitrogen)を使用して定量化し、Agilent 2100バイオアナライザ(Agilent Technologies)で品質を制御した各サンプルからほぼ等量のPCRアンプリコンをプールすることにより混合サンプルを調製した。最後に、MiSeq配列決定をプロトコル通りに行った。この研究では、2×300bpのペアエンド配列決定が用いられた。
(7) 16S rRNA gene sequencing The 16S rRNA gene in the fecal DNA sample was analyzed using the MiSeq sequencer (Illumina) according to the method previously described with some modifications (Murakami S et al., Altern). Med. 2015; 2015: 824395.). In summary, the V1-V2 region of the 16S rRNA gene contains the bacterial universal primer set 27Fmod (5'-AGRGTTTGATYMTGGCTCAG-3'(SEQ ID NO: 1)) (Kim SW et al., DNA Res. 2013; 20 (3): 241. -53.) And 338R (5'-TGCTGCCTCCCCGTAGGAGT-3' (SEQ ID NO: 2)) were amplified from DNA isolated from feces. PCR was performed using Tks Gflex DNA Polymerase (manufactured by Takara Bio Inc.), and amplification was performed at 98 ° C. for 1 minute, 98 ° C. for 10 seconds, 55 ° C. for 15 seconds, and 68 ° C. for 30 seconds for 30 cycles. , 68 ° C. for 3 minutes at the end. The amplified product is confirmed by agarose gel electrophoresis, purified using Agencourt AMPure XP (Beckman Controller), and then a forward primer containing the P5 sequence, which is the 8 bp barcode sequence (indicated by N) unique to each sample. A reverse primer (5'-CAAGCAGAA) containing a P7 sequence, including (5'-NNNNNNNNNTATTGGTAAATTGTAGRGTTTGATYMTGGCTCAGT-3'(SEQ ID NO: 3)), Rd1 SP sequence and 27Fmod primer and a unique 8bp barcode sequence (indicated by N). -GACGGCTATACGAGATANNNNNNN-AGTCAGTCAGCCCTGCTGCCTC CCGAGGAGT-3'(SEQ ID NO: 4), Rd2 SP sequence, and 338R primer. Amplification products purified with the Agent AMPure XP were quantified using the Quant-iTPicoGreen DNA assay (Invitrogen) and approximately equal volumes of PCR amplifiers from each sample whose quality was controlled with the Agilent 2100 Bioanalyzer (Agilent Technologies). Mixed samples were prepared by pooling. Finally, MiSeq sequencing was performed according to the protocol. In this study, 2 × 300 bp paired-end sequencing was used.

(8)キャピラリー電気泳動エレクトロスプレーイオン化飛行時間型質量分析計を用いたメタボローム解析
メタボローム解析は、以前に記載された方法に従って実施した〔(1)Murakami S et al.,Altern Med.2015;2015:824395.、および(2)Mishima E et al.,J Am Soc Nephrol.2015;26(8):1787−94.〕。簡潔には、糞便サンプルを凍結乾燥し、上記DNA抽出で記載されているように3.0mmジルコニアビーズで破壊した。糞便サンプルから代謝産物を抽出するために、内部標準(メチオニンスルホンおよびD−ショウノウ−10−スルホン酸(CSA)の各20μM)を含有する500μLのメタノールを10mgの糞便サンプルに添加した。シェイクマスターを用いて激しく振とう(1,500r.p.m.5分間)して100mgの0.1mmジルコニア/シリカビーズでさらに混合物を破壊した。次に、この混合物を200μLの超純水および500μLのクロロホルムと混合した後、激しく振盪させた(1500r.p.m.5分間)。4,600xgで4℃で15分間遠心分離した後、上清を遠心フィルターチューブ(Human Metabolome Technologiesのメタボローム抽出用のUltrafreeMC−PLHCC 250/pk)に移してタンパク質および脂質分子を除去した。濾液を遠心分離し、CE−TOFMS分析の直前に参照化合物(それぞれ3−アミノピロリジンおよびトリメシン酸200μM)を含有する100μLの超純水に溶解した。
(8) Metabolome analysis using a capillary electrophoresis electrospray ionization time-of-flight mass analyzer Metabolome analysis was performed according to the method described previously [(1) Murakami S et al. , Altern Med. 2015; 2015: 824395. , And (2) Mishima E et al. , JAm Soc Nephrol. 2015; 26 (8): 1787-94. ]. Briefly, fecal samples were lyophilized and destroyed with 3.0 mm zirconia beads as described in the DNA extraction above. To extract metabolites from the stool sample, 500 μL of methanol containing internal standards (20 μM each of methionine sulfone and D-shonow-10-sulfonic acid (CSA)) was added to the 10 mg stool sample. The mixture was further disrupted with 100 mg of 0.1 mm zirconia / silica beads with vigorous shaking using a shake master (1,500 rpm for 5 minutes). The mixture was then mixed with 200 μL of ultrapure water and 500 μL of chloroform and then shaken vigorously (1500 rpm for 5 minutes). After centrifugation at 4,600 xg at 4 ° C. for 15 minutes, the supernatant was transferred to a centrifugal filter tube (Ultrafree MC-PLHCC 250 / pk for Metabolome extraction of Human Metabolome Technologies) to remove protein and lipid molecules. The filtrate was centrifuged and dissolved in 100 μL of ultrapure water containing reference compounds (3-aminopyrrolidine and 200 μM trimesic acid, respectively) immediately prior to CE-TOFMS analysis.

イオン性代謝産物を、陽性および陰性の両方のモードでCE−TOFMSを用いて分析した。すべてのCE−TOFMS実験は、Agilent CEキャピラリー電気泳動システム(AgilentTechnologies)を用いて行った。注釈表は、標準化合物の測定から作成し、同様のm/z値および標準化された移動時間に従ってデータセットと整列させた。次いで、ピーク面積を、それぞれ、カチオン性およびアニオン性代謝産物についての内部標準メチオニンスルホンまたはCSAのピーク面積に対して正規化した。標準化合物の相対ピーク面積および濃度に基づいて、各代謝産物の濃度を算出した。ピーク注釈と定量は、社内ソフトウェア(MasterHands)によって確認された(Sugimoto M et al.,Metabolomics.2010;6(1):78−95.)。代謝物セット濃縮分析(MSEA)は、DSS投与0日目のコントロールおよび10%RB からの代謝物を用いて行った〔(1)Xia J et al.,Nucleic Acids Res. 2010;38(SUPPL. 2).、および(2)Xia J et al.,In: Current protocols in bioinformatics.2016.p.14.10.1−14.10.91.〕。 Ionic metabolites were analyzed using CE-TOFMS in both positive and negative modes. All CE-TOFMS experiments were performed using an Agilent CE capillary electrophoresis system (Agilent Technologies). The annotation table was prepared from measurements of standard compounds and aligned with the dataset according to similar m / z values and standardized travel times. The peak area was then normalized to the peak area of the internal standard methionine sulfone or CSA for cationic and anionic metabolites, respectively. The concentration of each metabolite was calculated based on the relative peak area and concentration of the standard compound. Peak annotations and quantifications were confirmed by in-house software (MasterHands) (Sugimoto M et al., Metabolomics. 2010; 6 (1): 78-95.). Metabolite set enrichment analysis (MSEA) was performed using controls on day 0 of DSS administration and metabolites from 10% RB [(1) Xia J et al. , Nucleic Acids Res. 2010; 38 (SUPPL. 2). , And (2) Xia J et al. , In: Current protocols in bioinformatics. 2016. p. 14.10.1-14.10.91. ].

(9)統計分析
2つ以上の群間の差異は、スチューデントt検定またはダネット検定によってそれぞれ評価した。体重変化、DAIは双方向反復測定ANOVA、続いて、Holm−Bonferroni手順(これは、anovakunバージョン4.8.0を使用)によって分析した。主成分分析(PCA)は、SIMCAP13.0.3(Umetrics)によって実施された。MeV TM4ソフトウェア4.7.4を用いて、階層的クラスタリングおよびヒートマップを描画した。
(9) Statistical analysis Differences between two or more groups were evaluated by Student's t-test or Dunnett's test, respectively. Weight changes, DAI were analyzed by bidirectional repeated measures ANOVA followed by Holm-Bonferroni procedure, which used anovakun version 4.8.0. Principal component analysis (PCA) was performed by SIMCAP 13.0.3 (Umetrics). Hierarchical clustering and heatmaps were drawn using MeV TM4 software 4.7.4.

(10)AhR in vitro試験
マウス由来RAW264.7細胞(RAW/Neo)もしくはAhRを強制発現させたRAW細胞(RAW/AhR)に5−HIAAを溶媒のみ(DMSO)、2μM、20μM、200μM培地に添加して24時間培養した時のCyp1a1の相対発現量を測定した。
(10) AhR in vitro test In mouse-derived RAW264.7 cells (RAW / Neo) or RAW cells (RAW / AhR) in which AhR was forcibly expressed, 5-HIAA was added to solvent only (DMSO), 2 μM, 20 μM, and 200 μM medium. The relative expression level of Cyp1a1 when added and cultured for 24 hours was measured.

(11)ノトバイオート試験
無菌マウスに溶媒のみもしくはエンテロコッカス属細菌群、ラクトバチルス属細菌群、バクテロイデス属細菌群、クロストリジウム属細菌群を経口投与した。投与1ヶ月後に糞便を採取し、CE−TOFMSを用いて5−HIAAの濃度を測定した。
(11) Gnotobiotic test Sterile mice were orally administered with solvent alone or enterococcus bacteria group, Lactobacillus bacteria group, Bacteroides bacteria group, and Clostridium bacteria group. Feces were collected 1 month after administration, and the concentration of 5-HIAA was measured using CE-TOFMS.

(12)FISH解析
大腸を採取し、Methacarn固定法で処理し、パラフィン切片の作成を行った。作成したパラフィン切片をキシレンで脱パラフィンさせたのち、米ぬか摂取マウスで特異的に増加するクロストリジウムをFluorescence in situ hybridization (FISH)法を用いて、16S rRNA標的に染色を行った。FISH染色にクロストリジウムクラスターXIVを特異的に染色するErec482(5’−GCTTCTTAGTCARGTACCG−3’)蛍光標識FISHプローブを用いた。クロストリジウムをFISH染色後、DAPIと蛍光標識のWheat Germ Agglutinin(WGA)レクチンでそれぞれDNAとムチンの染色を行う。
(12) FISH analysis The large intestine was collected and treated by the Methacarn fixation method to prepare paraffin sections. The prepared paraffin sections were deparaffinized with xylene, and then Clostridium, which specifically increases in rice bran ingested mice, was stained on 16S rRNA targets using the Fluorescence in situ hybridization (FISH) method. An Erec482 (5'-GCTTCTTAGTCARCTACCG-3') fluorescently labeled FISH probe that specifically stains Clostridium cluster XIV was used for FISH staining. After FISH staining of Clostridium, DNA and mucin are stained with DAPI and fluorescently labeled Wheat Germ Agglutinin (WGA) lectin, respectively.

(結果と考察)
(1)RB摂取によって大腸炎が抑制される(図2)
RB摂取マウスではコントロールと比較して体重減少、DAI、大腸の短縮、大腸炎に対するRB食の効果を評価するために、DSS誘発性大腸炎マウスモデルを用いて動物実験を行った。コントロールにおいて体重は減少したが、RB摂取群では体重減少では抑制された(図2−1)。同様に、コントロール群とRB摂取群との間でDAIに有意差があった(図2−2)。コントロール群とRBG摂取群との間の大腸長に有意差が観察された(図2−3、2−4)。さらに大腸での血液の量に差があった(図2−3)。大腸の組織切片は、RBを与えたマウス群において、陰窩上窩のゆがみおよび白血球および好中球の粘膜および浸潤の減少を示した(図2−5)。まとめると、これらの結果は、RB食がDSS誘発大腸炎を抑制できることを示唆している。
(Results and discussion)
(1) Colitis is suppressed by ingestion of RB (Fig. 2)
In RB-fed mice, animal experiments were performed using a DSS-induced colitis mouse model to evaluate the effects of the RB diet on weight loss, DAI, colorectal shortening, and colitis as compared to controls. Weight loss was reduced in the control, but was suppressed in the RB intake group (Fig. 2-1). Similarly, there was a significant difference in DAI between the control group and the RB intake group (Fig. 2-2). A significant difference in colon length between the control group and the RBG intake group was observed (Figs. 2-3, 2-4). Furthermore, there was a difference in the amount of blood in the large intestine (Fig. 2-3). Tissue sections of the large intestine showed RB-fed mouse group with crypt distortion and reduced leukocyte and neutrophil mucosa and infiltration (Fig. 2-5). Taken together, these results suggest that an RB diet can suppress DSS-induced colitis.

(2)RB脱脂成分は大腸炎を抑制する(図3)
RBの大腸炎抑制効果に寄与する有効成分を同定するために、RBG、RBDおよびRBOの3つの成分を使用した。脂肪を含まないRBからなるRBDは、体重、DAI、ならびに大腸の長さおよび形態に対して有意な大腸炎抑制効果を有する(図3−1〜3−4)。特に、観察された大腸炎抑制効果は、RB丸ごと(RB)と同様であった。対照的に、これまでに大腸炎抑制効果を有すると考えられていたRBGおよびRBOは、有意な大腸炎抑制効果を示さなかった。これらの結果は、RBの大腸炎抑制効果が主にその脱脂成分に起因する可能性があることを示唆している。
(2) The RB degreasing component suppresses colitis (Fig. 3)
Three components, RBG, RBD and RBO, were used to identify the active ingredient that contributes to the colitis-suppressing effect of RB. RBDs consisting of fat-free RBs have a significant colitis-suppressing effect on body weight, DAI, and colorectal length and morphology (FIGS. 3-1 to 3-4). In particular, the observed colitis-suppressing effect was similar to that of whole RB (RB). In contrast, RBG and RBO, which were previously thought to have a colitis-suppressing effect, did not show a significant colitis-suppressing effect. These results suggest that the colitis-suppressing effect of RB may be mainly due to its degreasing component.

(3)RB摂取による糞便細菌叢の変化(図4)
RB食餌介入による糞便微生物の組成の動態を評価するために、実験中に毎日採取した便試料を用いて16S rRNA遺伝子解析を行った。59,662個のOTU(operational taxonomic unit)が308個のサンプルから構築された(糞便収集中にいくつかの糞便サンプルが失われた)。糞便細菌叢の科レベルにおける分類学的プロファイリングが示されている(図4−1)。DSS誘発大腸炎マウスの糞便細菌叢の組成は劇的に変化したことが観察された。RBを与えたマウス群におけるα多様性はコントロールと比較して有意に高かったか、または遅れていた(図4−2)。糞便細菌叢の変化を調べるために、コントロール群と他の群との間で0日目の各細菌科の相対存在量を比較した。コントロールと比較してRB摂取群では20の科、特にBifidobacteriaceae、LactobacillaceaeおよびTuricibacteraceaeは有意に増加し、Bacteroidaceae、ErysipelotrichaceaeおよびEnterobacteriaceaeは有意な減少を示した(図4−3)。
(3) Changes in fecal bacterial flora due to RB intake (Fig. 4)
In order to evaluate the dynamics of the composition of fecal microorganisms by RB dietary intervention, 16S rRNA gene analysis was performed using fecal samples collected daily during the experiment. 59,662 OTUs (operational taxonomy units) were constructed from 308 samples (some stool samples were lost during stool collection). Taxonomic profiling at the family level of the fecal flora is shown (Fig. 4-1). It was observed that the composition of the fecal flora of DSS-induced colitis mice was dramatically altered. The α-diversity in the RB-fed mouse group was significantly higher or delayed compared to the control (Fig. 4-2). To examine changes in the fecal flora, the relative abundance of each Bacterial family on day 0 was compared between the control group and the other groups. In the RB intake group, 20 families, especially Bifidobacteriaceae, Lactobacillaceae and Tracybacteraceae, were significantly increased, and Bifidobacteriae, Erycipelotrichaceae and Enterobacteriaceae were significantly decreased compared to the control (Fig. 3).

(4)RB摂取による糞便中代謝物の変化(図5)
RB摂取による分子レベルの影響を評価するために、0日目、5日目および10日目に収集した糞便サンプルを用いてメタボローム解析を行った。CE−TOFMSおよびガスクロマトグラフィー質量分析計(GC−MS)によるメタボローム分析は、少なくとも1時点あたり1グループ1匹のマウスの糞便を用い360代謝物を同定した。これらの代謝産物の濃度をコントロールと他の群で比較した(データ示さず)。PCAにおけるコントロールおよびRBマウスの糞便代謝物プロファイルの時間的変化は異なる方向であった(図5−1)。これは、糞便メタボロームプロファイルはDSSの影響を受けたが、RB摂取がその影響を抑制したことを示している。コントロールと比較してRB摂取マウスではacetate、butyrateのような短鎖脂肪酸を含む41代謝物が有意に変化していた(図5−2)。腸内微生物叢による食物繊維の発酵によって産生されるSCFAは、好中球におけるアポトーシスの誘導(Maslowski KM et al.,GPR43.Nature.2009;461(7268):1282−6.)および結腸調節性T細胞(Treg)の分化(Furusawa Y et al.,Nature.2013;504(7480):446−50.)を介してマウスの大腸炎を抑制する。さらに、SCFAsの濃度の増加は、pHの低下をもたらす。より低いpHの存在下では、病原性微生物の数および胆汁酸の溶解度が減少し、それによって二次胆汁酸の腫瘍プロモーター活性の低下をもたらす〔(1)Cook SI et al.,Aliment Pharmacol Ther.1998;12(6):499−507.、(2)Grubben MJAL et al.,Dig Dis Sci.2001;46(4):750−6.、および(3)Wong JM et al.,J Clin Gastroenterol.2006;40(3):235−43.〕。したがって、RBのような発酵性食物繊維の摂取量の増加は、大腸炎の抑制に有益であり得る〔(1)Daou C et al.,J Food Sci Technol. 2014;51(12):3878−85.、および(2)Park HY et al.,Planta Med.2016;82(07):606−11.〕。我々の研究では、SCFAsの濃度はRB消費によって増加した。最も顕著なSCFAであるacetateは、結腸のpHを低下させるために重要であり〔(1)Duncan SH et al.,Br J Nutr.2004;91(06):915−23.、および(2)Ye H et al.,Sci Rep.2016;6:20329.〕、それによって病原性微生物の数および胆汁酸の溶解度が抗炎症特性を有し、マウスの腸上皮の完全性を促進する〔(1)Fukuda S et al.,Nature.2011;469(7331):543−7.、および(2)Macia L et al.,Nat Commun.2015;6(August):6734.〕。また、0日目にコントロールおよび10%RBのメタボロームデータを用いてMSEAを実施した(表1)。ビタミンB6代謝、トリプトファン代謝およびユビキノン生合成などはコントロールと10%RBの間で有意に変化した。トリプトファン代謝関連代謝物のうち5−ヒドロキシインドール酢酸(5−HIAA)がRB摂取によって増加していた(図5−3、5−4)。
(4) Changes in fecal metabolites due to RB intake (Fig. 5)
Metabolome analysis was performed using fecal samples collected on days 0, 5, and 10 to assess the effects of RB intake at the molecular level. Metabolome analysis by CE-TOFMS and gas chromatography-mass spectrometer (GC-MS) identified 360 metabolites using feces of at least one mouse per group per time point. Concentrations of these metabolites were compared between the control and other groups (data not shown). The temporal changes in control and fecal metabolite profiles of RB mice in PCA were in different directions (Fig. 5-1). This indicates that the fecal metabolome profile was affected by DSS, but RB intake suppressed the effect. Compared with the control, 41 metabolites containing short-chain fatty acids such as acetate and butyrate were significantly changed in RB-fed mice (Fig. 5-2). SCFA produced by fermentation of dietary fiber by the intestinal microflora induces apoptosis in neutrophils (Maslowski KM et al., GPR43. Nature. 2009; 461 (7268): 1282-6.) And colonic regulation. Suppresses enteritis in mice via T cell (Treg) differentiation (Furusawa Y et al., Nature. 2013; 504 (7480): 446-50.). In addition, increasing concentrations of SCFAs result in lower pH. In the presence of lower pH, the number of pathogenic microorganisms and the solubility of bile acids are reduced, resulting in reduced tumor promoter activity of secondary bile acids [(1) Cook SI et al. , Aliment Pharmacol Ther. 1998; 12 (6): 499-507. , (2) Grubben MJAL et al. , Dig Dis Sci. 2001; 46 (4): 750-6. , And (3) Wong JM et al. , J Clin Gastroenterol. 2006; 40 (3): 235-43. ]. Therefore, an increase in intake of fermentable dietary fiber such as RB may be beneficial in controlling colitis [(1) Daou C et al. , J Food Sci Technology. 2014; 51 (12): 3878-85. , And (2) Park HY et al. , Planta Med. 2016; 82 (07): 606-11. ]. In our study, the concentration of SCFAs was increased by RB consumption. The most prominent SCFA, acetate, is important for lowering the pH of the colon [(1) Duncan SH et al. , Br J Nutr. 2004; 91 (06): 915-23. , And (2) Ye Het al. , Scientific Rep. 2016; 6: 20329. ], Thereby the number of pathogenic microorganisms and the solubility of bile acids have anti-inflammatory properties and promote the integrity of the intestinal epithelium of mice [(1) Fukuda S et al. , Nature. 2011; 469 (7331): 543-7. , And (2) Macia L et al. , Nat Commun. 2015; 6 (August): 6734. ]. On day 0, MSEA was performed using the control and 10% RB metabolome data (Table 1). Vitamin B6 metabolism, tryptophan metabolism and ubiquinone biosynthesis were significantly altered between control and 10% RB. Among the tryptophan metabolism-related metabolites, 5-hydroxyindoleacetic acid (5-HIAA) was increased by RB intake (Fig. 5-3, 5-4).

Figure 2020111239
Figure 2020111239

(5)5−HIAAによる大腸炎抑制(図6)
5−HIAAがAhRリガンドか調べるためにAhR強制発現RAW264.7細胞を5−HIAA(培地中の濃度 2、20、および200μM)で処理したところ、コントロールと比較してCyp1a1遺伝子発現量が増加した(図6−1)。また、クロストリジウム属細菌群をGFマウスに定着させたところ、無菌マウスや他の細菌を定着させたときよりも多くの5−HIAAが産生された(図6−2)。大腸断面のFISH解析の結果、RBの繊維質部位にClostridium属細菌群が局在していた。先行研究では、腸内微生物叢によるトリプトファン代謝が、腸ホメオスタシスによく知られた効果を有するサイトカインであるIL−22の産生を調節することにより、AhRを介した粘膜免疫応答において役割を果たすことが示唆されている〔(1)Lamas B et al.,Nat Med.2016;22(6):598−605.、(2)Rutz S et al.,Immunol Rev.2013;252(1):116−32.、および(3)Zelante T et al.,Immunity.2013;39(2):372−85.〕。さらに、IBD患者では、AhRリガンドの微生物産生の障害が観察される(Lamas B et al.,Nat Med.2016;22(6):598−605.)。我々の研究では、トリプトファン代謝はRB消費によって有意にアップレギュレートされていた。したがって、腸内細菌叢由来のトリプトファン代謝は、大腸炎患者のための新しい治療薬の開発の標的となりうる。
(5) Suppression of colitis by 5-HIAA (Fig. 6)
Treatment of AhR forced expression RAW264.7 cells with 5-HIAA (concentrations 2, 20, and 200 μM in medium) to determine if 5-HIAA was an AhR ligand increased Cyp1a1 gene expression compared to controls. (Fig. 6-1). In addition, when the Clostridium bacterium group was colonized in GF mice, more 5-HIAA was produced than when sterile mice and other bacteria were colonized (Fig. 6-2). As a result of FISH analysis of the cross section of the large intestine, a group of Clostridium bacteria was localized in the fibrous part of RB. Previous studies have shown that tryptophan metabolism by the intestinal microflora plays a role in AhR-mediated mucosal immune responses by regulating the production of IL-22, a cytokine with a well-known effect on intestinal homeostasis. It has been suggested [(1) Lamas B et al. , Nat Med. 2016; 22 (6): 598-605. , (2) Rutz S et al. , Immunol Rev. 2013; 252 (1): 116-32. , And (3) Zelante T et al. , Immunoty. 2013; 39 (2): 372-85. ]. In addition, impaired microbial production of AhR ligands is observed in IBD patients (Lamas B et al., Nat Med. 2016; 22 (6): 598-605.). In our study, tryptophan metabolism was significantly upregulated by RB consumption. Therefore, tryptophan metabolism from the gut microbiota can be a target for the development of new therapeutic agents for patients with colitis.

本発明の抗炎症剤は、炎症の抑制(例、炎症性腸疾患の予防・治療)に有用である。
本発明のスクリーニング方法は、抗炎症剤の開発に有用である。
The anti-inflammatory agent of the present invention is useful for suppressing inflammation (eg, prevention / treatment of inflammatory bowel disease).
The screening method of the present invention is useful for the development of anti-inflammatory agents.

Claims (9)

5−ヒドロキシインドール酢酸を含む抗炎症剤。 An anti-inflammatory agent containing 5-hydroxyindoleacetic acid. 抗炎症剤が腸内の炎症に対する抗炎症剤である、請求項1記載の抗炎症剤。 The anti-inflammatory agent according to claim 1, wherein the anti-inflammatory agent is an anti-inflammatory agent for inflammation in the intestine. 腸内の炎症が炎症性腸疾患である、請求項2記載の抗炎症剤。 The anti-inflammatory agent according to claim 2, wherein the inflammation in the intestine is an inflammatory bowel disease. 経口用組成物または経直腸投与用組成物である、請求項1〜3のいずれか一項記載の抗炎症剤。 The anti-inflammatory agent according to any one of claims 1 to 3, which is an oral composition or a composition for transrectal administration. 医薬または食品である、請求項1〜4のいずれか一項記載の抗炎症剤。 The anti-inflammatory agent according to any one of claims 1 to 4, which is a pharmaceutical or food product. 以下を含む、抗炎症剤のスクリーニング方法:
(1)被験物質が投与された哺乳動物から採取されたサンプル中の5−ヒドロキシインドール酢酸の量を測定すること;および
(2)サンプル中の5−ヒドロキシインドール酢酸の量を増加させる被験物質を、抗炎症剤として選択すること。
Anti-inflammatory agent screening methods, including:
(1) Measure the amount of 5-hydroxyindoleacetic acid in a sample taken from a mammal to which the test substance was administered; and (2) Test substance that increases the amount of 5-hydroxyindoleacetic acid in the sample. , To be selected as an anti-inflammatory agent.
サンプルが糞便である、請求項6記載の方法。 The method of claim 6, wherein the sample is stool. 以下を含む、抗炎症剤のスクリーニング方法:
(1)被験物質を含む培地中で、5−ヒドロキシインドール酢酸の産生能を有する哺乳動物由来細胞を培養すること;
(2)培地中の5−ヒドロキシインドール酢酸の量を測定すること;
(3)培地中の5−ヒドロキシインドール酢酸の量を増加させる被験物質を、抗炎症剤として選択すること。
Anti-inflammatory agent screening methods, including:
(1) Culturing mammalian-derived cells capable of producing 5-hydroxyindoleacetic acid in a medium containing a test substance;
(2) Measuring the amount of 5-hydroxyindoleacetic acid in the medium;
(3) Select a test substance that increases the amount of 5-hydroxyindoleacetic acid in the medium as an anti-inflammatory agent.
5−ヒドロキシインドール酢酸の産生能を有する哺乳動物由来細胞が腸内細菌である、請求項8記載の方法。 The method according to claim 8, wherein the mammalian-derived cell capable of producing 5-hydroxyindoleacetic acid is an intestinal bacterium.
JP2020557857A 2018-11-29 2019-11-29 Anti-inflammatory agent Pending JPWO2020111239A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018224169 2018-11-29
JP2018224169 2018-11-29
PCT/JP2019/046809 WO2020111239A1 (en) 2018-11-29 2019-11-29 Anti-inflammatory agent

Publications (1)

Publication Number Publication Date
JPWO2020111239A1 true JPWO2020111239A1 (en) 2021-10-21

Family

ID=70853471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020557857A Pending JPWO2020111239A1 (en) 2018-11-29 2019-11-29 Anti-inflammatory agent

Country Status (2)

Country Link
JP (1) JPWO2020111239A1 (en)
WO (1) WO2020111239A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202406541A (en) * 2022-04-28 2024-02-16 慶應義塾 Therapeutic pharmaceutical composition for acting in the intestine

Also Published As

Publication number Publication date
WO2020111239A1 (en) 2020-06-04

Similar Documents

Publication Publication Date Title
Wang et al. Gut microbiota mediates the anti-obesity effect of calorie restriction in mice
Chen et al. Effects of dietary Clostridium butyricum supplementation on growth performance, intestinal development, and immune response of weaned piglets challenged with lipopolysaccharide
Goverse et al. Diet-derived short chain fatty acids stimulate intestinal epithelial cells to induce mucosal tolerogenic dendritic cells
Chen et al. Supplementation of saturated long-chain fatty acids maintains intestinal eubiosis and reduces ethanol-induced liver injury in mice
Martín et al. Faecalibacterium: a bacterial genus with promising human health applications
Choi et al. Feeding diversified protein sources exacerbates hepatic insulin resistance via increased gut microbial branched-chain fatty acids and mTORC1 signaling in obese mice
JP2022000040A (en) Use of pasteurized akkermansia for treating metabolic disorders
JP2020532515A (en) Methods and compositions for the treatment of microbiome-related disorders
EP3072398A1 (en) Bifidobacterium longum and hippocampal bdnf expression
Lin et al. Probiotics and their metabolites reduce oxidative stress in middle-aged mice
Shen et al. The regulation of ruminal short-chain fatty acids on the functions of rumen barriers
CN110527717A (en) Biomarker and application thereof for diabetes B
JP2022512681A (en) CAR T Cell Therapy Methods and Compositions for Identifying and Treating Subjects at Risk of Poor Response
Shi et al. Protein restriction and succedent realimentation affecting ileal morphology, ileal microbial composition and metabolites in weaned piglets
Zhao et al. Impact of anthocyanin component and metabolite of Saskatoon berry on gut microbiome and relationship with fecal short chain fatty acids in diet-induced insulin resistant mice
Wang et al. N-Acetyl-D-glucosamine improves the intestinal development and nutrient absorption of weaned piglets via regulating the activity of intestinal stem cells
Chiou et al. Gut microbiota-directed intervention with high-amylose maize ameliorates metabolic dysfunction in diet-induced obese mice
Li et al. Dietary soya saponin improves the lipid metabolism and intestinal health of laying hens
JPWO2020111239A1 (en) Anti-inflammatory agent
He et al. Gastrointestinal development and microbiota responses of geese to honeycomb flavonoids supplementation
Hu et al. Chicory fibre improves reproductive performance of pregnant rats involving in altering intestinal microbiota composition
Zhang et al. High-fat and high-protein diets from different sources induce different intestinal malodorous gases and inflammation
US20210128645A1 (en) Intestinal microbe having d-psicose-responsive proliferation
JP7262127B2 (en) Novel lactic acid bacterium and composition containing same
Li et al. Compound organic acid could improve the growth performance, immunity and antioxidant properties, and intestinal health by altering the microbiota profile of weaned piglets

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231115