JPWO2020101033A1 - Hoisting motor overload determination method and hoisting machine manufacturing method - Google Patents

Hoisting motor overload determination method and hoisting machine manufacturing method Download PDF

Info

Publication number
JPWO2020101033A1
JPWO2020101033A1 JP2020556202A JP2020556202A JPWO2020101033A1 JP WO2020101033 A1 JPWO2020101033 A1 JP WO2020101033A1 JP 2020556202 A JP2020556202 A JP 2020556202A JP 2020556202 A JP2020556202 A JP 2020556202A JP WO2020101033 A1 JPWO2020101033 A1 JP WO2020101033A1
Authority
JP
Japan
Prior art keywords
overload
determination threshold
curve
overload determination
input voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020556202A
Other languages
Japanese (ja)
Other versions
JP7253307B2 (en
Inventor
勇作 井戸
正 山野
択真 一色
愉 戸部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kito Corp
Original Assignee
Kito Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kito Corp filed Critical Kito Corp
Publication of JPWO2020101033A1 publication Critical patent/JPWO2020101033A1/en
Application granted granted Critical
Publication of JP7253307B2 publication Critical patent/JP7253307B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/54Safety gear
    • B66D1/58Safety gear responsive to excess of load
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Abstract

精度の良い過負荷判定が可能で、過負荷閾値を変更しても引き続き精度の良い過負荷判定が可能な巻上電動機の過負荷判定出方法を提供する。
基準とする巻上電動機に諸負荷をかけ入力電圧と電流の関係を測定するAステップと、その測定値に基づいて、入力電圧(v)の二次式で電流(i)を定義した基準関数よりなる過負荷判定のための基準閾値としての基準過負荷判定閾値曲線を導出するBステップと、基準過負荷判定閾値曲線を変更するか否かを決定するCステップと、基準過負荷判定閾値曲線を変更しない場合には、基準過負荷判定閾値曲線に基づき対象とする巻上電動機の過負荷を判定し、基準過負荷判定閾値曲線を変更する場合には、基準関数の切片を補正した二次式よりなる補正過負荷判定閾値曲線に基づき対象とする巻上電動機の過負荷を判定するDステップと、を含む。
Provided is a method for determining an overload of a hoisting motor, which enables accurate overload determination and can continue to perform accurate overload determination even if the overload threshold value is changed.
A reference function that defines the current (i) by the quadratic equation of the input voltage (v) based on the A step that applies various loads to the reference hoisting motor and measures the relationship between the input voltage and the current. Step B for deriving a reference overload determination threshold curve as a reference threshold for overload determination, step C for determining whether to change the reference overload determination threshold curve, and a reference overload determination threshold curve. If is not changed, the overload of the target hoisting motor is determined based on the reference overload determination threshold curve, and if the reference overload determination threshold curve is changed, the section of the reference function is corrected. Includes a D step of determining the overload of the target hoisting motor based on the corrected overload determination threshold curve consisting of the equation.

Description

本発明は巻上電動機の過負荷判定方法および巻上機の製造方法に関する。 The present invention relates to a method for determining an overload of a hoisting motor and a method for manufacturing a hoisting machine.

巻上機には、過負荷による事故の発生や、モータ(巻上電動機)の損傷等を防止するための安全装置であるオーバーロードリミッタ(Over Load Limiter)が備えられている。OLLには所定の過負荷でクラッチがスリップすることで巻上げを停止させる機械式OLLや、モータ電流の値から過負荷を検出し電気的に巻上げを停止させる電子式OLLなどが存在する。機械式OLLと電子式OLLの両方が備えられた巻上機もあり、そのような巻上機では、通常、電子式OLLがまず作動し、機械式OLLがその補完(バックアップ)をするようになっている(定格荷重と機械式OLL設定値の間に電子式OLLの閾値が設定されている)。 The hoisting machine is equipped with an overload limiter (Over Load Limiter), which is a safety device for preventing accidents due to overload and damage to the motor (winding motor). The OLL includes a mechanical OLL that stops the hoisting when the clutch slips due to a predetermined overload, and an electronic OLL that detects the overload from the value of the motor current and electrically stops the hoisting. Some hoisting machines are equipped with both mechanical and electronic OLLs, so that in such hoisting machines, the electronic OLL usually operates first and the mechanical OLL complements (backs up) it. (The electronic OLL threshold is set between the rated load and the mechanical OLL set value).

電子式OLLには、たとえば定格荷重(W)の1.1倍までは確実に巻上下動作を行わせ、定格荷重の1.25倍では確実に巻上動作を停止させることが求められる。そのため、電子式OLLの作動の要否を判定するためのモータ電流値に基づく過負荷の検出は重要であり、巻上機の出荷前には、巻上動作を停止させる過負荷閾値を初期設定するための出荷前検査が行なわれる。その際、巻上機の個体差に起因して過負荷閾値の設定の調整が必要になることがある。 The electronic OLL is required to reliably perform the winding up and down operation up to 1.1 times the rated load (W), and to reliably stop the winding operation up to 1.25 times the rated load. Therefore, it is important to detect overload based on the motor current value to determine the necessity of operating the electronic OLL, and the overload threshold for stopping the hoisting operation is initially set before the hoisting machine is shipped. Pre-shipment inspection is performed to do so. At that time, it may be necessary to adjust the setting of the overload threshold value due to individual differences in the hoisting machine.

また、巻上機を貸与されたり購入した客先自身が、初期設定されている過負荷閾値をより安全方向に変更したい場合や巻上機の設置場所における電源事情(配電に伴う電圧降下など)により過負荷閾値を変更したい場合もある。 In addition, if the customer who rented or purchased the hoisting machine wants to change the default overload threshold to a safer direction, or the power supply situation at the installation location of the hoisting machine (voltage drop due to power distribution, etc.) You may want to change the overload threshold depending on the situation.

従来、巻上電動機の過負荷検出については例えば特許文献1に開示される発明がある。この発明は、巻上電動機(モーター)の電源電圧−入力電力特性を直線で近似して過負荷を検出するものであり、過負荷をある程度の精度で簡易に検出できる点で大変優れている。 Conventionally, there is an invention disclosed in Patent Document 1, for example, regarding overload detection of a hoisting motor. The present invention detects an overload by approximating the power supply voltage-input power characteristic of the hoisting motor (motor) with a straight line, and is very excellent in that the overload can be easily detected with a certain degree of accuracy.

特許第2593270号公報Japanese Patent No. 2593270

しかしながら、初期設定を特許文献1に記載の発明よりも実際の過負荷(閾値)に近似させることにより過負荷の判定精度(検出精度)をより良くしたい要請がある。また、過負荷閾値を変更しても引き続き判定精度を良くしたい。 However, there is a demand for improving the overload determination accuracy (detection accuracy) by approximating the initial setting to the actual overload (threshold value) as compared with the invention described in Patent Document 1. In addition, we want to continue to improve the judgment accuracy even if the overload threshold is changed.

そこで、本発明は、判定精度の良い過負荷判定が可能で、過負荷閾値を変更しても引き続き判定精度の良い巻上電動機の過負荷判定方法および巻上機の製造方法を提供することを目的とする。 Therefore, the present invention provides a method for determining an overload of a hoisting motor and a method for manufacturing a hoisting machine, which can perform overload determination with good determination accuracy and continue to have good determination accuracy even if the overload threshold value is changed. The purpose.

本発明の第1の観点によると、巻上電動機の過負荷を判定する過負荷判定方法は、
基準とする巻上電動機に基準となる過負荷をかけ入力電圧と電流の関係を測定するAステップと、
その測定値に基づいて、入力電圧(v)の二次式で電流(i)を定義した基準関数よりなる過負荷判定のための基準閾値としての基準過負荷判定閾値曲線を導出するBステップと、
前記基準過負荷判定閾値曲線を変更するか否かを決定するCステップと、
前記基準過負荷判定閾値曲線を変更しない場合には、前記基準過負荷判定閾値曲線に基づき対象とする巻上電動機の過負荷を判定し、前記基準過負荷判定閾値曲線を変更する場合には、前記基準関数の切片を補正した二次式よりなる補正過負荷判定閾値曲線に基づき前記対象とする巻上電動機の過負荷を判定するDステップと、
を含むことを特徴とする。
According to the first aspect of the present invention, the overload determination method for determining the overload of the hoisting motor is as follows.
Step A, which measures the relationship between input voltage and current by applying a reference overload to the reference hoisting motor,
Based on the measured value, the B step and the B step for deriving the reference overload determination threshold curve as the reference threshold for overload determination consisting of the reference function in which the current (i) is defined by the quadratic equation of the input voltage (v). ,
The C step for determining whether or not to change the reference overload determination threshold curve, and
When the reference overload determination threshold curve is not changed, the overload of the target hoisting motor is determined based on the reference overload determination threshold curve, and when the reference overload determination threshold curve is changed, the overload is determined. The D step of determining the overload of the target hoisting motor based on the corrected overload determination threshold curve composed of the quadratic equation obtained by correcting the intercept of the reference function, and
It is characterized by including.

ここで本発明の巻上電動機の過負荷判定方法においては、
前記Cステップで、前記基準過負荷判定閾値曲線を変更する場合には、第一負荷曲線と第二負荷曲線の各前記入力電圧における電流値の差に基づき、前記基準関数の係数と切片を補正した二次式よりなる補正過負荷判定閾値曲線に基づき前記対象とする巻上電動機の過負荷を判定すると共に、
前記第一負荷曲線は、前記Aステップで測定した前記基準とする巻上電動機の巻上動作を保証する下限負荷に設定する第一の負荷における、前記基準とする巻上電動機の前記入力電圧における電流の測定値を基に算出され、
前記第二負荷曲線は、前記Aステップで測定した前記基準とする巻上電動機の巻上停止を保証する下限負荷に設定する第二の負荷における、前記基準とする巻上電動機の前記入力電圧における電流の測定値を基に算出される、
ことが好ましい。
Here, in the method for determining the overload of the hoisting motor of the present invention,
When the reference overload determination threshold curve is changed in the C step, the coefficient and intercept of the reference function are corrected based on the difference between the current values at the input voltages of the first load curve and the second load curve. Based on the corrected overload determination threshold curve consisting of the quadratic equation, the overload of the target hoisting motor is determined and the overload is determined.
The first load curve is the input voltage of the reference hoisting motor in the first load set to the lower limit load that guarantees the hoisting operation of the reference hoisting motor measured in step A. Calculated based on current measurements
The second load curve is the input voltage of the reference hoisting motor in the second load set to the lower limit load that guarantees the hoisting stop of the reference hoisting motor measured in step A. Calculated based on current measurements,
Is preferable.

また本発明の巻上電動機の過負荷判定方法においては、
前記過負荷を判定する入力電圧領域を低電圧側入力電圧領域と、前記低電圧側入力電圧領域より高電圧の高電圧側入力電圧領域に分け、
前記低電圧側入力電圧領域では、前記Aステップ、前記Bステップ、前記Cステップ及び前記Dステップを含む方法により過負荷を判定し、
前記高電圧側入力電圧領域では、
前記Aステップと、
前記電流の測定値を基に、前記基準過負荷判定閾値曲線の代わりに、入力電圧(v)の一次式で電流(i)を定義した基準関数よりなる過負荷判定のための基準閾値としての基準過負荷閾値直線を導出するB2ステップと、
前記基準過負荷判定閾値直線を変更するか否かを決定するC2ステップと、
前記基準過負荷判定閾値直線を変更しない場合には、前記基準過負荷判定閾値直線に基づき対象とする巻上電動機の過負荷を判定し、前記基準過負荷判定閾値直線を変更する場合には、前記基準過負荷判定閾値直線を補正した補正過負荷判定閾値直線に基づき前記対象とする巻上電動機の過負荷を判定するD2ステップと、
を含むことが好ましい。
Further, in the method for determining the overload of the hoisting motor of the present invention,
The input voltage region for determining the overload is divided into a low voltage side input voltage region and a high voltage side input voltage region having a voltage higher than the low voltage side input voltage region.
In the low voltage side input voltage region, the overload is determined by a method including the A step, the B step, the C step, and the D step.
In the high voltage side input voltage region,
With step A
Based on the measured value of the current, instead of the reference overload determination threshold curve, as a reference threshold for overload determination consisting of a reference function in which the current (i) is defined by the linear equation of the input voltage (v). B2 step to derive the reference overload threshold line and
A C2 step for determining whether or not to change the reference overload determination threshold line, and
When the reference overload determination threshold line is not changed, the overload of the target hoisting motor is determined based on the reference overload determination threshold line, and when the reference overload determination threshold line is changed, the overload is determined. The D2 step of determining the overload of the target hoisting motor based on the corrected overload determination threshold line corrected by correcting the reference overload determination threshold line, and
Is preferably included.

また、本発明の第1の観点によると、巻上電動機およびマイクロコンピュータを備え、前記マイクロコンピュータによって前記巻上電動機の過負荷判定を行う機能を備える巻上機の製造方法は、
基準とする巻上電動機に諸負荷をかけた状態で、入力電圧と電流の関係を予め測定した測定値に基づいて入力電圧(v)の二次式で電流(i)を定義した基準過負荷判定閾値曲線であって、過負荷判定のための基準閾値としての前記基準過負荷判定閾値曲線を導出する機能を、マイクロコンピュータに実装する実装ステップと、
前記基準過負荷判定閾値曲線を変更するか否かを決定するCステップと、
前記基準過負荷判定閾値曲線を変更する場合には、前記基準過負荷判定閾値曲線を、前記基準関数の切片を補正した二次式よりなる補正過負荷判定閾値曲線へと変更して前記マイクロコンピュータに実装する変更ステップと、
を含むことを特徴とする。
Further, according to the first aspect of the present invention, a method for manufacturing a hoisting machine including a hoisting motor and a microcomputer and having a function of determining an overload of the hoisting motor by the microcomputer is described.
A reference overload in which the current (i) is defined by the quadratic equation of the input voltage (v) based on the measured value obtained by measuring the relationship between the input voltage and the current in a state where various loads are applied to the reference hoisting motor. An implementation step of implementing a function of deriving the reference overload determination threshold curve as a reference threshold for overload determination in a microcomputer, which is a determination threshold curve.
The C step for determining whether or not to change the reference overload determination threshold curve, and
When changing the reference overload determination threshold curve, the reference overload determination threshold curve is changed to a corrected overload determination threshold curve composed of a quadratic equation obtained by correcting the intercept of the reference function, and the microcomputer is used. And the change steps to implement in
It is characterized by including.

ここで本発明の巻上機の製造方法においては、
前記変更ステップにおける前記補正過負荷判定閾値曲線は、第一負荷曲線と第二負荷曲線の各前記入力電圧における電流値の差に基づき、前記基準関数の係数と切片を補正したものであり、
前記第一負荷曲線は、前記基準とする巻上電動機に諸負荷をかけ入力電圧と電流の関係を測定すると共に前記基準とする巻上電動機の巻上動作を保証する下限負荷に設定する第一の負荷における、前記基準とする巻上電動機の前記入力電圧における電流の測定値を基に算出され、
前記第二負荷曲線は、前記基準とする巻上電動機に諸負荷をかけ入力電圧と電流の関係を測定すると共に前記基準とする巻上電動機の巻上停止を保証する下限負荷に設定する第二の負荷における、前記基準とする巻上電動機の前記入力電圧における電流の測定値を基に算出される、
ことが好ましい。
Here, in the method for manufacturing the hoisting machine of the present invention,
The corrected overload determination threshold curve in the change step is obtained by correcting the coefficient and section of the reference function based on the difference between the current values at the input voltages of the first load curve and the second load curve.
The first load curve is set to a lower limit load that applies various loads to the reference hoisting motor, measures the relationship between the input voltage and the current, and guarantees the hoisting operation of the reference hoisting motor. Calculated based on the measured value of the current at the input voltage of the hoisting motor as the reference under the load of
The second load curve is set to the lower limit load that guarantees the hoisting stop of the hoisting motor as the reference while measuring the relationship between the input voltage and the current by applying various loads to the hoisting motor as the reference. Calculated based on the measured value of the current at the input voltage of the hoisting motor as the reference under the load of.
Is preferable.

また本発明の巻上機の製造方法においては、
前記実装ステップは、低電圧側実装ステップと、高電圧側実装ステップとを有し、
前記低電圧側実装ステップでは、前記基準過負荷判定閾値曲線を導出する機能を、マイクロコンピュータに実装し、
前記高電圧側実装ステップでは、前記低電圧側実装ステップよりも前記過負荷を判定する入力電圧領域が高電圧側において、入力電圧(v)の一次式で電流(i)を定義した基準過負荷閾値直線であって過負荷判定のための基準閾値としての前記基準過負荷閾値直線を導出する機能を、前記前記基準過負荷判定閾値曲線を導出する機能に代えて、前記マイクロコンピュータに実装すると共に、
前記変更ステップは、低電圧側変更ステップと、高電圧側変更ステップとを有し、
前記低電圧側変更ステップでは、前記基準過負荷判定閾値曲線を、前記補正過負荷判定閾値曲線へと変更して前記マイクロコンピュータに実装し、
前記高電圧側変更ステップでは、前記低電圧側変更ステップよりも前記過負荷を判定する入力電圧領域が高電圧側において、前記基準過負荷判定閾値曲線を、前記基準過負荷判定閾値直線を補正した補正過負荷判定閾値直線へと変更して前記マイクロコンピュータに実装する、
ことが好ましい。
Further, in the method for manufacturing the hoisting machine of the present invention,
The mounting step includes a low voltage side mounting step and a high voltage side mounting step.
In the low voltage side mounting step, the function of deriving the reference overload determination threshold curve is mounted on the microcomputer.
In the high voltage side mounting step, the reference overload in which the current (i) is defined by the linear equation of the input voltage (v) when the input voltage region for determining the overload is higher than the low voltage side mounting step. The function of deriving the reference overload threshold line, which is a threshold line and serves as a reference threshold for overload determination, is implemented in the microcomputer in place of the function of deriving the reference overload determination threshold curve. ,
The change step includes a low voltage side change step and a high voltage side change step.
In the low voltage side change step, the reference overload determination threshold curve is changed to the correction overload determination threshold curve and mounted on the microcomputer.
In the high voltage side change step, the reference overload determination threshold curve and the reference overload determination threshold straight line are corrected when the input voltage region for determining the overload is higher than the low voltage side change step. Change to the corrected overload judgment threshold straight line and mount it on the microcomputer.
Is preferable.

本発明の巻上電動機の過負荷判定方法および巻上機の製造方法によれば、精度の良い過負荷判定が可能である。そして、過負荷閾値を変更する事情が生じた際にも、引き続き精度の良い巻上電動機の過負荷判定が可能である。 According to the method for determining the overload of the hoisting motor and the method for manufacturing the hoisting machine of the present invention, it is possible to determine the overload with high accuracy. Then, even when a situation occurs in which the overload threshold value is changed, it is possible to continue to accurately determine the overload of the hoisting motor.

実施形態1に係る過負荷判定方法を説明するための図で、巻上電動機の過負荷判定装置(巻上機)のハードウエア構成を示す図である。It is a figure for demonstrating the overload determination method which concerns on Embodiment 1, and is the figure which shows the hardware composition of the overload determination apparatus (winding machine) of a hoisting motor. 実施形態1に係る過負荷判定方法を説明するための図で、巻上電動機の過負荷判定装置の機能ブロックを示す図である。It is a figure for demonstrating the overload determination method which concerns on Embodiment 1, and is the figure which shows the functional block of the overload determination apparatus of a hoisting motor. 実施形態1に係る過負荷判定方法を説明するための図で、諸負荷における基準過負荷判定閾値曲線を示す図である。It is a figure for demonstrating the overload determination method which concerns on Embodiment 1, and is the figure which shows the reference overload determination threshold curve in various loads. 実施形態1に係る過負荷判定方法の処理フローを説明するための図である。It is a figure for demonstrating the processing flow of the overload determination method which concerns on Embodiment 1. 実施形態1に係る過負荷判定方法を説明するための図で、基準過負荷判定閾値曲線の導出についての説明図である。It is a figure for demonstrating the overload determination method which concerns on Embodiment 1, and is explanatory drawing about the derivation of the reference overload determination threshold curve. 実施形態1に係る過負荷判定方法を説明するための図で、基準過負荷判定閾値曲線を導出するフローを説明する図である。It is a figure for demonstrating the overload determination method which concerns on Embodiment 1, and is the figure explaining the flow which derives the reference overload determination threshold curve. 実施形態1に係る過負荷判定方法を説明するための図で、基準過負荷判定閾値曲線の変更に関する説明図である。It is a figure for demonstrating the overload determination method which concerns on Embodiment 1, and is explanatory drawing concerning the change of the reference overload determination threshold curve. 実施形態1に係る過負荷判定方法を説明するための図で、基準過負荷判定閾値曲線の変更に関する処理フローを説明する図である。It is a figure for demonstrating the overload determination method which concerns on Embodiment 1, and is the figure which explains the processing flow concerning the change of the reference overload determination threshold curve. 実施形態1に係る過負荷判定方法を説明するための図で、補正過負荷判定閾値曲線に関する説明図である。It is a figure for demonstrating the overload determination method which concerns on Embodiment 1, and is explanatory drawing about the correction overload determination threshold curve. 実施形態2に係る過負荷判定方法を説明するための図で、巻上電動機の過負荷判定装置の機能ブロックを示す図である。It is a figure for demonstrating the overload determination method which concerns on Embodiment 2, and is the figure which shows the functional block of the overload determination apparatus of a hoisting motor. 実施形態2に係る過負荷判定方法の処理フローを説明するための図である。It is a figure for demonstrating the processing flow of the overload determination method which concerns on Embodiment 2. 実施形態2に係る過負荷判定方法を説明するための図である。It is a figure for demonstrating the overload determination method which concerns on Embodiment 2. 実施形態3に係る過負荷判定方法を説明するための図である。It is a figure for demonstrating the overload determination method which concerns on Embodiment 3.

以下、本発明の巻上電動機の過負荷判定方法および巻上機の製造方法について、図に示す実施形態に基づいて説明する。なお、各図面は模式図であり、必ずしも実際の構造、外観等を厳密に反映したものではない。 Hereinafter, the method for determining the overload of the hoisting motor and the method for manufacturing the hoisting machine of the present invention will be described based on the embodiment shown in the figure. It should be noted that each drawing is a schematic view and does not necessarily accurately reflect the actual structure, appearance, etc.

[実施形態1]
図1〜図9は実施形態1に係る巻上電動機22の過負荷判定方法を説明するための図である。
[Embodiment 1]
1 to 9 are views for explaining an overload determination method for the hoisting motor 22 according to the first embodiment.

まず、巻上機21全体について説明する。
図1は、実施形態1に係る過負荷判定方法に用いる巻上電動機22の過負荷判定装置24(巻上機21)のハードウエア構成を示す図である。なお巻上電動機22とは巻上機21に組み上げられた状態におけるモータを意味する。
ここで、「過負荷」とは、巻上電動機22にとって許容以上の負荷をいう。どの負荷を過負荷とするかは、必ずしも一義的に決まる訳ではなく、巻上電動機22(巻上機21)の製造者やユーザーが安全性や使用性等を総合的に判断して決定する。そのため、本明細書では、「負荷〇〇%」を、そのまま「負荷〇〇%」という場合もあれば「過負荷〇〇%」という場合もある。なお「負荷」とは、巻上電動機22のシャフト(軸)を回す力または軸の回転を止めようとする力をいい、主として荷重である。以下たとえば、定格荷重(W)を負荷100%、定格荷重(W)の1.1倍を負荷110%ということとする。
First, the entire hoisting machine 21 will be described.
FIG. 1 is a diagram showing a hardware configuration of an overload determination device 24 (winding machine 21) of the hoisting motor 22 used in the overload determining method according to the first embodiment. The hoisting motor 22 means a motor in a state of being assembled on the hoisting machine 21.
Here, the “overload” means a load that exceeds the permissible load for the hoisting motor 22. Which load is to be overloaded is not necessarily uniquely determined, and the manufacturer or user of the hoisting motor 22 (winding machine 21) comprehensively judges safety, usability, etc. and decides. .. Therefore, in the present specification, "load 〇〇%" may be referred to as "load 〇〇%" as it is, or may be referred to as "overload 〇〇%". The "load" refers to a force for rotating the shaft of the hoisting motor 22 or a force for stopping the rotation of the shaft, and is mainly a load. Hereinafter, for example, the rated load (W) is defined as 100% of the load, and 1.1 times the rated load (W) is defined as 110% of the load.

巻上機21は電気チェーンブロックである。巻上機21は巻上電動機(モータ)22を備え、減速機構を介して巻上電動機22に繋がれたロードシーブを軸回転させることでチェーンを巻き取りつり荷等の負荷51を巻上げる。なお巻上機21は、ドラムを回転させてワイヤーロープを巻取るロープホイストやウインチであってもよい。 The hoisting machine 21 is an electric chain block. The hoisting machine 21 includes a hoisting electric motor (motor) 22 and winds up a chain and winds up a load 51 such as a load by axially rotating a road sheave connected to the hoisting electric motor 22 via a reduction mechanism. The hoisting machine 21 may be a rope hoist or winch that winds a wire rope by rotating a drum.

巻上機21は、巻上電動機22の巻上、巻下を操作する操作スイッチ25、負荷51が過負荷であるかを判定する過負荷判定装置24、及び巻上電動機22を制動する制動装置26を備える。制動装置26としては、例えば、電源52と巻上電動機22との間の電路を開閉による巻上電動機22への給電遮断に伴いブレーキをかけるプルロータブレーキである。 The hoisting machine 21 includes an operation switch 25 for operating the hoisting and lowering of the hoisting motor 22, an overload determining device 24 for determining whether the load 51 is overloaded, and a braking device for braking the hoisting motor 22. 26 is provided. The braking device 26 is, for example, a pull rotor brake that applies a brake when the power supply to the hoisting motor 22 is cut off by opening and closing the electric circuit between the power supply 52 and the hoisting motor 22.

操作スイッチ25は押しボタンスイッチである。巻上ボタンスイッチが押されると、電源52から巻上電動機22に電力が供給され、負荷51を巻上げる。巻上スイッチが離されると、巻上電動機22への電力供給が断たれ巻上が停止する。 The operation switch 25 is a push button switch. When the hoisting button switch is pressed, power is supplied from the power supply 52 to the hoisting motor 22 to wind the load 51. When the hoisting switch is released, the power supply to the hoisting motor 22 is cut off and hoisting is stopped.

過負荷判定装置24は、CPU29、ROM31、メモリー30及びセンサー23を備える。 The overload determination device 24 includes a CPU 29, a ROM 31, a memory 30, and a sensor 23.

CPU29はマイコン(マイクロコンピュータ)に組み込まれ、CPU29に対する命令(処理)を記述したコンピュータプログラム(ソフトウエア)を読み込んで実行する。
プログラムは、予めROM31やRAM32に格納されている。
メモリー30は、ROM31、及びRAM32を備える。CPU29、ROM31、RAM32及びセンサー23はBUSで接続されマイコン(マイクロコンピュータ)を構成している。
The CPU 29 is incorporated in a microcomputer (microcomputer), and reads and executes a computer program (software) that describes instructions (processes) for the CPU 29.
The program is stored in the ROM 31 or the RAM 32 in advance.
The memory 30 includes a ROM 31 and a RAM 32. The CPU 29, ROM 31, RAM 32 and sensor 23 are connected by a BUS to form a microcomputer (microcomputer).

図2は、実施形態1に係る過負荷判定方法を説明するための図で、巻上電動機22の過負荷判定装置24の機能ブロックを示す図である。 FIG. 2 is a diagram for explaining the overload determination method according to the first embodiment, and is a diagram showing a functional block of the overload determination device 24 of the hoisting motor 22.

過負荷判定装置24は、センサー23、メモリー30、過負荷判定手段61、基準過負荷判定閾値曲線導出手段62、基準過負荷判定閾値曲線変更判断手段63及び補正過負荷判定閾値曲線導出手段64を備える。 The overload determination device 24 includes a sensor 23, a memory 30, an overload determination means 61, a reference overload determination threshold curve derivation means 62, a reference overload determination threshold curve change determination means 63, and a correction overload determination threshold curve derivation means 64. Be prepared.

センサー23は、電源52から巻上機21に供給される電力について、巻上機21(巻上電動機22)の入力電圧を検出する入力電圧検出器53と、巻上電動機22に流れる電流を検出する電流検出器54を備える。 The sensor 23 detects the input voltage detector 53 that detects the input voltage of the hoisting machine 21 (the hoisting motor 22) and the current that flows through the hoisting motor 22 with respect to the electric power supplied from the power supply 52 to the hoisting machine 21. The current detector 54 is provided.

なお、「過負荷判定手段」61とは、プログラムを読み込み、過負荷を判定する機能を実行するマイコンをいう。
「基準過負荷判定閾値曲線導出手段」62とは、プログラムを読み込み、基準過負荷判定閾値曲線を導出する機能を実行するマイコンをいう。
「基準過負荷判定閾値曲線変更判断手段」63とは、プログラムを読み込み、基準過負荷判定閾値曲線の変更を判断する機能を実行するマイコンをいう。
「補正過負荷判定閾値曲線導出手段」64とは、プログラムを読み込み、補正過負荷判定閾値曲線を導出する機能を実行するマイコンをいう。
メモリー30は、巻上電動機22の一定の(過)負荷における入力電圧と電流値を記憶する。
制動装置26は、巻上電動機22に制動指令をする制動指令手段71と、制動指令を受け制動する制動機構261を備える。
The "overload determination means" 61 refers to a microcomputer that reads a program and executes a function of determining an overload.
The “reference overload determination threshold curve derivation means” 62 refers to a microcomputer that reads a program and executes a function of deriving a reference overload determination threshold curve.
The “reference overload determination threshold curve change determination means” 63 refers to a microcomputer that reads a program and executes a function of determining a change in the reference overload determination threshold curve.
The “correction overload determination threshold curve derivation means” 64 refers to a microcomputer that reads a program and executes a function of deriving a correction overload determination threshold curve.
The memory 30 stores the input voltage and the current value under a constant (over) load of the hoisting motor 22.
The braking device 26 includes a braking command means 71 that gives a braking command to the hoisting motor 22, and a braking mechanism 261 that receives and brakes the braking command.

[基準過負荷判定閾値曲線]
基準過負荷判定閾値曲線について説明する。
図3は、実施形態1に係る過負荷判定方法を説明するための図で、基準負荷における基準とする巻上電動機22の基準過負荷判定閾値曲線を示す図であるが、これは同時に対象とする巻上電動機22における基準過負荷判定閾値曲線を示す図でもある。他の図でも同様である。
[Reference overload judgment threshold curve]
The reference overload determination threshold curve will be described.
FIG. 3 is a diagram for explaining the overload determination method according to the first embodiment, and is a diagram showing a reference overload determination threshold curve of the hoisting motor 22 as a reference in the reference load, but this is a diagram at the same time. It is also a figure which shows the reference overload determination threshold curve in the hoisting motor 22. The same applies to other figures.

ここで、「基準とする巻上電動機」とは、「測定等の拠り所となる巻上電動機」をいう。「対象とする巻上電動機」とは、「過負荷判定の対象とする巻上電動機」をいう。例えば、同じ型番の巻上電動機が複数ある場合、それらのうちで平均的な、あるいはモデルとなる巻上電動機を「基準とする巻上電動機」とし、入力電圧と電流の関係を予め測定し、巻上電動機の特性を求めておく。この測定結果を反映させて出荷前検査などで過負荷判定を行う対象とする巻上電動機を「対象とする巻上電動機」とする。これは同じ型番の巻上電動機22等の同種の巻上電動機22であれば、個々に測定する必要性が乏しく、基準とする巻上電動機22の測定に基づき基準過負荷判定閾値曲線1を導出して、対象とする巻上電動機22の過負荷を判定すればよいからである。
実施形態1を含めた以下の実施形態では、「巻上電動機22」は「基準とする巻上電動機」と「対象とする巻上電動機」とを厳密には分けていない。
Here, the "reference hoisting motor" means a "hoisting motor on which measurement or the like is based". The "target hoisting motor" means a "target hoisting motor for overload determination". For example, when there are multiple hoisting motors of the same model number, the average or model hoisting motor among them is set as the "reference hoisting motor", and the relationship between the input voltage and the current is measured in advance. Find the characteristics of the hoisting motor. The hoisting motor that reflects this measurement result and is subject to overload judgment in pre-shipment inspection or the like is referred to as the "target hoisting motor". If it is the same type of hoisting motor 22 such as the hoisting motor 22 of the same model number, there is little need to measure it individually, and the reference overload determination threshold curve 1 is derived based on the measurement of the reference hoisting motor 22. Then, the overload of the target hoisting motor 22 may be determined.
In the following embodiments including the first embodiment, the "hoisting motor 22" does not strictly separate the "reference hoisting motor" and the "target hoisting motor".

図3の基準過負荷判定閾値曲線1は、所定の負荷における、巻上電動機22の入力電圧と、巻上電動機22に流れる電流(値)との関係を示す。横軸が入力電圧(v)で縦軸が電流(i)である。
使用範囲の入力電圧は、340V(ボルト)〜460Vである。この範囲の入力電圧が巻上電動機22の使用保証範囲である。定格電圧は400Vである。
The reference overload determination threshold curve 1 of FIG. 3 shows the relationship between the input voltage of the hoisting motor 22 and the current (value) flowing through the hoisting motor 22 under a predetermined load. The horizontal axis is the input voltage (v) and the vertical axis is the current (i).
The input voltage in the operating range is 340V (volt) to 460V. The input voltage in this range is the guaranteed use range of the hoisting motor 22. The rated voltage is 400V.

符号1の曲線は、基準とする負荷117.5%での各入力電圧(340V,360V,380V,400V,420V,440V,460V)と電流との関係を示す曲線であり、本実施形態ではこれを基準過負荷判定閾値曲線1とした。すなわち負荷117.5%を閾値とし、負荷117.5%以上の負荷は過負荷とする。
ここで、「閾値」とは、過負荷とする最小の値をいう。限界値または臨界値ともいう。閾値を117.5%としたのは、厳重に巻上げを禁止し安全を確保すべき負荷125%と、巻上が許容されている負荷110%との中間の値をとり、より安全性に配慮したためである。工場出荷時の過負荷閾値は負荷117.5%とするのが出願人の出荷標準である。ただし負荷117.5%は閾値の目安となるものであり、負荷110%以下で巻上げが停止することなく、かつ、負荷110%から負荷125%の範囲で巻上げが停止すればよく、厳密に117.5%の負荷で巻上げを停止させる必要はない。
The curve of reference numeral 1 is a curve showing the relationship between each input voltage (340V, 360V, 380V, 400V, 420V, 440V, 460V) at a reference load of 117.5% and the current, and this is the curve in the present embodiment. Was set as the reference overload determination threshold curve 1. That is, a load of 117.5% is set as a threshold value, and a load of 117.5% or more is set as an overload.
Here, the "threshold value" means the minimum value to be overloaded. Also called a limit value or a critical value. The threshold is set to 117.5%, which is an intermediate value between the load of 125%, which should strictly prohibit hoisting and ensure safety, and the load of 110%, which allows hoisting, to give more consideration to safety. Because it was done. The applicant's shipping standard is that the overload threshold at the time of shipment from the factory is a load of 117.5%. However, the load of 117.5% is a guideline for the threshold value, and it is sufficient that the winding does not stop when the load is 110% or less and the winding stops in the range of the load of 110% to 125%, strictly 117. It is not necessary to stop the hoisting with a load of 5.5%.

また図3には、負荷117.5%(符号1の曲線)の他に、負荷100%、125%での入力電圧と電流(実測値)との関係をそれぞれ符号100の曲線及び符号125の過負荷判定閾値曲線で示した。各曲線から分かるように、各負荷での入力電圧−電流の増減傾向(モータ特性)を読み取ることができる。
実際には、負荷117.5%の二次曲線を予め求めるとともに、負荷100%、125%での、少なくとも入力電圧340V、400Vおよび460Vの電流値を実測しメモリー30に記憶しておく。これにより必要に応じて、負荷100%、125%での基準となる巻上電動機22のモータ特性の概略曲線を描くことができる。そして、負荷100%、125%の概略曲線を基に、例えば負荷110%での、任意の入力電圧におけるおおよその電流値を、負荷100%と負荷117.5%との差の比例関係から求めることができる。
Further, in FIG. 3, in addition to the load of 117.5% (curve of reference numeral 1), the relationship between the input voltage and the current (measured value) at loads of 100% and 125% is shown in the curve of reference numeral 100 and the curve of reference numeral 125, respectively. It is shown by the overload judgment threshold curve. As can be seen from each curve, the increasing / decreasing tendency (motor characteristics) of the input voltage-current at each load can be read.
Actually, the quadratic curve of the load 117.5% is obtained in advance, and the current values of at least the input voltages 340V, 400V and 460V at the loads 100% and 125% are actually measured and stored in the memory 30. Thereby, if necessary, a rough curve of the motor characteristics of the hoisting motor 22 as a reference at a load of 100% and 125% can be drawn. Then, based on the approximate curves of the load of 100% and 125%, the approximate current value at an arbitrary input voltage at, for example, the load of 110% is obtained from the proportional relationship of the difference between the load of 100% and the load of 117.5%. be able to.

なお本実施形態では負荷117.5%を基準負荷としたが、工場出荷時の基準負荷(過負荷閾値)を例えば負荷115%にする場合には、上記と同様に実測値から予め求めた負荷115%の二次曲線を基準過負荷判定閾値曲線とする。 In the present embodiment, the load of 117.5% is set as the reference load, but when the reference load (overload threshold) at the time of shipment from the factory is set to, for example, the load of 115%, the load obtained in advance from the measured value is the same as above. The 115% quadratic curve is used as the reference overload determination threshold curve.

[過負荷判定方法の処理フロー]
図4は、実施形態1に係る過負荷判定方法の処理フローを説明するための図である。
実施形態1の巻上電動機22の過負荷を判定する過負荷判定方法では、まず、基準とする巻上電動機22に基準負荷51(本実施形態では1.175W(117.5%)とする)をかけ、入力電圧と電流(値)の関係を予め測定する(ステップS1、Aステップ)。
入力電圧と電流の関係の測定は、入力電圧検出器53及び電流検出器54で行う。
測定結果は、メモリー30に記憶される。「測定」は実測で行った。測定値は実測値である。
[Processing flow of overload judgment method]
FIG. 4 is a diagram for explaining a processing flow of the overload determination method according to the first embodiment.
In the overload determination method for determining the overload of the hoisting motor 22 of the first embodiment, first, the reference load 51 is applied to the reference hoisting motor 22 (1.175 W (117.5%) in the present embodiment). To measure the relationship between the input voltage and the current (value) in advance (steps S1 and A).
The measurement of the relationship between the input voltage and the current is performed by the input voltage detector 53 and the current detector 54.
The measurement result is stored in the memory 30. "Measurement" was performed by actual measurement. The measured value is an actually measured value.

次に、基準過負荷判定閾値曲線導出手段62は、メモリー30に記憶された測定値を基に、入力電圧(v)の二次式で電流(i)を定義した基準関数よりなる過負荷判定のための基準閾値としての基準過負荷判定閾値曲線1(近似曲線)を導出する(ステップS2、Bステップ)。
ここで、「二次式」とは、巻上電動機22の電流を、入力電圧の次数2の多項式で表した式をいう。
Next, the reference overload determination threshold curve deriving means 62 is an overload determination including a reference function in which the current (i) is defined by the quadratic equation of the input voltage (v) based on the measured value stored in the memory 30. The reference overload determination threshold curve 1 (approximate curve) as the reference threshold for the above is derived (steps S2 and B).
Here, the "quadratic equation" refers to an equation in which the current of the hoisting motor 22 is expressed by a polynomial of degree 2 of the input voltage.

次に、基準過負荷判定閾値曲線変更判断手段63は、基準過負荷判定閾値曲線1を変更するか否かを決定する(ステップS3、Cステップ)。なおこの決定は、人的に行なわれるものであり、過負荷判定装置24が自動的に行なうものではない。変更を決定する場合とは、客先の要望により安全サイドに寄せたい場合などに意図的に閾値を引き下げるケースの他、巻上機個体のばらつきから、閾値を117.5%に設定しても負荷110%以下で巻上げが停止してしまう場合に閾値を引き上げ、または、負荷110%〜125%の範囲で巻上げが停止しない場合に閾値を引き下げるケースが想定される。 Next, the reference overload determination threshold curve change determination means 63 determines whether or not to change the reference overload determination threshold curve 1 (steps S3 and C). It should be noted that this determination is made humanly and is not automatically made by the overload determination device 24. The case of deciding to change is the case of intentionally lowering the threshold value when the customer wants to move to the safe side at the request of the customer, or even if the threshold value is set to 117.5% due to the variation of individual hoisting machines. It is assumed that the threshold is raised when the winding stops at a load of 110% or less, or the threshold is lowered when the winding does not stop in the range of 110% to 125% of the load.

ステップS4(Dステップ)では、基準過負荷判定閾値曲線1(過負荷閾値)を変更しない場合には、基準過負荷判定閾値曲線1に基づき対象とする巻上電動機22の過負荷を判定する(ステップS4−1)。
基準過負荷判定閾値曲線1(過負荷閾値)を変更する場合には、基準関数の切片を補正した二次式よりなる補正過負荷判定閾値曲線2に基づき対象とする巻上電動機22の過負荷を判定する(ステップS4−2)。
過負荷判定手段61は、入力電圧検出器53で検出された入力電圧(値)及び電流検出器54で検出された電流値と、基準過負荷判定閾値曲線導出手段62で導出された基準過負荷判定閾値曲線1に基づき上記処理(過負荷判定)を行う。
In step S4 (step D), when the reference overload determination threshold curve 1 (overload threshold value) is not changed, the overload of the target hoisting motor 22 is determined based on the reference overload determination threshold curve 1 (step S4 (D step)). Step S4-1).
When changing the reference overload determination threshold curve 1 (overload threshold value), the overload of the target hoisting motor 22 is based on the corrected overload determination threshold curve 2 consisting of the quadratic equation obtained by correcting the intercept of the reference function. Is determined (step S4-2).
The overload determining means 61 includes an input voltage (value) detected by the input voltage detector 53, a current value detected by the current detector 54, and a reference overload derived by the reference overload determination threshold curve deriving means 62. The above process (overload determination) is performed based on the determination threshold curve 1.

[基準過負荷判定閾値曲線の導出]
図5〜図6を用いて基準過負荷判定閾値曲線1の導出について説明する。
過負荷判定のための基準閾値は117.5%とした。
基準過負荷判定閾値曲線1の導出は、主として基準過負荷判定閾値曲線導出手段62が行う。
[Derivation of reference overload judgment threshold curve]
The derivation of the reference overload determination threshold curve 1 will be described with reference to FIGS. 5 to 6.
The reference threshold value for overload determination was 117.5%.
The reference overload determination threshold curve 1 is mainly derived by the reference overload determination threshold curve derivation means 62.

図5に示すように、基準とする巻上電動機22で、基準負荷として117.5%の負荷を実際にかけ、巻上電動機22の各入力電圧と電流(値)との関係を測定した。具体的には入力電圧340V〜460Vの範囲で、340Vから20V毎に測定した。121は各測定値である。この測定値121はメモリー30に記憶される。
そして符号1は、複数の測定値121から最小二乗法など数学的手法により求めた基準過負荷判定閾値曲線(近似曲線)を示す。
As shown in FIG. 5, a load of 117.5% was actually applied as a reference load on the reference hoisting motor 22, and the relationship between each input voltage of the hoisting motor 22 and the current (value) was measured. Specifically, the measurement was performed every 20V from 340V in the range of the input voltage of 340V to 460V. 121 is each measured value. The measured value 121 is stored in the memory 30.
Reference numeral 1 indicates a reference overload determination threshold curve (approximate curve) obtained from a plurality of measured values 121 by a mathematical method such as the least squares method.

図6は、実施形態1に係る過負荷判定方法を説明するための図で、基準過負荷判定閾値曲線1を導出するフローを説明する図である。 FIG. 6 is a diagram for explaining the overload determination method according to the first embodiment, and is a diagram for explaining a flow for deriving the reference overload determination threshold curve 1.

まず、基準過負荷閾値を決定する。ここでは、基準過負荷閾値を117.5%に決定した(ステップS21)。 First, the reference overload threshold is determined. Here, the reference overload threshold was determined to be 117.5% (step S21).

次に基準過負荷判定閾値曲線導出手段62は、二次式
i=a・v+b・v+c …(1)
i:電流(値)、v:入力電圧(値)、
a(係数、≠0)、b(係数)、c(切片):定数
を準備する(ステップS22)。
これは、入力電圧(v)の二次式で電流(i)を定義した基準関数であり、過負荷判定のための基準閾値としての基準過負荷判定閾値曲線1を表す。
Next, the reference overload determination threshold curve deriving means 62 is a quadratic expression.
i = a ・ v 2 + b ・ v + c… (1)
i: current (value), v: input voltage (value),
a (coefficient, ≠ 0), b (coefficient), c (intercept): A constant is prepared (step S22).
This is a reference function in which the current (i) is defined by the quadratic equation of the input voltage (v), and represents the reference overload determination threshold curve 1 as the reference threshold for the overload determination.

次に、基準過負荷判定閾値曲線導出手段62は、基準閾値過負荷(117.5%)での入力電圧及び電流値の測定値121をメモリー30から読み出す(ステップS23)。 Next, the reference overload determination threshold curve deriving means 62 reads out the measured values 121 of the input voltage and the current value at the reference threshold overload (117.5%) from the memory 30 (step S23).

次に、ステップ24で、上記の定数未定の二次式に、基準閾値過負荷(117.5%)での各入力電圧、電流値の複数の組み合わせを代入して、その近似曲線の定数a(係数)、b(係数)及びc(切片)を求め、二次式を作成する(ステップ25)。 Next, in step 24, a plurality of combinations of each input voltage and current value at the reference threshold overload (117.5%) are substituted into the above-mentioned quadratic expression whose constant is undecided, and the constant a of the approximate curve is substituted. (Coefficient), b (coefficient) and c (section) are obtained, and a quadratic equation is created (step 25).

そして、上記の式(1)のように、入力電圧(v)の二次式で電流(i)を定義した基準関数よりなる(過負荷判定のための基準閾値としての)「基準過負荷判定閾値曲線1」に基づき、対象とする巻上電動機22の過負荷を判定する。具体的には一定の電源電圧において負荷51を吊り上げようとすると巻上電動機22に流れる電流値が一旦急激に上昇してから若干減少しほぼ一定の電流値に落ち着く。この一定の電流値がこの基準閾値を超えた場合には過負荷と判定し、電力の供給を遮断し巻上電動機22を停止させる。これにより使用範囲のいずれの入力電圧での使用においても、先行技術文献に記載した近似直線による閾値に基づく過負荷判定に比べより判定精度の良い過負荷判定が可能となる。 Then, as in the above equation (1), the "reference overload determination" (as the reference threshold value for the overload determination) is composed of the reference function in which the current (i) is defined by the quadratic equation of the input voltage (v). Based on the "threshold curve 1", the overload of the target hoisting motor 22 is determined. Specifically, when the load 51 is lifted at a constant power supply voltage, the current value flowing through the hoisting motor 22 rises sharply and then decreases slightly to settle to a substantially constant current value. When this constant current value exceeds this reference threshold value, it is determined that the load is overloaded, the power supply is cut off, and the hoisting motor 22 is stopped. As a result, regardless of the input voltage in the usage range, the overload determination with higher determination accuracy becomes possible as compared with the overload determination based on the threshold value based on the approximate straight line described in the prior art document.

[基準過負荷判定閾値曲線の変更]
図7〜図9を用いて、基準過負荷判定閾値曲線1を変更する場合について説明する。
[Change of reference overload judgment threshold curve]
A case where the reference overload determination threshold curve 1 is changed will be described with reference to FIGS. 7 to 9.

図7は、実施形態1に係る過負荷判定方法を説明するための図で、基準過負荷判定閾値曲線1の変更に関する説明図である。
上記では図5〜図6を用いて、過負荷判定のための基準閾値を117.5%とし、その基準過負荷判定閾値曲線1の導出について説明した。
しかし、客先のより安全性を高めたいとの要請で、基準閾値を例えば出荷後に115%に変更(補正)する場合を想定する。その場合には、基準閾値(負荷)を115%とする補正過負荷判定閾値曲線2(2−115)に基づき対象とする巻上電動機22の過負荷を判定することになる。
FIG. 7 is a diagram for explaining the overload determination method according to the first embodiment, and is an explanatory diagram relating to the change of the reference overload determination threshold curve 1.
In the above, with reference to FIGS. 5 to 6, the reference threshold value for overload determination is set to 117.5%, and the derivation of the reference overload determination threshold value curve 1 has been described.
However, it is assumed that the reference threshold value is changed (corrected) to 115% after shipment, for example, in response to a request to improve the safety of the customer. In that case, the overload of the target hoisting motor 22 is determined based on the corrected overload determination threshold curve 2 (2-115) in which the reference threshold value (load) is 115%.

図7には、基準閾値を117.5%としたときの基準過負荷判定閾値曲線1と、基準閾値を115%としたときの補正過負荷判定閾値曲線2(2−115)が示されている。
補正過負荷判定閾値曲線2(2−115)は、基本的には、図7に示すように、基準過負荷判定閾値曲線1を、負荷115%、定格電圧(400V)の電流値を通るように、縦軸(y軸)方向に平行移動した曲線である。なお負荷115%(Z%)での定格入力電圧における電流値は、メモリー30に記憶しておいた負荷100%の電流値と負荷117.5%の電流値との比例関係から求められる。
図8は、実施形態1に係る過負荷判定方法を説明するための図で、基準過負荷判定閾値曲線1の変更に関する処理フローをより詳しく説明する図である。
図9は、実施形態1に係る過負荷判定方法を説明するための図で、補正過負荷判定閾値曲線2に関する説明図である。
FIG. 7 shows a reference overload determination threshold curve 1 when the reference threshold is 117.5% and a corrected overload determination threshold curve 2 (2-115) when the reference threshold is 115%. There is.
The corrected overload determination threshold curve 2 (2-115) basically passes through the reference overload determination threshold curve 1 with a load of 115% and a current value of a rated voltage (400 V) as shown in FIG. In addition, it is a curve translated in the vertical axis (y-axis) direction. The current value at the rated input voltage at a load of 115% (Z%) is obtained from the proportional relationship between the current value of the load of 100% and the current value of the load of 117.5% stored in the memory 30.
FIG. 8 is a diagram for explaining the overload determination method according to the first embodiment, and is a diagram for explaining the processing flow regarding the change of the reference overload determination threshold curve 1 in more detail.
FIG. 9 is a diagram for explaining the overload determination method according to the first embodiment, and is an explanatory diagram relating to the corrected overload determination threshold curve 2.

なお、基準過負荷判定閾値曲線1を変更(補正)する補正過負荷判定閾値曲線2の導出は、補正過負荷判定閾値曲線導出手段64が行う。過負荷判定は過負荷判定手段61が行う。 The correction overload determination threshold curve 2 is derived by the correction overload determination threshold curve derivation means 64 that changes (corrects) the reference overload determination threshold curve 1. The overload determination means 61 performs the overload determination.

図8のフローに沿って説明する。
まず、基準過負荷判定閾値曲線1(過負荷117.5%)の「過負荷」117.5%と、求めようとする補正過負荷判定閾値曲線2の「過負荷」Z%(変更後の過負荷%)判定閾値との差が一定範囲内(例えば、5%以内)かを判定する(ステップS41)。
YESの場合は、ステップ42に進む。例えば、一定範囲を5%とした場合、Z=115(過負荷115%)なら117.5−115=2.5(%)で5%以内である場合はYESである。
ステップ42では、基準過負荷判定閾値曲線1を、過負荷Z%における定格電圧(400V)での測定電流値を通るようにy軸方向(縦方向)に平行移動する(切片cを変更する)。
そして、基準過負荷判定閾値曲線1を平行移動した曲線を補正過負荷判定閾値曲線2(過負荷115%では補正過負荷判定閾値曲線2−115)とする(ステップ43)。図7は上記処理を図示した図であり前述した。
This will be described according to the flow of FIG.
First, the "overload" 117.5% of the reference overload determination threshold curve 1 (overload 117.5%) and the "overload" Z% (changed) of the correction overload determination threshold curve 2 to be obtained. It is determined whether the difference from the overload%) determination threshold value is within a certain range (for example, within 5%) (step S41).
If YES, the process proceeds to step 42. For example, when a certain range is 5%, if Z = 115 (overload 115%), 117.5-115 = 2.5 (%), and if it is within 5%, YES.
In step 42, the reference overload determination threshold curve 1 is translated in the y-axis direction (longitudinal direction) so as to pass the measured current value at the rated voltage (400 V) at the overload Z% (intercept c is changed). ..
Then, the curve obtained by translating the reference overload determination threshold curve 1 is set as the corrected overload determination threshold curve 2 (corrected overload determination threshold curve 2-115 at 115% overload) (step 43). FIG. 7 is a diagram illustrating the above processing and has been described above.

NOの場合(差が一定範囲内でない場合)は、ステップ44に進む。例えば、一定範囲を5%とした場合、Z=110(過負荷110%)なら117.5−110=7.5(%)で5%を超え、NOである。
ステップ44では、曲線1(過負荷117.5%)と曲線100(定格負荷100%)との間に、両者のy軸方向の間隔を(117.5−Z):(Z−100)で按分(比例配分)した曲線(按分した点を通る曲線)を引く。
そして、上記の按分した曲線を補正過負荷判定閾値曲線2(過負荷110%では補正過負荷判定閾値曲線2−110)とする。
If NO (if the difference is not within a certain range), the process proceeds to step 44. For example, when a certain range is 5%, if Z = 110 (overload 110%), 117.5-110 = 7.5 (%), which exceeds 5% and is NO.
In step 44, the distance between the curve 1 (overload 117.5%) and the curve 100 (rated load 100%) in the y-axis direction is (117.5-Z) :( Z-100). Draw a proportionally divided (proportional distribution) curve (a curve that passes through the proportionally divided points).
Then, the apportioned curve is referred to as the corrected overload determination threshold curve 2 (corrected overload determination threshold curve 2-110 at 110% overload).

図9は、NOの場合(差が一定範囲内でない場合)の説明図である。求めようとする補正過負荷判定閾値曲線2(2−110)の過負荷が110%であり、基準過負荷判定閾値曲線1の過負荷117.5%との差は、5%を超える。
この場合、曲線1(過負荷117.5%)と曲線100(定格負荷100%)との間に、両者のy軸方向の間隔を(117.5−110):(110−100)=7.5:10で按分(比例配分)した曲線(按分した点を通る曲線)を引く。図9では、入力電圧340V、400V及び460Vにおいて両者の曲線1、100間を7.5:10に按分した点を通る曲線とした。
そして、上記の按分した曲線を補正過負荷判定閾値曲線2(過負荷110%では補正過負荷判定閾値曲線2−110)とした。
FIG. 9 is an explanatory diagram in the case of NO (when the difference is not within a certain range). The overload of the corrected overload determination threshold curve 2 (2-110) to be obtained is 110%, and the difference from the overload 117.5% of the reference overload determination threshold curve 1 exceeds 5%.
In this case, the distance between the curve 1 (overload 117.5%) and the curve 100 (rated load 100%) in the y-axis direction is (117.5-110) :( 110-100) = 7. . Draw a curve (a curve that passes through the proportionally divided points) that is proportionally divided (proportional distribution) at 5:10. In FIG. 9, at input voltages of 340V, 400V and 460V, a curve passing through a point obtained by apportioning between curves 1 and 100 to 7.5: 10.
Then, the above-proportioned curve was used as the corrected overload determination threshold curve 2 (corrected overload determination threshold curve 2-110 at 110% overload).

以上のような処理をするため、過負荷閾値を変更しても引き続き判定精度の良い巻上電動機22の過負荷判定が可能である。 Since the above processing is performed, it is possible to continuously determine the overload of the hoisting motor 22 with good determination accuracy even if the overload threshold value is changed.

なお、このような過負荷判定が、上述したマイクロコンピュータによって可能な巻上機21を製造する製造方法は、以下の通りである。
すなわち、上述のAステップ(ステップS1)で予め測定した測定値に基づいて、上述のBステップ(ステップS2)で説明したような、入力電圧(v)の二次式で電流(i)を定義した基準過負荷判定閾値曲線であって、過負荷判定のための基準閾値としての前記基準過負荷判定閾値曲線を導出する機能を、上記のマイクロコンピュータに実装する(実装ステップ)。
The manufacturing method for manufacturing the hoisting machine 21 capable of such overload determination by the above-mentioned microcomputer is as follows.
That is, the current (i) is defined by the quadratic equation of the input voltage (v) as described in the above-mentioned B step (step S2) based on the measured value measured in advance in the above-mentioned A step (step S1). The function of deriving the reference overload determination threshold curve as the reference threshold for overload determination, which is the reference overload determination threshold curve, is implemented in the above-mentioned microcomputer (implementation step).

また、上記のCステップ(ステップS3)のように、基準過負荷判定閾値曲線を変更するか否かを決定する。 Further, as in step C (step S3) above, it is determined whether or not to change the reference overload determination threshold curve.

そして、上記のCステップ(ステップS3)において、基準過負荷判定閾値曲線を変更する場合には、その基準過負荷判定閾値曲線を、上述のステップS4−2で説明したような、基準関数の切片を補正した二次式よりなる補正過負荷判定閾値曲線へと変更して前記マイクロコンピュータに実装する(変更ステップ)。
なお、上記のCステップ(ステップS3)において、基準過負荷判定閾値曲線を変更しない場合には、上記の基準過負荷判定閾値曲線を実装したままの状態とする。
Then, when the reference overload determination threshold curve is changed in the above C step (step S3), the reference overload determination threshold curve is changed to the intercept of the reference function as described in the above step S4-2. Is changed to the corrected overload determination threshold curve consisting of the corrected quadratic equation and implemented in the microcomputer (change step).
If the reference overload determination threshold curve is not changed in step C (step S3), the reference overload determination threshold curve is left as it is implemented.

このようにすれば、上記のように判定精度の良い巻上電動機22の過負荷判定が可能な巻上機21を良好に製造することが可能となる。特に、巻上機21の出荷前に、過負荷判定のための曲線を、基準過負荷判定閾値曲線から補正過負荷判定閾値曲線へと変更することができるので、製品の固体ばらつきを良好に吸収した状態で巻上機21を出荷できるので、品質の安定化が図れる。 In this way, it is possible to satisfactorily manufacture the hoisting machine 21 capable of determining the overload of the hoisting motor 22 with good determination accuracy as described above. In particular, since the curve for overload determination can be changed from the reference overload determination threshold curve to the corrected overload determination threshold curve before the hoisting machine 21 is shipped, individual variations of the product can be absorbed satisfactorily. Since the hoisting machine 21 can be shipped in this state, the quality can be stabilized.

[実施形態2]
図10〜図12を用いて、実施形態2に係る過負荷判定方法について説明する。
[Embodiment 2]
The overload determination method according to the second embodiment will be described with reference to FIGS. 10 to 12.

実施形態2の過負荷判定方法は、実施形態1で説明した過負荷判定方法で、過負荷を判定する入力電圧領域を低電圧側入力電圧領域と、低電圧側入力電圧領域より高電圧の高電圧側入力電圧領域に分け、低電圧側入力電圧領域では、Aステップ、Bステップ、Cステップ及びDステップを含む方法により過負荷を判定し、高電圧側入力電圧領域では、Aステップと、電流の測定値を基に、基準過負荷判定閾値曲線の代わりに、入力電圧(v)の一次式で電流(i)を定義した基準関数よりなる過負荷判定のための基準閾値としての基準過負荷閾値直線を導出するB2ステップと、基準過負荷判定閾値直線を変更するか否かを決定するC2ステップと、基準過負荷判定閾値直線を変更しない場合には、基準過負荷判定閾値直線に基づき対象とする巻上電動機の過負荷を判定し、基準過負荷判定閾値直線を変更する場合には、基準過負荷判定閾値直線を補正した補正過負荷判定閾値直線に基づき対象とする巻上電動機の過負荷を判定するD2ステップと、
を含む。
The overload determination method of the second embodiment is the overload determination method described in the first embodiment, and the input voltage region for determining the overload is a low voltage side input voltage region and a higher voltage than the low voltage side input voltage region. It is divided into a voltage side input voltage region, and in the low voltage side input voltage region, overload is determined by a method including A step, B step, C step and D step, and in the high voltage side input voltage region, A step and current. Based on the measured value of, instead of the reference overload determination threshold curve, the reference overload as the reference threshold for overload determination consisting of the reference function in which the current (i) is defined by the linear equation of the input voltage (v). The B2 step for deriving the threshold line, the C2 step for determining whether to change the reference overload judgment threshold line, and the target based on the reference overload judgment threshold line when the reference overload judgment threshold line is not changed. When the overload of the hoisting motor is determined and the reference overload determination threshold line is changed, the overload of the target hoisting motor is based on the corrected overload judgment threshold line corrected by the reference overload judgment threshold line. D2 step to judge the load and
including.

入力電圧領域で入力電圧が高い高電圧側では、巻上電動機22の磁気飽和の開始等で、巻上電動機22を流れる電流値が、負荷を変更しても変化の程度が少ない場合がある。そこで、過負荷を判定する入力電圧領域を低電圧側入力電圧領域と、低電圧側入力電圧領域より高電圧の高電圧側入力電圧領域に分け、低電圧側入力電圧領域では基準過負荷判定閾値曲線に基づき対象とする巻上電動機の過負荷を判定し、高電圧側入力電圧領域では基準過負荷判定閾値曲線の代わりに基準過負荷閾値直線により過負荷を判定する。
このようにすることで、過負荷の誤判定のリスクが低減される。
On the high voltage side where the input voltage is high in the input voltage region, the current value flowing through the hoisting motor 22 may change little even if the load is changed due to the start of magnetic saturation of the hoisting motor 22 or the like. Therefore, the input voltage region for determining overload is divided into a low voltage side input voltage region and a high voltage side input voltage region having a higher voltage than the low voltage side input voltage region. The overload of the target hoisting motor is determined based on the curve, and the overload is determined by the reference overload threshold linear line instead of the reference overload determination threshold curve in the high voltage side input voltage region.
By doing so, the risk of erroneous determination of overload is reduced.

図10は、実施形態2に係る過負荷判定方法を説明するための図で、巻上電動機22の過負荷判定装置24の機能ブロックを示す図である。 FIG. 10 is a diagram for explaining the overload determination method according to the second embodiment, and is a diagram showing a functional block of the overload determination device 24 of the hoisting motor 22.

図2の、実施形態1に係る過負荷判定方法を説明するための図(巻上電動機22の過負荷判定装置24の機能ブロックを示す図)と異なるのは、過負荷判定装置24は、センサー23、メモリー30、過負荷判定手段61、基準過負荷判定閾値曲線導出手段62、基準過負荷判定閾値曲線変更判断手段63及び補正過負荷判定閾値曲線導出手段64の他に、基準過負荷判定閾値直線導出手段65、基準過負荷判定閾値直線変更判断手段66及び補正過負荷判定閾値直線導出手段67を備える点である。その他、図10に示す構成では、所定の音を発生させる発音装置27と、外部機器と接続して情報の送受信をするためのインターフェース28を備える点でも、図2に示す構成と異なっている。 The overload determination device 24 differs from the diagram (a diagram showing the functional block of the overload determination device 24 of the hoisting motor 22) for explaining the overload determination method according to the first embodiment of FIG. 2. 23, memory 30, overload determination means 61, reference overload determination threshold curve derivation means 62, reference overload determination threshold curve change determination means 63, correction overload determination threshold curve derivation means 64, and reference overload determination threshold. The point is that the linear derivation means 65, the reference overload determination threshold linear change determination means 66, and the correction overload determination threshold linear derivation means 67 are provided. In addition, the configuration shown in FIG. 10 is different from the configuration shown in FIG. 2 in that it includes a sounding device 27 that generates a predetermined sound and an interface 28 for connecting to an external device to transmit and receive information.

ここで、「基準過負荷判定閾値直線導出手段」65とは、プログラムを読み込み、基準過負荷判定閾値直線3を導出する機能を実行するマイコンをいう。
「基準過負荷判定閾値直線変更判断手段」66とは、プログラムを読み込み、基準過負荷判定閾値直線3を変更するか否かを決定するマイコンをいう。
「補正過負荷判定閾値直線導出手段」67とは、プログラムを読み込み、補正過負荷判定閾値直線4を導出する機能を実行するマイコンをいう。
Here, the “reference overload determination threshold linear derivation means” 65 refers to a microcomputer that reads a program and executes a function of deriving the reference overload determination threshold straight line 3.
The “reference overload determination threshold value linear change determination means” 66 refers to a microcomputer that reads a program and determines whether or not to change the reference overload determination threshold value linear line 3.
The “correction overload determination threshold linear derivation means” 67 refers to a microcomputer that reads a program and executes a function of deriving the correction overload determination threshold straight line 4.

図11は、実施形態2に係る過負荷判定方法の処理フローを説明するための図である。図12は、実施形態2に係る過負荷判定方法を説明するための図である。 FIG. 11 is a diagram for explaining a processing flow of the overload determination method according to the second embodiment. FIG. 12 is a diagram for explaining an overload determination method according to the second embodiment.

まず、入力電圧領域を分割するか否かを決める(ステップS51)。例えば電源電圧が420V以上の場合には一律に入力電圧領域を分割すると決めてもよい。
入力電圧領域を分割する場合(ステップS51、分割する:YES)、低電圧側入力電圧領域と、高電圧側入力電圧領域とに分割する(ステップS52)。
実施形態2では、図12に示すように、低電圧側入力電圧領域を340V〜420V、高電圧側入力電圧領域で420V〜460Vとした。420V付近で、巻上電動機22を流れる電流値が、負荷を変更しても変化の程度が少なくなり始めているためである。
First, it is determined whether or not to divide the input voltage region (step S51). For example, when the power supply voltage is 420 V or more, it may be decided to uniformly divide the input voltage region.
When the input voltage region is divided (step S51, division: YES), the input voltage region is divided into a low voltage side input voltage region and a high voltage side input voltage region (step S52).
In the second embodiment, as shown in FIG. 12, the low voltage side input voltage region is set to 340V to 420V, and the high voltage side input voltage region is set to 420V to 460V. This is because the current value flowing through the hoisting motor 22 at around 420 V begins to change less even if the load is changed.

次に、入力電圧領域を低電圧側入力電圧領域と、低電圧側入力電圧領域より高電圧の高電圧側入力電圧領域に分ける(ステップS53)、それぞれで処理フローを異にする。
低電圧側入力電圧領域では、ステップS54〜ステップS57の処理を行う。
高電圧側入力電圧領域では、ステップS58〜ステップS61の処理を行う。
Next, the input voltage region is divided into a low voltage side input voltage region and a high voltage side input voltage region having a higher voltage than the low voltage side input voltage region (step S53), and the processing flow is different for each.
In the low voltage side input voltage region, the processes of steps S54 to S57 are performed.
In the high voltage side input voltage region, the processes of steps S58 to S61 are performed.

低電圧側入力電圧領域では、まず、センサー23で、巻上電動機22の、一定の負荷51における、入力電圧と、電流との関係を測定する(ステップS54、Aステップ)。 In the low voltage side input voltage region, first, the sensor 23 measures the relationship between the input voltage and the current of the hoisting motor 22 at a constant load 51 (steps S54 and A).

次に、基準過負荷判定閾値曲線導出手段62は、電流の測定値121を基に、入力電圧(v)の二次式で電流(i)を定義した基準関数よりなる過負荷判定のための基準閾値としての基準過負荷判定閾値曲線1(過負荷117.5%)を導出する(Bステップ)。 Next, the reference overload determination threshold curve deriving means 62 is for overload determination including a reference function in which the current (i) is defined by the quadratic equation of the input voltage (v) based on the measured value 121 of the current. A reference overload determination threshold curve 1 (overload 117.5%) as a reference threshold is derived (step B).

次に、基準過負荷判定閾値の変更指令等に基づき、基準過負荷判定閾値曲線変更判断手段63は、基準過負荷判定閾値曲線1を変更するか否かを決定する(ステップS56、Cステップ)。 Next, based on the reference overload determination threshold change command or the like, the reference overload determination threshold curve change determination means 63 determines whether or not to change the reference overload determination threshold curve 1 (steps S56 and C). ..

次に、基準過負荷判定閾値曲線1を変更しない場合には、過負荷判定手段61は、基準過負荷判定閾値曲線1に基づき対象とする巻上電動機22の過負荷を判定する(ステップS571、Dステップ)。 Next, when the reference overload determination threshold curve 1 is not changed, the overload determination means 61 determines the overload of the target hoisting motor 22 based on the reference overload determination threshold curve 1 (step S571, step S571, D step).

基準過負荷判定閾値曲線1を変更する場合には、補正過負荷判定閾値曲線導出手段64が導出した、基準関数の切片を補正した二次式よりなる補正過負荷判定閾値曲線2に基づき対象とする巻上電動機22の過負荷を判定する(ステップS57−2)。
例えば、過負荷判定閾値を過負荷117.5%から過負荷112.5%に変更する場合は、117.5%−112.5%=5%で5%以内であるから、曲線1(過負荷117.5%)を、定格入力電圧400Vにおける過負荷112.5%で流れる電流値を通るようにy軸方向に平行移動した補正過負荷判定閾値曲線2(2−112.5)に基づき判定する。
なお、図12中に符号100で示すのは、定格負荷(100%)における負荷曲線である。
過負荷判定手段61は、入力電圧検出器53で検出された入力電圧(値)及び電流検出器54で検出された電流値と、基準過負荷判定閾値曲線導出手段62で導出された基準過負荷判定閾値曲線1に基づき上記処理を行う。
When the reference overload determination threshold curve 1 is changed, the target is set based on the correction overload determination threshold curve 2 derived by the correction overload determination threshold curve derivation means 64, which consists of a quadratic equation obtained by correcting the intercept of the reference function. The overload of the hoisting motor 22 is determined (step S57-2).
For example, when the overload determination threshold is changed from overload 117.5% to overload 112.5%, 117.5% -112.5% = 5%, which is within 5%, so that curve 1 (overload) Based on the corrected overload determination threshold curve 2 (2-112.5) in which the load (117.5%) is moved in parallel in the y-axis direction so as to pass through the current value flowing at the overload of 112.5% at the rated input voltage of 400 V. judge.
Reference numeral 100 in FIG. 12 is a load curve at a rated load (100%).
The overload determining means 61 includes an input voltage (value) detected by the input voltage detector 53, a current value detected by the current detector 54, and a reference overload derived by the reference overload determination threshold curve deriving means 62. The above processing is performed based on the determination threshold curve 1.

高電圧側入力電圧領域では、まず、センサー23で、巻上電動機22の、一定の負荷51における、入力電圧と、電流との関係を測定する(ステップS58、A2ステップ)。 In the high voltage side input voltage region, first, the sensor 23 measures the relationship between the input voltage and the current in the constant load 51 of the hoisting motor 22 (steps S58 and A2).

次に、基準過負荷判定閾値直線導出手段65は、電流の測定値121を基に、入力電圧(v)の一次式で電流(i)を定義した基準関数よりなる過負荷判定のための基準閾値としての基準過負荷判定閾値直線3を導出する(ステップS58、B2ステップ)。 Next, the reference overload determination threshold linear derivation means 65 is a reference for overload determination including a reference function in which the current (i) is defined by the linear equation of the input voltage (v) based on the measured value 121 of the current. A reference overload determination threshold line 3 as a threshold is derived (steps S58 and B2).

[基準過負荷判定閾値直線の導出]
基準過負荷判定閾値直線3の導出は、基準過負荷判定閾値直線導出手段65が行う。
基準過負荷判定閾値直線3は、入力電圧(v)の一次式で電流(i)を定義した基準関数よりなる過負荷判定のための基準閾値としての基準過負荷閾値直線であり、次式で表される。
i=d・v+e
但し、d(係数、≠0)、e(切片):(d、eをあわせて定数とよぶ)
なお、「一次式」とは、巻上電動機22の電流を、入力電圧の次数1の多項式で表した式をいう。
[Drivation of reference overload judgment threshold straight line]
The reference overload determination threshold straight line 3 is derived by the reference overload determination threshold linear derivation means 65.
The reference overload determination threshold value straight line 3 is a reference overload threshold value straight line as a reference threshold value for overload determination consisting of a reference function that defines the current (i) in the linear equation of the input voltage (v), and is expressed by the following equation. expressed.
i = d ・ v + e
However, d (coefficient, ≠ 0), e (intercept): (d and e are collectively called a constant)
The "linear expression" is an expression in which the current of the hoisting motor 22 is expressed by a polynomial of degree 1 of the input voltage.

基準過負荷判定閾値直線3は直線であるため、曲線である基準過負荷判定閾値曲線1に比較して容易に導出できる。
基準過負荷判定閾値直線3と、基準過負荷判定閾値曲線1とは、共に負荷117.5%であるため、低電圧側入力電圧領域(340V〜420V)と、高電圧側入力電圧領域(420V〜460V)との境である入力電圧420Vで同じ電流値として、両者が連続していなければならない。従って、基準過負荷判定閾値直線3はこの点を通る直線とする。
Since the reference overload determination threshold value straight line 3 is a straight line, it can be easily derived as compared with the reference overload determination threshold value curve 1 which is a curve.
Since the reference overload determination threshold line 3 and the reference overload determination threshold curve 1 both have a load of 117.5%, the low voltage side input voltage region (340V to 420V) and the high voltage side input voltage region (420V). ~ 460V), the input voltage must be 420V, and the current value must be the same, and both must be continuous. Therefore, the reference overload determination threshold line 3 is a straight line passing through this point.

もう1点が定まれば基準過負荷判定閾値直線3を導出することができる。高電圧側入力電圧領域(420V〜460V)の最も高い電圧(460V)における電流値を決めることでも1点を決める。高電圧側入力電圧領域(420V〜460V)における電流値特性を考慮して決まる。ここでは、基準過負荷判定閾値曲線1の入力電圧460Vにおける電流値以上の電流値とした。 If another point is determined, the reference overload determination threshold line 3 can be derived. One point is also determined by determining the current value at the highest voltage (460V) in the high voltage side input voltage region (420V to 460V). It is determined in consideration of the current value characteristics in the high voltage side input voltage region (420V to 460V). Here, the current value is set to be equal to or higher than the current value at the input voltage of 460 V of the reference overload determination threshold curve 1.

基準過負荷判定閾値直線3を変更しない場合には、過負荷判定手段61は、基準過負荷判定閾値直線3に基づき対象とする巻上電動機22の過負荷を判定する(ステップS61−1、D2ステップ)。
基準過負荷判定閾値直線3を変更する場合には、補正過負荷判定閾値直線導出手段67が補正した(導出した)一次式よりなる補正過負荷判定閾値直線4に基づき対象とする巻上電動機22の過負荷を判定する(ステップS61−2、D2ステップ)。
なお、図9中に符号100で示すのは、定格負荷(100%)における負荷曲線である。
When the reference overload determination threshold line 3 is not changed, the overload determination means 61 determines the overload of the target hoisting motor 22 based on the reference overload determination threshold value line 3 (steps S61-1, D2). Step).
When the reference overload determination threshold value straight line 3 is changed, the hoisting motor 22 to be targeted based on the correction overload determination threshold value straight line 4 composed of the linear expression corrected (derived) by the correction overload determination threshold value linear derivation means 67. (Step S61-2, D2 step).
Reference numeral 100 in FIG. 9 is a load curve at a rated load (100%).

[基準過負荷判定閾値直線の変更]
次に、基準過負荷判定閾値直線変更判断手段66は、基準閾値の変更等に伴い、基準過負荷判定閾値直線3を変更するか否かを決定する(ステップS60、C2ステップ)。
基準閾値が変更され、基準過負荷判定閾値曲線1が補正過負荷判定閾値曲線2に補正されると、多くの場合、基準過負荷判定閾値直線3も補正過負荷判定閾値直線4に補正される。
本実施形態では、基準過負荷判定閾値曲線1(負荷117.5%)が、曲線1を定格電圧400Vでの負荷112.5%の測定電流値を通るようにy軸方向に平行移動した補正過負荷判定閾値曲線2(2−112.5、負荷112.5%)に補正されたのに伴い、基準過負荷判定閾値直線3(負荷117.5%)も補正過負荷判定閾値直線4(負荷112.5%)に補正された。
[Change of reference overload judgment threshold straight line]
Next, the reference overload determination threshold value linear change determination means 66 determines whether or not to change the reference overload determination threshold value linear line 3 in accordance with the change of the reference threshold value or the like (steps S60 and C2).
When the reference threshold is changed and the reference overload determination threshold curve 1 is corrected to the corrected overload determination threshold curve 2, in many cases, the reference overload determination threshold straight line 3 is also corrected to the corrected overload determination threshold straight line 4. ..
In the present embodiment, the reference overload determination threshold curve 1 (load 117.5%) is corrected by moving the curve 1 in parallel in the y-axis direction so as to pass the measured current value of the load 112.5% at the rated voltage of 400 V. As the overload determination threshold curve 2 (2-112.5, load 112.5%) is corrected, the reference overload determination threshold line 3 (load 117.5%) is also corrected to the corrected overload determination threshold line 4 (load 117.5%). The load was corrected to 112.5%).

補正過負荷判定閾値直線4は直線であるため、曲線である補正過負荷判定閾値曲線2に比較して容易に導出できる。
補正過負荷判定閾値直線4と、補正過負荷判定閾値曲線2とは、共に負荷112.5%であるため、低電圧側入力電圧領域(340V〜420V)と、高電圧側入力電圧領域(420V〜460V)との境である入力電圧420Vで同じ電流値として、両者が連続していなければならない。従って、補正過負荷判定閾値直線4はこの点を通る直線とする。
Since the correction overload determination threshold value straight line 4 is a straight line, it can be easily derived as compared with the correction overload determination threshold value curve 2 which is a curve.
Since the corrected overload determination threshold line 4 and the corrected overload determination threshold curve 2 both have a load of 112.5%, the low voltage side input voltage region (340V to 420V) and the high voltage side input voltage region (420V). ~ 460V), the input voltage must be 420V, and the current value must be the same, and both must be continuous. Therefore, the correction overload determination threshold line 4 is a straight line passing through this point.

もう1点が定まれば基準過負荷判定閾値直線3を導出することができる。高電圧側入力電圧領域(420V〜460V)の最も高い電圧(460V)における電流値を決めることでも1点を決める。高電圧側入力電圧領域(420V〜460V)における電流値特性を考慮して決まる。ここでは、基準過負荷判定閾値曲線1の入力電圧460Vにおける電流値以上の電流値とした。 If another point is determined, the reference overload determination threshold line 3 can be derived. One point is also determined by determining the current value at the highest voltage (460V) in the high voltage side input voltage region (420V to 460V). It is determined in consideration of the current value characteristics in the high voltage side input voltage region (420V to 460V). Here, the current value is set to be equal to or higher than the current value at the input voltage of 460 V of the reference overload determination threshold curve 1.

過負荷判定手段61は、入力電圧検出器53で検出された入力電圧(値)及び電流検出器54で検出された電流値と、基準過負荷判定閾値直線導出手段65で導出された直線3、あるいは補正過負荷判定閾値直線導出手段67で導出された直線4に基づき過負荷であるか否かの判定を行う。 The overload determination means 61 includes an input voltage (value) detected by the input voltage detector 53, a current value detected by the current detector 54, and a straight line 3 derived by the reference overload determination threshold linear derivation means 65. Alternatively, it is determined whether or not there is an overload based on the straight line 4 derived by the correction overload determination threshold linear derivation means 67.

入力電圧領域を分割しない場合(ステップS51、分割する:NO)、図4の処理を行う。
以上のように行うため、実際の過負荷に、より近似した判定精度の良い過負荷判定が可能で、過負荷閾値を変更しても引き続き判定精度の良い巻上電動機22の過負荷判定が可能となる。
また、入力電圧領域を低電圧側入力電圧領域と、高電圧の高電圧側入力電圧領域に分け、それぞれ基準過負荷判定閾値曲線1と基準過負荷閾値直線により過負荷を判定するため、過負荷の誤判定のリスクをより低減できる。
When the input voltage region is not divided (step S51, division: NO), the process of FIG. 4 is performed.
Since the above is performed, it is possible to make an overload judgment with a judgment accuracy that is closer to the actual overload, and even if the overload threshold value is changed, it is possible to continue to make an overload judgment of the hoisting motor 22 with a good judgment accuracy. It becomes.
Further, the input voltage region is divided into a low voltage side input voltage region and a high voltage high voltage side input voltage region, and the overload is determined by the reference overload determination threshold curve 1 and the reference overload threshold linear line, respectively. The risk of misjudgment can be further reduced.

なお、このような過負荷判定が、上述したマイクロコンピュータによって可能な巻上機21を製造する製造方法は、以下の通りである。 The manufacturing method for manufacturing the hoisting machine 21 capable of such overload determination by the above-mentioned microcomputer is as follows.

すなわち、上記の実施形態1で述べたような、実装ステップ、Cステップ、変更ステップを実行する。ここで、実施形態2では、上記の実装ステップは、低電圧側実装ステップと、高電圧側実装ステップとを有している。
そして、低電圧側実装ステップでは、基準過負荷判定閾値曲線を導出する機能を、マイクロコンピュータに実装する。
一方、低電圧側実装ステップよりも前記過負荷を判定する入力電圧領域が高電圧側となる高電圧側実装ステップでは、上記のように、入力電圧(v)の一次式で電流(i)を定義した基準過負荷閾値直線であって過負荷判定のための基準閾値としての基準過負荷閾値直線を導出する機能を、基準過負荷判定閾値曲線を導出する機能に代えて、前記マイクロコンピュータに実装する。
That is, the mounting step, the C step, and the changing step as described in the first embodiment are executed. Here, in the second embodiment, the above-mentioned mounting step includes a low-voltage side mounting step and a high-voltage side mounting step.
Then, in the low voltage side mounting step, the function of deriving the reference overload determination threshold curve is mounted on the microcomputer.
On the other hand, in the high voltage side mounting step in which the input voltage region for determining the overload is the high voltage side rather than the low voltage side mounting step, as described above, the current (i) is calculated by the linear expression of the input voltage (v). The function of deriving the defined reference overload threshold linear as the reference threshold for overload determination is implemented in the microcomputer instead of the function of deriving the reference overload determination threshold curve. do.

また、実施形態2では、上記の変更ステップは、低電圧側変更ステップと、高電圧側変更ステップとを有している。
そして、低電圧側変更ステップでは、上記の基準過負荷判定閾値曲線を、上記の補正過負荷判定閾値曲線へと変更してマイクロコンピュータに実装する。
一方、高電圧側変更ステップでは、低電圧側変更ステップよりも過負荷を判定する入力電圧領域が高電圧側において、基準過負荷判定閾値曲線を、基準過負荷判定閾値直線を補正した補正過負荷判定閾値直線へと変更してマイクロコンピュータに実装する。
Further, in the second embodiment, the above-mentioned change step includes a low-voltage side change step and a high-voltage side change step.
Then, in the low voltage side change step, the reference overload determination threshold curve is changed to the correction overload determination threshold curve and implemented in the microcomputer.
On the other hand, in the high voltage side change step, when the input voltage region for determining the overload is higher than the low voltage side change step, the reference overload determination threshold curve is corrected and the reference overload determination threshold straight line is corrected. Change to the judgment threshold straight line and implement it on the microcomputer.

このようにする場合、実際の過負荷に、より近似した判定精度の良い過負荷判定が可能で、過負荷閾値を変更しても引き続き判定精度の良い巻上電動機22の過負荷判定が可能な巻上機21を製造することが可能となる。しかも、製造される巻上機21は、入力電圧領域が低電圧側入力電圧領域では、基準過負荷判定閾値曲線によって過負荷を判定する。一方、入力電圧領域が高電圧側入力電圧領域では、基準過負荷判定閾値直線によって過負荷を判定する。そのため、過負荷の誤判定のリスクをより低減できる巻上機21を製造することが可能となる。 In this case, it is possible to make an overload determination with a determination accuracy that is closer to the actual overload, and it is possible to continue to make an overload determination of the hoisting motor 22 with a good determination accuracy even if the overload threshold value is changed. The hoisting machine 21 can be manufactured. Moreover, in the hoisting machine 21 manufactured, when the input voltage region is the low voltage side input voltage region, the overload is determined by the reference overload determination threshold curve. On the other hand, when the input voltage region is the high voltage side input voltage region, the overload is determined by the reference overload determination threshold line. Therefore, it is possible to manufacture the hoisting machine 21 which can further reduce the risk of erroneous determination of overload.

[実施形態3]
図13は、実施形態3に係る過負荷判定方法を説明するための図である。
[Embodiment 3]
FIG. 13 is a diagram for explaining an overload determination method according to the third embodiment.

実施形態3の過負荷判定方法では、実施形態1で説明した過負荷判定方法で、基準過負荷判定閾値曲線1を導出する方法を変更した。
即ち、実施形態3では、Cステップで、基準過負荷判定閾値曲線1を変更する場合には、Aステップで測定した基準とする巻上電動機の巻上動作を保証する下限負荷に設定する第一の負荷および、基準とする巻上電動機の巻上停止を保証する下限負荷に設定する第二の負荷における、基準とする巻上電動機の各入力電圧における電流の測定値を基に、第一負荷曲線と第二負荷曲線を求め、両曲線の各入力電圧における電流値の差に基づき、基準関数の係数と切片を補正した二次式よりなる補正過負荷判定閾値曲線2に基づき対象とする巻上電動機の過負荷を判定する。
In the overload determination method of the third embodiment, the method of deriving the reference overload determination threshold curve 1 is changed by the overload determination method described in the first embodiment.
That is, in the third embodiment, when the reference overload determination threshold curve 1 is changed in the C step, the lower limit load that guarantees the hoisting operation of the hoisting motor as the reference measured in the A step is set. The first load is based on the measured values of the current at each input voltage of the reference hoisting motor in the second load set to the lower limit load that guarantees the hoisting stop of the reference hoisting motor. The curve and the second load curve are obtained, and the target volume is based on the corrected overload determination threshold curve 2 consisting of a quadratic equation in which the coefficient of the reference function and the section are corrected based on the difference in the current value at each input voltage of both curves. Judge the overload of the upper motor.

図13で、符号13で示すのは、巻上電動機22の巻上停止を保証する下限負荷に設定する第一の負荷(負荷125%)における第一負荷曲線である。電流値がこの曲線以上となった場合は、巻上動作を必ず停止しなくてはならない。
符号14で示すのは、巻上電動機22の巻上動作を保証する下限負荷に設定する第二の負荷(負荷112.5%)における第二負荷曲線である。負荷112.5%では巻上動作が保証されており、巻上電動機22は巻上動作をしなければならない(停止してはならない)。
In FIG. 13, reference numeral 13 is a first load curve at the first load (load 125%) set to the lower limit load that guarantees the hoisting stop of the hoisting motor 22. If the current value exceeds this curve, the hoisting operation must be stopped.
Reference numeral 14 indicates a second load curve at the second load (load 112.5%) set to the lower limit load that guarantees the hoisting operation of the hoisting motor 22. The hoisting operation is guaranteed at a load of 112.5%, and the hoisting motor 22 must perform the hoisting operation (it must not be stopped).

これら第一負荷曲線13と第二負荷曲線14は、基準とする巻上電動機22の各入力電圧における電流の測定値121を基に求めた曲線である。
これらの曲線は、実施形態1で、図5〜図6を用いて説明したと同様の方法で求めた。
The first load curve 13 and the second load curve 14 are curves obtained based on the measured value 121 of the current at each input voltage of the hoisting motor 22 as a reference.
These curves were obtained in the same manner as described with reference to FIGS. 5 to 6 in the first embodiment.

実施形態3では、両曲線13、14の各入力電圧における電流値の差に基づき、前記基準関数の係数と切片を補正した二次式よりなる補正過負荷判定閾値曲線2を導出し、その曲線に基づき前記対象とする巻上電動機22の過負荷を判定する。 In the third embodiment, a corrected overload determination threshold curve 2 consisting of a quadratic equation obtained by correcting the coefficient and intercept of the reference function is derived based on the difference between the current values at the input voltages of the curves 13 and 14, and the curve thereof. Based on the above, the overload of the target hoisting motor 22 is determined.

曲線13と曲線14との間には、図13に示すように、差が生じている。そこでこれらの曲線13と曲線14との間を通る任意の曲線1Aを導出し、これを基準過負荷判定閾値曲線(負荷110%・125%間)とした。 As shown in FIG. 13, there is a difference between the curve 13 and the curve 14. Therefore, an arbitrary curve 1A passing between these curves 13 and 14 was derived, and this was used as a reference overload determination threshold curve (between load 110% and 125%).

このようにすると、基準過負荷判定閾値曲線(負荷110%・125%間)1Aを容易に作成できる。また、この曲線1Aは、曲線13(負荷125%)・曲線14(負荷110%)間の曲線であるため、負荷110%では動作が保証され、負荷125%では動作が停止される。 In this way, the reference overload determination threshold curve (between 110% and 125% of the load) 1A can be easily created. Further, since this curve 1A is a curve between the curve 13 (load 125%) and the curve 14 (load 110%), the operation is guaranteed at the load 110%, and the operation is stopped at the load 125%.

なお、このような過負荷判定が、上述したマイクロコンピュータによって可能な巻上機21を製造する製造方法は、以下の通りである。
すなわち、上記の実施形態1で述べたような、実装ステップ、Cステップ、変更ステップを実行する。ここで、実施形態3では、上記の変更ステップにおける補正過負荷判定閾値曲線は、第一負荷曲線と第二負荷曲線の各前記入力電圧における電流値の差に基づき、基準関数の係数と切片を補正したものである。
また、第一負荷曲線(図13で符号13で示すもの)は、基準とする巻上電動機に諸負荷をかけ入力電圧と電流の関係を測定すると共に基準とする巻上電動機の巻上動作を保証する下限負荷に設定する第一の負荷における、前記基準とする巻上電動機の前記入力電圧における電流の測定値を基に算出されたものである。
また、前記第二負荷曲線は、前記基準とする巻上電動機に諸負荷をかけ入力電圧と電流の関係を測定すると共に前記基準とする巻上電動機の巻上停止を保証する下限負荷に設定する第二の負荷における、前記基準とする巻上電動機の前記入力電圧における電流の測定値を基に算出されたものである。
The manufacturing method for manufacturing the hoisting machine 21 capable of such overload determination by the above-mentioned microcomputer is as follows.
That is, the mounting step, the C step, and the changing step as described in the first embodiment are executed. Here, in the third embodiment, the corrected overload determination threshold curve in the above change step sets the coefficient and section of the reference function based on the difference between the current values at the input voltages of the first load curve and the second load curve. It is a corrected one.
Further, the first load curve (indicated by reference numeral 13 in FIG. 13) applies various loads to the reference hoisting motor, measures the relationship between the input voltage and the current, and measures the hoisting operation of the reference hoisting motor. It is calculated based on the measured value of the current at the input voltage of the hoisting motor as the reference in the first load set to the guaranteed lower limit load.
Further, the second load curve is set to a lower limit load that applies various loads to the reference hoisting motor, measures the relationship between the input voltage and the current, and guarantees the hoisting stop of the reference hoisting motor. It is calculated based on the measured value of the current at the input voltage of the hoisting motor as the reference in the second load.

このようにする場合、上記のように、基準過負荷判定閾値曲線(負荷110%・125%間)1Aは、曲線13(負荷125%)・曲線14(負荷110%)間の曲線である。このため、負荷110%では動作が保証され、負荷125%では動作が停止されるような、巻上機21を製造することが可能となる。 In this case, as described above, the reference overload determination threshold curve (between load 110% and 125%) 1A is a curve between curve 13 (load 125%) and curve 14 (load 110%). Therefore, it is possible to manufacture the hoisting machine 21 in which the operation is guaranteed at a load of 110% and the operation is stopped at a load of 125%.

[実施形態4]
図13で、曲線13は実施形態3と同じく負荷125%の負荷曲線(絶対的に停止させる必要がある負荷)としたが、曲線14は負荷115%の負荷曲線とした。負荷115%は、巻上動作が保証されている負荷110%以上の負荷であり巻上電動機22の巻上動作を停止させてもよい負荷であることとする。これは、巻上機21の利便性、安全性等を考慮して、主として巻上電動機22(巻上機21)のメーカーやユーザーが決定する。
曲線14を変更しただけで、他は実施形態3と同様にし、基準過負荷判定閾値曲線1Aを負荷125%の曲線13と、負荷110%の曲線14との間の曲線とした。
基準過負荷判定閾値曲線1Aの一部が曲線13または曲線14と重なっていてもよい。
[Embodiment 4]
In FIG. 13, the curve 13 is a load curve with a load of 125% (a load that absolutely needs to be stopped) as in the third embodiment, but the curve 14 is a load curve with a load of 115%. The load of 115% is a load of 110% or more for which the hoisting operation is guaranteed, and is a load on which the hoisting operation of the hoisting motor 22 may be stopped. This is mainly determined by the manufacturer and user of the hoisting motor 22 (hoisting machine 21) in consideration of the convenience, safety and the like of the hoisting machine 21.
Only the curve 14 was changed, and the other parts were the same as in the third embodiment, and the reference overload determination threshold curve 1A was set as a curve between the curve 13 with a load of 125% and the curve 14 with a load of 110%.
A part of the reference overload determination threshold curve 1A may overlap the curve 13 or the curve 14.

このようにすると、基準過負荷判定閾値曲線1Bを容易に作成できる。
基準過負荷判定閾値曲線1Aによる過負荷判定が、厳密に負荷117.5%でなく、負荷110%と負荷125%の間のどこかでよい場合のユーザー要請に容易に応えることができる。
In this way, the reference overload determination threshold curve 1B can be easily created.
It is possible to easily respond to the user's request when the overload determination based on the reference overload determination threshold curve 1A is not strictly 117.5% but somewhere between the load 110% and the load 125%.

以上、本発明を上記の実施形態に基づいて説明したが、本発明は上記の実施形態に限定されるものではない。その趣旨を逸脱しない範囲において種々の形態において実施することが可能である。 Although the present invention has been described above based on the above-described embodiment, the present invention is not limited to the above-described embodiment. It can be implemented in various forms as long as it does not deviate from the purpose.

1…基準過負荷判定閾値曲線(負荷117.5%)、1A…基準過負荷判定閾値曲線(負荷110%・125%間)、2…補正過負荷判定閾値曲線、2−110…補正過負荷判定閾値曲線(過負荷110%)、2−112.5…補正過負荷判定閾値曲線(過負荷112.5%)、2−115…補正過負荷判定閾値曲線(過負荷115%)、3…基準過負荷判定閾値直線(過負荷117.5%)、4…基準過負荷判定閾値直線(負荷112.5%)、13…第一負荷曲線(負荷125%)、14…第二負荷曲線(負荷110%)、21…巻上機、22…巻上電動機、23…センサー、24…過負荷判定装置、25…操作スイッチ、26…制動装置、29…CPU、30…メモリー、31…ROM、32…RAM、51…負荷、52…電源、53…入力電圧検出器、54…電流検出器、61…過負荷判定手段、62…基準過負荷判定閾値曲線導出手段、63…基準過負荷判定閾値曲線変更判断手段、64…補正過負荷判定閾値曲線導出手段、65…基準過負荷判定閾値直線導出手段、66…基準過負荷判定閾値直線変更判断手段、67…補正過負荷判定閾値直線導出手段、71…制動指令手段、100…負荷曲線(定格負荷100%)、121…測定値(実測値)、125…過負荷判定閾値直線(過負荷125%)、261…制動機構 1 ... Reference overload determination threshold curve (load 117.5%), 1A ... Reference overload determination threshold curve (between load 110% and 125%), 2 ... Corrected overload determination threshold curve, 2-110 ... Corrected overload Judgment threshold curve (overload 110%), 2-112.5 ... Corrected overload judgment threshold curve (overload 112.5%), 2-115 ... Corrected overload judgment threshold curve (overload 115%), 3 ... Reference overload determination threshold line (overload 117.5%), 4 ... Reference overload determination threshold line (load 112.5%), 13 ... first load curve (load 125%), 14 ... second load curve (load) Load 110%), 21 ... hoisting machine, 22 ... hoisting motor, 23 ... sensor, 24 ... overload determination device, 25 ... operation switch, 26 ... braking device, 29 ... CPU, 30 ... memory, 31 ... ROM, 32 ... RAM, 51 ... Load, 52 ... Power supply, 53 ... Input voltage detector, 54 ... Current detector, 61 ... Overload determination means, 62 ... Reference overload determination threshold curve derivation means, 63 ... Reference overload determination threshold Curve change determination means, 64 ... Corrected overload determination threshold curve derivation means, 65 ... Reference overload determination threshold linear derivation means, 66 ... Reference overload determination threshold linear change determination means, 67 ... Corrected overload determination threshold linear derivation means, 71 ... Braking command means, 100 ... Load curve (rated load 100%), 121 ... Measured value (actual measurement value), 125 ... Overload determination threshold line (overload 125%), 261 ... Braking mechanism

Claims (6)

巻上電動機の過負荷を判定する過負荷判定方法であって、
基準とする巻上電動機に諸負荷をかけ入力電圧と電流の関係を測定するAステップと、
その測定値に基づいて、入力電圧(v)の二次式で電流(i)を定義した基準関数よりなる過負荷判定のための基準閾値としての基準過負荷判定閾値曲線を導出するBステップと、
前記基準過負荷判定閾値曲線を変更するか否かを決定するCステップと、
前記基準過負荷判定閾値曲線を変更しない場合には、前記基準過負荷判定閾値曲線に基づき対象とする巻上電動機の過負荷を判定し、前記基準過負荷判定閾値曲線を変更する場合には、前記基準関数の切片を補正した二次式よりなる補正過負荷判定閾値曲線に基づき前記対象とする巻上電動機の過負荷を判定するDステップと、
を含むことを特徴とする巻上電動機の過負荷判定方法。
This is an overload determination method for determining the overload of the hoisting motor.
Step A, which measures the relationship between input voltage and current by applying various loads to the reference hoisting motor,
Based on the measured value, the B step and the B step for deriving the reference overload determination threshold curve as the reference threshold for overload determination consisting of the reference function in which the current (i) is defined by the quadratic equation of the input voltage (v). ,
The C step for determining whether or not to change the reference overload determination threshold curve, and
When the reference overload determination threshold curve is not changed, the overload of the target hoisting motor is determined based on the reference overload determination threshold curve, and when the reference overload determination threshold curve is changed, the overload is determined. The D step of determining the overload of the target hoisting motor based on the corrected overload determination threshold curve composed of the quadratic equation obtained by correcting the intercept of the reference function, and
A method for determining an overload of a hoisting motor, which comprises.
請求項1に記載の巻上電動機の過負荷判定方法において、
前記Cステップで、前記基準過負荷判定閾値曲線を変更する場合には、第一負荷曲線と第二負荷曲線の各前記入力電圧における電流値の差に基づき、前記基準関数の係数と切片を補正した二次式よりなる補正過負荷判定閾値曲線に基づき前記対象とする巻上電動機の過負荷を判定すると共に、
前記第一負荷曲線は、前記Aステップで測定した前記基準とする巻上電動機の巻上動作を保証する下限負荷に設定する第一の負荷における、前記基準とする巻上電動機の前記入力電圧における電流の測定値を基に算出され、
前記第二負荷曲線は、前記Aステップで測定した前記基準とする巻上電動機の巻上停止を保証する下限負荷に設定する第二の負荷における、前記基準とする巻上電動機の前記入力電圧における電流の測定値を基に算出される、
ことを特徴とする巻上電動機の過負荷判定方法。
In the method for determining an overload of a hoisting motor according to claim 1,
When the reference overload determination threshold curve is changed in the C step, the coefficient and intercept of the reference function are corrected based on the difference between the current values at the input voltages of the first load curve and the second load curve. Based on the corrected overload determination threshold curve consisting of the quadratic equation, the overload of the target hoisting motor is determined and the overload is determined.
The first load curve is the input voltage of the reference hoisting motor in the first load set to the lower limit load that guarantees the hoisting operation of the reference hoisting motor measured in step A. Calculated based on current measurements
The second load curve is the input voltage of the reference hoisting motor in the second load set to the lower limit load that guarantees the hoisting stop of the reference hoisting motor measured in step A. Calculated based on current measurements,
A method for determining an overload of a hoisting motor, which is characterized in that.
請求項1又は2に記載の巻上電動機の過負荷判定方法において、
前記過負荷を判定する入力電圧領域を低電圧側入力電圧領域と、前記低電圧側入力電圧領域より高電圧の高電圧側入力電圧領域に分け、
前記低電圧側入力電圧領域では、前記Aステップ、前記Bステップ、前記Cステップ及び前記Dステップを含む方法により過負荷を判定し、
前記高電圧側入力電圧領域では、
前記Aステップと、
前記電流の測定値を基に、前記基準過負荷判定閾値曲線の代わりに、入力電圧(v)の一次式で電流(i)を定義した基準関数よりなる過負荷判定のための基準閾値としての基準過負荷閾値直線を導出するB2ステップと、
前記基準過負荷判定閾値直線を変更するか否かを決定するC2ステップと、
前記基準過負荷判定閾値直線を変更しない場合には、前記基準過負荷判定閾値直線に基づき対象とする巻上電動機の過負荷を判定し、前記基準過負荷判定閾値直線を変更する場合には、前記基準過負荷判定閾値直線を補正した補正過負荷判定閾値直線に基づき前記対象とする巻上電動機の過負荷を判定するD2ステップと、
を含むことを特徴とする巻上電動機の過負荷判定方法。
In the method for determining an overload of a hoisting motor according to claim 1 or 2.
The input voltage region for determining the overload is divided into a low voltage side input voltage region and a high voltage side input voltage region having a voltage higher than the low voltage side input voltage region.
In the low voltage side input voltage region, the overload is determined by a method including the A step, the B step, the C step, and the D step.
In the high voltage side input voltage region,
With step A
Based on the measured value of the current, instead of the reference overload determination threshold curve, as a reference threshold for overload determination consisting of a reference function in which the current (i) is defined by the linear equation of the input voltage (v). B2 step to derive the reference overload threshold line and
A C2 step for determining whether or not to change the reference overload determination threshold line, and
When the reference overload determination threshold line is not changed, the overload of the target hoisting motor is determined based on the reference overload determination threshold line, and when the reference overload determination threshold line is changed, the overload is determined. The D2 step of determining the overload of the target hoisting motor based on the corrected overload determination threshold line corrected by correcting the reference overload determination threshold line, and
A method for determining an overload of a hoisting motor, which comprises.
巻上電動機およびマイクロコンピュータを備え、前記マイクロコンピュータによって前記巻上電動機の過負荷判定を行う機能を備える巻上機の製造方法において、
基準とする巻上電動機に諸負荷をかけた状態で、入力電圧と電流の関係を予め測定した測定値に基づいて入力電圧(v)の二次式で電流(i)を定義した基準過負荷判定閾値曲線であって、過負荷判定のための基準閾値としての前記基準過負荷判定閾値曲線を導出する機能を、マイクロコンピュータに実装する実装ステップと、
前記基準過負荷判定閾値曲線を変更するか否かを決定するCステップと、
前記基準過負荷判定閾値曲線を変更する場合には、前記基準過負荷判定閾値曲線を、前記基準関数の切片を補正した二次式よりなる補正過負荷判定閾値曲線へと変更して前記マイクロコンピュータに実装する変更ステップと、
を含むことを特徴とする巻上機の製造方法。
In a method for manufacturing a hoisting machine, which comprises a hoisting motor and a microcomputer and has a function of determining an overload of the hoisting motor by the microcomputer.
A reference overload in which the current (i) is defined by the quadratic equation of the input voltage (v) based on the measured value obtained by measuring the relationship between the input voltage and the current in a state where various loads are applied to the reference hoisting motor. An implementation step of implementing a function of deriving the reference overload determination threshold curve as a reference threshold for overload determination in a microcomputer, which is a determination threshold curve.
The C step for determining whether or not to change the reference overload determination threshold curve, and
When changing the reference overload determination threshold curve, the reference overload determination threshold curve is changed to a corrected overload determination threshold curve composed of a quadratic equation obtained by correcting the intercept of the reference function, and the microcomputer is used. And the change steps to implement in
A method for manufacturing a hoisting machine, which comprises.
請求項4に記載の巻上機の製造方法において、
前記変更ステップにおける前記補正過負荷判定閾値曲線は、第一負荷曲線と第二負荷曲線の各前記入力電圧における電流値の差に基づき、前記基準関数の係数と切片を補正したものであり、
前記第一負荷曲線は、前記基準とする巻上電動機に諸負荷をかけ入力電圧と電流の関係を測定すると共に前記基準とする巻上電動機の巻上動作を保証する下限負荷に設定する第一の負荷における、前記基準とする巻上電動機の前記入力電圧における電流の測定値を基に算出され、
前記第二負荷曲線は、前記基準とする巻上電動機に諸負荷をかけ入力電圧と電流の関係を測定すると共に前記基準とする巻上電動機の巻上停止を保証する下限負荷に設定する第二の負荷における、前記基準とする巻上電動機の前記入力電圧における電流の測定値を基に算出される、
ことを特徴とする巻上機の製造方法。
In the method for manufacturing a hoist according to claim 4,
The corrected overload determination threshold curve in the change step is obtained by correcting the coefficient and section of the reference function based on the difference between the current values at the input voltages of the first load curve and the second load curve.
The first load curve is set to a lower limit load that applies various loads to the reference hoisting motor, measures the relationship between the input voltage and the current, and guarantees the hoisting operation of the reference hoisting motor. Calculated based on the measured value of the current at the input voltage of the hoisting motor as the reference under the load of
The second load curve is set to the lower limit load that guarantees the hoisting stop of the hoisting motor as the reference while measuring the relationship between the input voltage and the current by applying various loads to the hoisting motor as the reference. Calculated based on the measured value of the current at the input voltage of the hoisting motor as the reference under the load of.
A method of manufacturing a hoisting machine, which is characterized in that.
請求項4又は5に記載の巻上機の製造方法において、
前記実装ステップは、低電圧側実装ステップと、高電圧側実装ステップとを有し、
前記低電圧側実装ステップでは、前記基準過負荷判定閾値曲線を導出する機能を、マイクロコンピュータに実装し、
前記高電圧側実装ステップでは、前記低電圧側実装ステップよりも前記過負荷を判定する入力電圧領域が高電圧側において、入力電圧(v)の一次式で電流(i)を定義した基準過負荷閾値直線であって過負荷判定のための基準閾値としての前記基準過負荷閾値直線を導出する機能を、前記前記基準過負荷判定閾値曲線を導出する機能に代えて、前記マイクロコンピュータに実装すると共に、
前記変更ステップは、低電圧側変更ステップと、高電圧側変更ステップとを有し、
前記低電圧側変更ステップでは、前記基準過負荷判定閾値曲線を、前記補正過負荷判定閾値曲線へと変更して前記マイクロコンピュータに実装し、
前記高電圧側変更ステップでは、前記低電圧側変更ステップよりも前記過負荷を判定する入力電圧領域が高電圧側において、前記基準過負荷判定閾値曲線を、前記基準過負荷判定閾値直線を補正した補正過負荷判定閾値直線へと変更して前記マイクロコンピュータに実装する、
ことを特徴とする巻上機の製造方法。
In the method for manufacturing a hoist according to claim 4 or 5.
The mounting step includes a low voltage side mounting step and a high voltage side mounting step.
In the low voltage side mounting step, the function of deriving the reference overload determination threshold curve is mounted on the microcomputer.
In the high voltage side mounting step, the reference overload in which the current (i) is defined by the linear equation of the input voltage (v) when the input voltage region for determining the overload is higher than the low voltage side mounting step. The function of deriving the reference overload threshold line, which is a threshold line and serves as a reference threshold for overload determination, is implemented in the microcomputer in place of the function of deriving the reference overload determination threshold curve. ,
The change step includes a low voltage side change step and a high voltage side change step.
In the low voltage side change step, the reference overload determination threshold curve is changed to the correction overload determination threshold curve and mounted on the microcomputer.
In the high voltage side change step, the reference overload determination threshold curve and the reference overload determination threshold straight line are corrected when the input voltage region for determining the overload is higher than the low voltage side change step. Change to the corrected overload judgment threshold straight line and mount it on the microcomputer.
A method of manufacturing a hoisting machine, which is characterized in that.
JP2020556202A 2018-11-16 2019-11-15 Overload determination method for hoisting motor and method for manufacturing hoisting machine Active JP7253307B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018215998 2018-11-16
JP2018215998 2018-11-16
PCT/JP2019/044967 WO2020101033A1 (en) 2018-11-16 2019-11-15 Method for assessing overload of wound electric motor, and method for manufacturing winder

Publications (2)

Publication Number Publication Date
JPWO2020101033A1 true JPWO2020101033A1 (en) 2021-10-14
JP7253307B2 JP7253307B2 (en) 2023-04-06

Family

ID=70730463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020556202A Active JP7253307B2 (en) 2018-11-16 2019-11-15 Overload determination method for hoisting motor and method for manufacturing hoisting machine

Country Status (3)

Country Link
JP (1) JP7253307B2 (en)
CN (1) CN112955400B (en)
WO (1) WO2020101033A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114264948B (en) * 2021-12-17 2023-09-05 北京市科通电子继电器总厂有限公司 Product overload characteristic analysis method and device, electronic equipment and medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133451A (en) * 1974-09-13 1976-03-22 Hitachi Ltd
JPH05229785A (en) * 1991-12-26 1993-09-07 Mitsubishi Electric Corp Motor overload detection device for hoist
JP2593270B2 (en) * 1992-04-27 1997-03-26 株式会社キトー Power measurement type load detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133451A (en) * 1974-09-13 1976-03-22 Hitachi Ltd
JPH05229785A (en) * 1991-12-26 1993-09-07 Mitsubishi Electric Corp Motor overload detection device for hoist
JP2593270B2 (en) * 1992-04-27 1997-03-26 株式会社キトー Power measurement type load detector

Also Published As

Publication number Publication date
CN112955400B (en) 2023-02-24
JP7253307B2 (en) 2023-04-06
CN112955400A (en) 2021-06-11
WO2020101033A1 (en) 2020-05-22

Similar Documents

Publication Publication Date Title
US20170264233A1 (en) Temperature monitoring device, temperature monitoring method, information processing program and recording medium
KR20070008387A (en) Over current detection apparatus of motor for car
US20090009349A1 (en) Method of determining voltage stability margin for load shedding within an electrical power system
JPWO2020101033A1 (en) Hoisting motor overload determination method and hoisting machine manufacturing method
JP2010024052A (en) Load measuring and control system with selective boom-up lock-out
JPH1082702A (en) Detector for instantaneous relative load and/or accumulated relative load on carrying means
EP3719946A1 (en) Power interruption method and device based on periodic measurement of instantaneous power level
JP2011506101A (en) Continuous casting apparatus having a device for determining the solidification state of a cast strand and method therefor
KR101500079B1 (en) Method for Estimating Current of DC-DC converter
JP6180183B2 (en) Method for producing stranded wire and stranded wire device
US20020180394A1 (en) Numerical controlling unit
JP5523533B2 (en) Feedback control system and feedback control method for powder clutch and brake
JP4260465B2 (en) Insulation life estimation method and insulation life estimation system for motor
KR102107289B1 (en) Method for Measuring Brake Torque of Elevator Traction Machine
CN109665390B (en) Elevator brake control method and device, elevator control equipment and elevator
CN114342247B (en) Power amplifier device, tension controller, and load determination method
JP6707210B2 (en) Power converter and abnormality detection method
US20120277929A1 (en) Method of initiating the load shedding within an electrical power system
CN111868653B (en) State change detection device and state change detection method
JP2915158B2 (en) Failure detection device for detection device
JP2020038072A5 (en)
JP5653677B2 (en) Breaking breakage detector for level crossing breaker
JP7006471B2 (en) State change detection device and state change detection method
FI112737B (en) Hardware for adjusting the lift motor
JP5897351B2 (en) Motor control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230323

R150 Certificate of patent or registration of utility model

Ref document number: 7253307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150