JPWO2020110107A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020110107A5
JPWO2020110107A5 JP2021530121A JP2021530121A JPWO2020110107A5 JP WO2020110107 A5 JPWO2020110107 A5 JP WO2020110107A5 JP 2021530121 A JP2021530121 A JP 2021530121A JP 2021530121 A JP2021530121 A JP 2021530121A JP WO2020110107 A5 JPWO2020110107 A5 JP WO2020110107A5
Authority
JP
Japan
Prior art keywords
cutting
workpiece
speed
thin
approximately
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021530121A
Other languages
Japanese (ja)
Other versions
JP2022510204A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/IL2019/051285 external-priority patent/WO2020110107A1/en
Publication of JP2022510204A publication Critical patent/JP2022510204A/en
Publication of JPWO2020110107A5 publication Critical patent/JPWO2020110107A5/ja
Pending legal-status Critical Current

Links

Claims (15)

工作物に対する切削動作を実行する方法であって、
前記工作物を提供することであって、前記工作物は、約100W/(m・K)(およそ57.8Btu/(hr・ft・°F))以下の熱伝導率を特徴とする金属で作製される、前記工作物を提供することと、
切削インサートを含む切削装置を提供することであって、前記切削インサートは、その一方側に薄壁構造によって画定された内部冷却空洞と、すくい面と、逃げ面と、前記面間に画定された切削刃とを備え、前記逃げ面及びすくい面の少なくとも一方は、前記薄壁構造に配設される、前記切削装置を提供することと、
前記切削装置を使用して前記工作物に対して切削動作を実行することであって、前記切削速度は、約500m/分(およそ1640ft./分)以上である、切削動作を実行することとを含む、方法。
A method of performing a cutting operation on a workpiece, comprising:
providing the workpiece, wherein the workpiece is a metal characterized by a thermal conductivity of about 100 W/(mK) (approximately 57.8 Btu/(hr-ft-°F)) or less; providing the workpiece to be fabricated;
A cutting apparatus comprising a cutting insert, said cutting insert having an internal cooling cavity defined by a thin-walled structure on one side thereof, a rake face, a flank face, and defined between said faces. a cutting edge, wherein at least one of the flank and rake surfaces are disposed on the thin-walled structure;
performing a cutting operation on the workpiece using the cutting device, wherein the cutting speed is greater than or equal to about 500 m/min (approximately 1640 ft./min); A method, including
前記薄壁構造が、およそ0.7mmを超えない最小厚さを有し、任意選択でおよそ0.4mmを超えない最小厚さを有する、請求項1に記載の方法。 2. The method of claim 1, wherein the thin-walled structure has a minimum thickness of no more than approximately 0.7 mm , and optionally has a minimum thickness of no more than approximately 0.4 mm . 前記切削装置は、前記薄壁構造が、約100m/分(およそ328ft./分)未満への、任意選択で約300m/分(およそ984ft./分)未満への前記切削速度の低下に関連付けられた切削力に耐えるようには適合されないことを特徴とする、請求項1に記載の方法。 said cutting device wherein said thin-walled structure is associated with a reduction in said cutting speed to less than about 100 m/min (approximately 328 ft./min), optionally to less than about 300 m/min (approximately 984 ft./min) 2. A method according to claim 1 , characterized in that it is not adapted to withstand applied cutting forces. 前記切削動作中、冷却流体を前記冷却空洞に供給することをさらに含む、請求項1に記載の方法。 2. The method of claim 1 , further comprising supplying a cooling fluid to the cooling cavity during the cutting operation. 前記切削速度が増大すると、前記切削装置の耐用年数がより長くなることを特徴とする、請求項1に記載の方法。 2. The method of claim 1 , wherein the cutting device has a longer service life as the cutting speed increases. 前記切削速度が増大すると、より大きいチップ厚さが得られることを特徴とする、請求項1に記載の方法。 2. The method of claim 1, wherein increasing the cutting speed results in a greater chip thickness. 組み合わせであって、
1つ又は複数の切削装置であって、それぞれが切削インサートを備え、前記切削インサートは、その一方側に薄壁構造によって画定された内部冷却空洞と、すくい面と、逃げ面と、前記面間に画定された切削刃とを有し、前記逃げ面及びすくい面の少なくとも一方は、前記薄壁構造に配設される、前記1つ又は複数の切削装置と、
工作物に対して切削動作を実行する方法によって前記切削装置を使用するための指示を提供する少なくとも1つの物品であって、前記方法が、
前記工作物を提供することであって、前記工作物は、約100W/(m・K)(およそ57.8Btu/(hr・ft・°F))以下の熱伝導率を特徴とする金属である、前記工作物を提供することと、
前記切削装置の1つを使用して、前記工作物に対して切削動作を実行することであって、前記切削速度は、約500m/分(およそ1640ft./分)以上である、切削動作を実行することとを含む、少なくとも1つの物品とを備える、組み合わせ。
is a combination of
One or more cutting devices, each comprising a cutting insert, said cutting insert having on one side thereof an internal cooling cavity defined by a thin-walled structure, a rake face, a flank face and said face-to-face and at least one of the flank and rake surfaces are disposed on the thin-walled structure;
At least one article for providing instructions for using the cutting device by a method of performing a cutting operation on a workpiece, the method comprising:
providing the workpiece, wherein the workpiece is a metal characterized by a thermal conductivity of about 100 W/(mK) (approximately 57.8 Btu/(hr-ft-°F)) or less; providing the workpiece;
performing a cutting operation on the workpiece using one of the cutting devices, wherein the cutting speed is greater than or equal to about 500 m/min (approximately 1640 ft./min); and at least one article, including performing.
前記薄壁構造が、およそ0.7mmを超えない最小厚さ、任選択でおよそ0.4mmを超えない最小厚さを有する、請求項に記載の組み合わせ。 8. The combination of claim 7 , wherein said thin-walled structure has a minimum thickness not exceeding approximately 0.7 mm , optionally not exceeding approximately 0.4 mm . 前記指示が、指定された材料の工作物に対して切削動作を実行するときの各切削装置の推定耐用年数の2つ又はそれ以上の値を示し、前記値のそれぞれは、異なる切削速度に関連付けられ、推定耐用年数の前記値は、切削速度が増大すると共に増大する、請求項に記載の組み合わせ。 The instructions indicate two or more values for an estimated useful life of each cutting device when performing a cutting operation on a workpiece of the specified material, each value associated with a different cutting speed. 8. The combination of claim 7 , wherein said value of estimated service life increases with increasing cutting speed. 前記指示が、指定された材料の工作物に対して切削動作を実行するときの各切削装置のチップ厚さの2つ又はそれ以上の値を示し、前記値のそれぞれは、異なる切削速度に関連付けられ、チップ厚さの前記値は、切削速度が増大すると共に増大する、請求項に記載の組み合わせ。 The instructions indicate two or more values of tip thickness for each cutting device when performing a cutting operation on a workpiece of the specified material, each said value associated with a different cutting speed. 8. The combination of claim 7 , wherein said value of chip thickness increases with increasing cutting speed. 工作物に対して切削動作を実行する方法であって、
前記工作物を提供することと、
切削インサートを備える切削装置を提供することであって、前記切削インサートは、その一方側に薄壁構造によって画定された内部冷却空洞を備える、切削装置を提供することと、
前記切削装置を使用して、最大の特徴的基準速度以上である特徴的動作速度で前記工作物に対して切削動作を実行することとを含み、
前記最大の特徴的基準速度は、最高の特徴的速度であり、前記最高の特徴的速度を下回ると、前記切削装置によって前記工作物に対して基準切削動作を実行することは、前記薄壁構造の構造的破損に関連付けられる、方法。
A method of performing a cutting operation on a workpiece, comprising:
providing the workpiece;
providing a cutting device comprising a cutting insert, said cutting insert comprising an internal cooling cavity defined by a thin-walled structure on one side thereof;
using the cutting device to perform a cutting operation on the workpiece at a characteristic operating speed that is equal to or greater than a maximum characteristic reference speed;
The maximum characteristic reference speed is a highest characteristic speed, and below the highest characteristic speed performing a reference cutting operation on the workpiece with the cutting device is the thin-walled structure A method associated with structural failure of
前記特徴的動作速度が、前記最大の特徴的基準速度より少なくとも1.5倍大き任意選択で前記最大の特徴的基準速度の少なくとも2倍である、請求項11に記載の方法。 12. The method of claim 11 , wherein said characteristic operating speed is at least 1.5 times greater than said maximum characteristic reference speed, optionally at least 2 times said maximum characteristic reference speed . 前記基準切削動作が、連続切削動作であり、前記特徴的速度のそれぞれが、それぞれの切削速度であり、前記特徴的速度のそれぞれが、それぞれの切削速度及びそれぞれの送り量に基づいて算出される、請求項11に記載の方法。 The reference cutting motion is a continuous cutting motion , each of the characteristic velocities is a respective cutting speed, and each of the characteristic velocities is calculated based on each cutting speed and each feed amount. 12. The method of claim 11 , wherein 前記切削速度が増大すると、前記切削装置の耐用年数がより長くなることを特徴とする、請求項11に記載の方法。 12. A method according to claim 11 , characterized in that the cutting device has a longer service life as the cutting speed increases. 組み合わせであって、
1つ又は複数の切削装置であって、それぞれが、その一方側に薄壁構造によって画定された内部冷却空洞を備える、1つ又は複数の切削装置と、
請求項12に記載の方法を使用して前記切削装置の1つを使用するための指示を提供する少なくとも1つの物品とを備える、組み合わせ。
is a combination of
one or more cutting devices, each comprising an internal cooling cavity defined by a thin-walled structure on one side thereof;
and at least one article providing instructions for using one of said cutting devices using the method of claim 12 .
JP2021530121A 2018-11-29 2019-11-25 How to perform a cutting action on a geographic feature Pending JP2022510204A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201862772641P 2018-11-29 2018-11-29
US62/772,641 2018-11-29
US201962816128P 2019-03-10 2019-03-10
US62/816,128 2019-03-10
PCT/IL2019/051285 WO2020110107A1 (en) 2018-11-29 2019-11-25 Method of performing a cutting operation on a workpiece

Publications (2)

Publication Number Publication Date
JP2022510204A JP2022510204A (en) 2022-01-26
JPWO2020110107A5 true JPWO2020110107A5 (en) 2022-11-29

Family

ID=68916510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021530121A Pending JP2022510204A (en) 2018-11-29 2019-11-25 How to perform a cutting action on a geographic feature

Country Status (9)

Country Link
US (1) US20210387267A1 (en)
EP (1) EP3887082A1 (en)
JP (1) JP2022510204A (en)
KR (1) KR20210114937A (en)
CN (1) CN113165079A (en)
AU (1) AU2019389312A1 (en)
CA (1) CA3119840A1 (en)
IL (1) IL283528B (en)
WO (1) WO2020110107A1 (en)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3486378A (en) * 1967-04-21 1969-12-30 Gen Electric Tool surface temperature measuring apparatus
SE510284C2 (en) * 1996-11-18 1999-05-10 Sandvik Ab Internally chilled cutter for chip separating machining
US6637984B2 (en) * 2000-03-03 2003-10-28 Masao Murakawa Heat absorbing throw-away tip and heat absorbing throw-away tool using the throw-away tip
DE10016464A1 (en) * 2000-04-01 2001-10-11 Freundeskreis Des Laboratorium Machine tool for carrying out turning work, has friction reducing intermediate material provided in contact zones between blade and work piece or shaving
SE520252C2 (en) * 2000-11-22 2003-06-17 Sandvik Ab Ways to cut a material consisting of aluminum and perlitic gray cast iron
JP2005279860A (en) * 2004-03-30 2005-10-13 Tungaloy Corp Cutting tip thermoregulator
US7634957B2 (en) * 2004-09-16 2009-12-22 Air Products And Chemicals, Inc. Method and apparatus for machining workpieces having interruptions
JP5197257B2 (en) * 2008-09-10 2013-05-15 独立行政法人理化学研究所 Method of cutting ferrous material and cutting fluid supply device
IL196439A (en) * 2009-01-11 2013-04-30 Iscar Ltd Method of grooving superalloys and cutting insert therefor
EP2607001B1 (en) * 2011-12-22 2014-11-19 Technische Universität Darmstadt Cooling of machining tools
US10124412B2 (en) * 2013-06-27 2018-11-13 No Screw Ltd. Cutting insert with internal cooling
CN106270585B (en) * 2016-09-19 2018-05-22 上海理工大学 Interior circulating cooling cutter and cooling means with fillet surface
CN106334807A (en) * 2016-10-26 2017-01-18 江苏工大金凯高端装备制造有限公司 Integrated turning tool system with internal circulation cooling and real-time cutting temperature monitoring functions
DE102016223459A1 (en) * 2016-11-25 2018-05-30 Schaeffler Technologies AG & Co. KG Tool assembly with cutting body, method for cooling the cutting body and use of the cutting body
RU182799U1 (en) * 2017-07-26 2018-09-03 Общество С Ограниченной Ответственностью "Предприятие "Сенсор" TOOL CUTTING PLATE COOLING SYSTEM

Similar Documents

Publication Publication Date Title
CA2719235C (en) Method and tool for producing a surface of predetermined roughness
Qi et al. Experimental study on orthogonal cutting of Ti6Al4V with surface micro-groove textured cutting tool
KE et al. Use of nitrogen gas in high-speed milling of Ti-6Al-4V
Zhang et al. Influences of machining parameters on tool performance when high-speed ultrasonic vibration cutting titanium alloys
Cao et al. Effect of rake angle on cutting performance during machining of stone-plastic composite material with polycrystalline diamond cutters
JP2006510493A5 (en)
SE531264C2 (en) A composite ingot and method for reducing cutting and cutting losses in rolling such ingots, the strip made from the ingots and the use of the strip in a heat exchanger
JPWO2020110107A5 (en)
Alagumurthi et al. Heat generation and heat transfer in cylindrical grinding process-a numerical study
Chaabani et al. Tool wear and cutting forces when machining inconel 718 under cryogenic conditions: Liquid nitrogen and carbon dioxide
Ibrahim et al. Study the influence of a new ball burnishing technique on the surface roughness of AISI 1018 low carbon steel
Zhao et al. High speed milling of Ti6Al4V alloy with minimal quantity lubrication
Kiyota et al. Experimental research of micro-textured tool for reduction in cutting force
Elshwain et al. Effect of cooling/lubrication using cooled air, MQL+ cooled Air, N2 and CO2 gases on tool life and surface finish in machining–A review
Özek et al. Investigate the effect of tool conical angle on the bushing height, wall thickness and forming in friction drilling of A7075-T651 aluminum alloy
Natasha et al. Chip formation and coefficient of friction in turning S45C medium carbon steel
Patwari et al. An innovative green cooling approach using peltier chip in milling operation for surface roughness improvement
Kimura et al. Study on high-speed milling of steam turbine blade materials-Differences in cutting characteristics of an unforged ingot and a forged part of stainless steel
Kaya et al. Efficiency investigations of textured cutting tools in orthogonal cutting of Ti6Al4V alloy: a numerical approach
Wang et al. A numeric investigation of rectangular groove cutting with different lateral micro textured tools
Chen et al. Machinability study on hard milling of ultra-high strength steel 30Cr3SiNiMoVA
WO2020110107A4 (en) Method of performing a cutting operation on a workpiece
Song et al. Investigation on performance of a CVD coated carbide tool in face milling of ultra-high strength steel 30Cr3SiNiMoVA
Dhananchezian et al. Study the effect of cryogenic cooling with modified cutting tool insert in the turning of Ti-6al-4v alloy
Lu et al. The cutting performance of saw blades with textured structures on the rake face, main and secondary flank face