JPWO2020106952A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020106952A5
JPWO2020106952A5 JP2021529067A JP2021529067A JPWO2020106952A5 JP WO2020106952 A5 JPWO2020106952 A5 JP WO2020106952A5 JP 2021529067 A JP2021529067 A JP 2021529067A JP 2021529067 A JP2021529067 A JP 2021529067A JP WO2020106952 A5 JPWO2020106952 A5 JP WO2020106952A5
Authority
JP
Japan
Prior art keywords
steps
printed part
post
hybrid manufacturing
hybrid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021529067A
Other languages
Japanese (ja)
Other versions
JP2022507945A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2019/062604 external-priority patent/WO2020106952A1/en
Publication of JP2022507945A publication Critical patent/JP2022507945A/en
Publication of JPWO2020106952A5 publication Critical patent/JPWO2020106952A5/ja
Pending legal-status Critical Current

Links

Claims (30)

ハイブリッド製造プロセスであって、
3D印刷された部品を形成するために1つ以上の付加ステップを介して、ハイブリッド製造システムによってフィラー材料(複数可)を堆積させることであって、任意選択的に、前記付加ステップは、
前記ハイブリッド製造システムの中空スピンドルまたはツールを介して1つ以上のフィラー材料を供給することと、
前記フィラー材料(複数可)を基板上に堆積させることと、
前記フィラー材料(複数可)および/または前記基板が界面領域において可鍛性および/または粘弾性状態になるように前記中空スピンドルまたはツールの回転するショルダによって法線力、剪断力、および/または摩擦力を適用することによって前記フィラー材料(複数可)および前記基板の塑性変形を生じさせ、それにより前記3D印刷された部品を作製することと、を含む、堆積させることと、
仕上げられた部品を形成するために、3D印刷された部品上および/または3D印刷された部品内に表面特徴および/または内部特徴が形成されるように、1つ以上の除去ステップを介してハイブリッド製造システムによって3D印刷された部品から材料を除去することと、を含む、ハイブリッド製造プロセス。
A hybrid manufacturing process comprising:
depositing the filler material(s) by a hybrid manufacturing system via one or more addition steps to form a 3D printed part, optionally the addition steps comprising:
feeding one or more filler materials through a hollow spindle or tool of the hybrid manufacturing system;
depositing the filler material(s) on a substrate;
Normal forces, shear forces, and/or friction by the rotating shoulder of the hollow spindle or tool such that the filler material(s) and/or the substrate become malleable and/or viscoelastic in the interfacial region. causing plastic deformation of the filler material(s) and the substrate by applying a force, thereby creating the 3D printed part;
Hybridization through one or more removal steps such that surface and/or interior features are formed on and/or within the 3D printed part to form the finished part. removing material from a 3D printed part by a manufacturing system.
前記ハイブリッド製造プロセスは、仕上げられた部品を完成させるために追加のツール、機械、および/または機器を必要としない、請求項1に記載のプロセス。 3. The process of claim 1, wherein the hybrid manufacturing process does not require additional tools, machines, and/or equipment to complete the finished part. 前記ハイブリッド製造プロセスは、仕上げられた部品を完成させるために追加のツール、機械、および/または機器を必要とする、請求項1に記載のプロセス。 3. The process of claim 1, wherein the hybrid manufacturing process requires additional tools, machines, and/or equipment to complete the finished part. 他のツールおよび/または機械によって実行される1つ以上の造形後ステップによって、3D印刷された部品を造形することをさらに含む、請求項1に記載のプロセス。 3. The process of claim 1, further comprising shaping the 3D printed part by one or more post-building steps performed by other tools and/or machines. 前記1つ以上の造形後ステップは、カレンダ加工ステップを含む、請求項4に記載のプロセス。 5. The process of claim 4, wherein the one or more post-shaping steps comprise a calendering step. 前記1つ以上の造形後ステップは、低温ローラの1つ以上の対によっておよび/またはそれらの間で実行される圧縮ステップを含む、請求項4に記載のプロセス。 5. The process of claim 4, wherein the one or more post-shaping steps comprise a compression step performed by and/or between one or more pairs of cold rollers. 前記1つ以上の造形後ステップは、高温ローラの1つ以上の対によっておよび/またはそれらの間で実行される圧縮ステップを含む、請求項4に記載のプロセス。 5. The process of claim 4, wherein the one or more post-shaping steps comprise a compression step performed by and/or between one or more pairs of hot rollers. 前記1つ以上の造形後ステップは、前記3D印刷された部品を冷却することを含む、請求項4に記載のプロセス。 5. The process of Claim 4, wherein the one or more post-build steps comprises cooling the 3D printed part. 前記1つ以上の造形後ステップは、前記3D印刷された部分を急冷することを含む、請求項4に記載のプロセス。 5. The process of claim 4, wherein the one or more post-sculpting steps comprise quenching the 3D printed part. 前記1つ以上の造形後ステップは、前記3D印刷された部品を加熱することを含む、請求項4に記載のプロセス。 5. The process of claim 4, wherein the one or more post-build steps comprise heating the 3D printed part. 前記1つ以上の造形後ステップは、前記3D印刷された部品をピーニングすることを含む、請求項4に記載のプロセス。 5. The process of claim 4, wherein the one or more post-build steps comprise peening the 3D printed part. 前記1つ以上の造形後ステップは、前記3D印刷された部品をレーザ加工することを含む、請求項4に記載のプロセス。 5. The process of claim 4, wherein the one or more post-fabrication steps comprise laser machining the 3D printed part. 1つ以上の追加の処理ステップをさらに含む、請求項1に記載のプロセス。 2. The process of claim 1, further comprising one or more additional processing steps. 前記1つ以上の追加の処理ステップは、ピーニングを含む、請求項13に記載のプロセス。 14. The process of Claim 13, wherein the one or more additional processing steps comprises peening. 前記1つ以上の追加の処理ステップは、レーザ加工を含む、請求項13に記載のプロセス。 14. The process of Claim 13, wherein said one or more additional processing steps comprises laser machining. 前記1つ以上の追加の処理ステップは、冷却を含む、請求項13に記載のプロセス。 14. The process of Claim 13, wherein said one or more additional processing steps comprises cooling. 前記1つ以上の追加の処理ステップは、急冷を含む、請求項13に記載のプロセス。 14. The process of Claim 13, wherein said one or more additional processing steps comprises quenching. 前記ハイブリッド製造プロセスは、仕上げられた部品に内部特徴を作製することができる、請求項1に記載のプロセス。 3. The process of claim 1, wherein the hybrid manufacturing process is capable of creating internal features in the finished part. 前記ハイブリッド製造プロセスは、仕上げられた部品に表面特徴を作製することができる、請求項1に記載のプロセス。 3. The process of claim 1, wherein the hybrid manufacturing process is capable of creating surface features on finished parts. 前記ハイブリッド製造プロセスは、仕上げられた部品に加熱または冷却チャネルを作製することができる、請求項1に記載のプロセス。 3. The process of claim 1, wherein the hybrid manufacturing process is capable of creating heating or cooling channels in the finished part. 前記ハイブリッド製造プロセスは、付加製造ステップ中に2つ以上のフィラー材料を堆積させることができる、請求項1に記載のプロセス。 3. The process of claim 1, wherein the hybrid manufacturing process is capable of depositing more than one filler material during an additive manufacturing step. 前記ハイブリッド製造プロセスは、1つ以上の除去ステップを介して、3D印刷された部品から材料を除去することができる、請求項1に記載のプロセス。 3. The process of Claim 1, wherein the hybrid manufacturing process is capable of removing material from a 3D printed part through one or more removal steps. 前記1つ以上の除去ステップは、前記3D印刷された部品上および/またはその内部での穿孔を含む、請求項22に記載のプロセス。 23. The process of Claim 22, wherein said one or more removing steps comprises perforating on and/or within said 3D printed part. 前記1つ以上の除去ステップは、前記3D印刷された部品上および/またはその内部での切断を含む、請求項22に記載のプロセス。 23. The process of Claim 22, wherein the one or more removing steps comprise cutting on and/or within the 3D printed part. 前記1つ以上の除去ステップは、前記3D印刷された部品の表面仕上げを含む、請求項22に記載のプロセス。 23. The process of Claim 22, wherein the one or more removing steps comprises surface finishing the 3D printed part. 前記1つ以上の除去ステップは、前記3D印刷された部品の機械加工を含む、請求項22に記載のプロセス。 23. The process of Claim 22, wherein said one or more removing steps comprises machining said 3D printed part. 前記ハイブリッド製造システムは、各々が異なる付加製造ステップまたは除去製造ステップを実行することができる少なくとも2つのツールを含む、請求項1に記載のプロセス。 3. The process of claim 1, wherein the hybrid manufacturing system includes at least two tools each capable of performing different additive or subtractive manufacturing steps. 前記ハイブリッド製造システムは、付加製造ステップおよび除去製造ステップの両方を実行することができる1つのツールのみからなる、請求項1に記載のプロセス。 2. The process of claim 1, wherein the hybrid manufacturing system consists of only one tool capable of performing both additive and subtractive manufacturing steps. 前記3D印刷された部品に1つ以上の事前造形された構成要素を組み込むことをさらに含む、請求項1に記載のプロセス。 3. The process of claim 1, further comprising incorporating one or more pre-shaped components into the 3D printed part. 前記1つ以上の事前造形された構成要素は、1つ以上のパイプを含む、請求項29に記載のプロセス。 30. The process of Claim 29, wherein the one or more pre-shaped components comprise one or more pipes.
JP2021529067A 2018-11-21 2019-11-21 Hybrid solid addition and removal manufacturing process, materials used, and parts modeled by the hybrid process Pending JP2022507945A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862770551P 2018-11-21 2018-11-21
US62/770,551 2018-11-21
PCT/US2019/062604 WO2020106952A1 (en) 2018-11-21 2019-11-21 Hybrid solid-state additive and subtractive manufacturing processes, materials used and parts fabricated with the hybrid processes

Publications (2)

Publication Number Publication Date
JP2022507945A JP2022507945A (en) 2022-01-18
JPWO2020106952A5 true JPWO2020106952A5 (en) 2022-11-28

Family

ID=70773652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021529067A Pending JP2022507945A (en) 2018-11-21 2019-11-21 Hybrid solid addition and removal manufacturing process, materials used, and parts modeled by the hybrid process

Country Status (7)

Country Link
US (1) US20220080522A1 (en)
EP (1) EP3883718A4 (en)
JP (1) JP2022507945A (en)
KR (1) KR20210130704A (en)
AU (1) AU2019383418A1 (en)
CA (1) CA3120796A1 (en)
WO (1) WO2020106952A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3081330A1 (en) 2017-10-31 2019-05-09 MELD Manufacturing Corporation Solid-state additive manufacturing system and material compositions and structures
WO2019178138A2 (en) 2018-03-12 2019-09-19 MELD Manufacturing Corporation Method for process control of a solid-state additive manufacturing system, process control system, continuous feeding system and structures produced with a software-controlled solid -state additive manufacturing system
US11890788B2 (en) 2020-05-20 2024-02-06 The Regents Of The University Of Michigan Methods and process for producing polymer-metal hybrid components bonded by C—O-M bonds
CN114769922B (en) * 2022-05-12 2023-04-18 南昌航空大学 Stirring friction composite discharge material increasing and decreasing device and method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050104241A1 (en) * 2000-01-18 2005-05-19 Objet Geometried Ltd. Apparatus and method for three dimensional model printing
US20040012124A1 (en) * 2002-07-10 2004-01-22 Xiaochun Li Apparatus and method of fabricating small-scale devices
US20040107019A1 (en) * 2002-07-18 2004-06-03 Shyam Keshavmurthy Automated rapid prototyping combining additive and subtractive processes
US9511445B2 (en) * 2014-12-17 2016-12-06 Aeroprobe Corporation Solid state joining using additive friction stir processing
US7777155B2 (en) * 2007-02-21 2010-08-17 United Technologies Corporation System and method for an integrated additive manufacturing cell for complex components
WO2009073498A1 (en) * 2007-11-29 2009-06-11 3M Innovative Properties Company Three-dimensional fabrication
US20130101746A1 (en) * 2011-10-21 2013-04-25 John J. Keremes Additive manufacturing management of large part build mass
US9566742B2 (en) * 2012-04-03 2017-02-14 Massachusetts Institute Of Technology Methods and apparatus for computer-assisted spray foam fabrication
GB201212629D0 (en) * 2012-07-16 2012-08-29 Prec Engineering Technologies Ltd A machine tool
DE102015212529A1 (en) * 2015-07-03 2017-01-05 Siemens Aktiengesellschaft Powder bed based additive manufacturing process with surface post-treatment and plant suitable for this manufacturing process
EP3147048B1 (en) * 2015-09-28 2020-08-05 Ecole Polytechnique Federale De Lausanne (Epfl) Method and device for implementing laser shock peening (lsp) or warm laser shock peening (wlsp) during selective laser melting (slm)
US20180193922A1 (en) * 2017-01-12 2018-07-12 Voxel8. Inc. Techniques for hybrid additive and substractive manufacturing
US20180281237A1 (en) * 2017-03-28 2018-10-04 Velo3D, Inc. Material manipulation in three-dimensional printing
WO2021155463A1 (en) * 2020-02-04 2021-08-12 1188511 Canada Ltd. Performing operations on a workpiece using electromagnetic forces

Similar Documents

Publication Publication Date Title
CN100564006C (en) Stir forming apparatus and method
CN106624652A (en) Rotary forging forming method for metal circular plate
CN105478603B (en) A kind of fractionation processing technology of automobile die
CN103007502A (en) Manufacturing method for striking panel of golf club head
GB2101233A (en) Making bearings.
CN104765917B (en) A kind of spacecraft process standardization method
CN114226589B (en) Stamping process for sheet metal of automobile body panel
JPWO2020106952A5 (en)
JP2017131898A (en) Manufacturing method for blisk intermediate product and forging die unit
Dobrotvorskiy et al. Forecasting of the productivity of parts machining by highspeed milling with the method of half-overlap
WO2019186602A1 (en) Turbine impeller and manufacturing method for the same
CN104972284A (en) Process for producing automobile outer cage
CN105855820A (en) Rapid manufacturing method of frame mold
KR101383362B1 (en) Manufacturing method of planet carrier for vechicle
JP2750301B2 (en) Stud bolt manufacturing method
KR101464873B1 (en) Hot stamping method and hot stamping appratus for easy to trim holes
KR20120036566A (en) Method and apparatus for flow-forming cast wheel
CN116329442A (en) High-temperature alloy large-sized special-shaped ring forging forming method
JP4356644B2 (en) Method for manufacturing hollow camshaft
JP7060176B1 (en) Bearing element manufacturing method, bearing manufacturing method, machine manufacturing method, vehicle manufacturing method, bearing element, bearing, machine, and vehicle
TWI462808B (en) The manufacturing method of metal handle
JP4798139B2 (en) Forging apparatus and forging method
CN105436365B (en) Applied to the mould and method for rolling over the ring apparatus production two-in-one forging of flat-type
Bedan et al. Improve Single Point Incremental Forming Process Performance Using Primary Stretching Forming Process
TWI833638B (en) Method for manufacturing partition board material using metal shavings, metal shavings recycling system, and partition board material produced therefrom