JPWO2020095303A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020095303A5
JPWO2020095303A5 JP2021525314A JP2021525314A JPWO2020095303A5 JP WO2020095303 A5 JPWO2020095303 A5 JP WO2020095303A5 JP 2021525314 A JP2021525314 A JP 2021525314A JP 2021525314 A JP2021525314 A JP 2021525314A JP WO2020095303 A5 JPWO2020095303 A5 JP WO2020095303A5
Authority
JP
Japan
Prior art keywords
machine
stationary
output
monitoring
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021525314A
Other languages
Japanese (ja)
Other versions
JP7408653B2 (en
JP2022507110A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/IL2019/051217 external-priority patent/WO2020095303A1/en
Publication of JP2022507110A publication Critical patent/JP2022507110A/en
Publication of JPWO2020095303A5 publication Critical patent/JPWO2020095303A5/ja
Application granted granted Critical
Publication of JP7408653B2 publication Critical patent/JP7408653B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (15)

少なくとも1つの機械をモニタリングするための方法であって、当該方法は:
少なくとも第1センサーが、少なくとも1つの動作時間フレームの最中に非定常性の様式で動作する少なくとも1つの機械から少なくとも第1非定常性信号を獲得することを引き起こすことを有し、前記の少なくとも第1センサーは、少なくとも第1非定常性出力を提供し;
少なくとも第2センサーが、前記動作時間フレームの最中に前記の少なくとも1つの機械から少なくとも第2非定常性信号を獲得することを引き起こすことを有し、前記の少なくとも第2センサーは、少なくとも第2非定常性出力を提供し;
融合された出力を生成するために、前記の少なくとも第1非定常性出力を前記の少なくとも第2非定常性出力と融合させることを有し;
前記の融合された出力に基づいて、前記第1および第2非定常性信号のうちの少なくとも1つの少なくとも1つの特徴を抽出することを有し;
前記の少なくとも1つの機械の調子を確認するために、前記の少なくとも1つの特徴を分析することを有し;かつ、
前記の分析することによって見出された前記調子に基づいて、前記の少なくとも1つの機械の修理動作、保守動作および動作パラメーターの修正のうちの少なくとも1つを実行することを有する、
前記方法。
A method for monitoring at least one machine, the method comprising:
causing at least a first sensor to obtain at least a first non-stationary signal from at least one machine operating in a non-stationary manner during at least one operating time frame; the first sensor provides at least a first non-stationary output;
causing at least a second sensor to obtain at least a second non-stationary signal from the at least one machine during the operating time frame, wherein the at least second sensor receives at least a second providing a non-stationary output;
fusing said at least first non-stationary output with said at least second non-stationary output to produce a fused output;
extracting at least one feature of at least one of said first and second non-stationary signals based on said fused output;
analyzing said at least one characteristic to ascertain the health of said at least one machine; and
performing at least one of a repair action, a maintenance action and a modification of an operating parameter of said at least one machine based on said health found by said analyzing;
the aforementioned method.
前記の少なくとも1つの特徴が、前記機械の前記非定常性動作の定常性のレベルに対して無反応である、請求項1に記載の少なくとも1つの機械をモニタリングするための方法。 2. A method for monitoring at least one machine according to claim 1, wherein said at least one characteristic is insensitive to the level of constancy of said non-stationary operation of said machine. 前記の融合させることが、前記の少なくとも第2非定常性出力に基づいて前記の少なくとも第1非定常性出力を修正することを有する、請求項1または請求項2に記載の少なくとも1つの機械をモニタリングするための方法。 3. The at least one machine of claim 1 or claim 2, wherein said fusing comprises modifying said at least first non-stationarity output based on said at least second non-stationarity output. Methods for monitoring. 前記の少なくとも第1非定常性信号が前記機械の機械的状態を表し、かつ、前記の少なくとも第2非定常性信号が前記機械の動作的状態を表す、請求項1~3のいずれか一項に記載の少なくとも1つの機械をモニタリングするための方法。 The at least first non-stationary signal represents a mechanical state of the machine and the at least a second non - stationary signal represents an operational state of the machine. A method for monitoring at least one machine according to clause . 前記の融合させることが前記第1および第2非定常性出力にウェーブレット変換を適用することを有し、かつ、前記の修正することが、前記第1および第2非定常性出力のうちの一方の前記ウェーブレット変換を、前記第1および第2非定常性出力のうちの他方の前記ウェーブレット変換のバイナリーマスクと掛け合わせることを有する、請求項3または請求項4に記載の少なくとも1つの機械をモニタリングするための方法。 The fusing comprises applying a wavelet transform to the first and second nonstationary outputs, and the modifying comprises one of the first and second nonstationary outputs. 5. The monitoring of at least one machine according to claim 3 or claim 4, comprising multiplying the wavelet transform of the first and second nonstationary outputs by a binary mask of the wavelet transform of the other of the first and second nonstationary outputs. How to. 前記の融合させることが深層学習を採用する、請求項2に記載の少なくとも1つの機械をモニタリングするための方法。 3. The method for monitoring at least one machine of claim 2, wherein said fusing employs deep learning. 前記深層学習が、前記の少なくとも第1および第2非定常性出力を1つ以上の次元を有する1つのベクトルへと結合させることと、前記ベクトルを自動的に分類するようにニューラルネットワークをトレーニングすることを有する、請求項6に記載の少なくとも1つの機械をモニタリングするための方法。 said deep learning combining said at least first and second non-stationary outputs into a vector having one or more dimensions; and training a neural network to automatically classify said vector. 7. A method for monitoring at least one machine according to claim 6, comprising: 前記の前記ニューラルネットワークをトレーニングすることが、前記非定常性出力を、モニタリングされている前記の少なくとも1つの機械と少なくとも1つの共通する特質を共有する少なくとも1つの機械からの対応する定常性出力に基づいて分類するように前記ニューラルネットワークをトレーニングすることを有する、請求項7に記載の少なくとも1つの機械をモニタリングするための方法。 training said neural network to convert said non-stationary output to a corresponding stationary output from at least one machine sharing at least one common characteristic with said at least one machine being monitored; 8. A method for monitoring at least one machine according to claim 7, comprising training the neural network to classify based on. 前記の融合させることが、前記の少なくとも第1および第2非定常性出力を、前記第1および第2非定常性出力の交互に繰り返すものを有する織り合わされた配置構成にて結合させることを有し、かつ、前記深層学習が時系列予測のためにRNNネットワークを採用することを有する、請求項6に記載の少なくとも1つの機械をモニタリングするための方法。 said fusing comprises combining said at least first and second non-stationary outputs in an interwoven arrangement having alternating repetitions of said first and second non-stationary outputs; and said deep learning comprises employing an RNN network for time series prediction. 前記の抽出することが、前記の融合された出力から直接前記の少なくとも1つの特徴を抽出することを有する、請求項1~9のいずれか一項に記載の方法。 A method according to any preceding claim , wherein said extracting comprises extracting said at least one feature directly from said fused output. 前記の少なくとも1つの機械が、共同プロセスを実行する一群の機械を有する、請求項1~10のいずれか一項に記載の方法。 A method according to any preceding claim, wherein said at least one machine comprises a group of machines performing a collaborative process. 少なくとも1つの機械をモニタリングするためのシステムであって、当該システムは:
第1センサーを有し、該第1センサーは、少なくとも1つの動作時間フレームの最中に非定常性の様式で動作する少なくとも1つの機械から少なくとも第1非定常性信号を獲得するように動作し、前記の少なくとも第1センサーは、少なくとも第1非定常性出力を提供し;
第2センサーを有し、該第2センサーは、前記動作時間フレームの最中に前記の少なくとも1つの機械から少なくとも第2非定常性信号を獲得するように動作し、前記の少なくとも第2センサーは、少なくとも第2非定常性出力を提供し;
信号プロセッサーを有し、該信号プロセッサーは、融合された出力を生成するために、前記の少なくとも第1非定常性出力を前記の少なくとも第2非定常性出力と融合させるように動作し;
特徴抽出器を有し、該特徴抽出器は、前記第1および第2非定常性信号のうちの少なくとも1つの少なくとも1つの特徴を抽出するように動作し、かつ、前記の少なくとも1つの機械の調子を確認するために、前記の少なくとも1つの特徴を分析するように動作し;かつ、
機械制御モジュールを有し、該機械制御モジュールは、前記調子に基づいて、前記の少なくとも1つの機械の修理動作、保守動作および動作パラメーターの修正のうちの少なくとも1つの実行を制御するように動作する、
前記システム。
A system for monitoring at least one machine, the system comprising:
a first sensor operative to obtain at least a first non-stationary signal from at least one machine operating in a non-stationary manner during at least one operating time frame; , said at least first sensor providing at least a first non-stationary output;
a second sensor, the second sensor operable to obtain at least a second non-stationary signal from the at least one machine during the operating time frame, the at least second sensor comprising: , providing at least a second non-stationarity output;
a signal processor operable to fuse the at least first non-stationary output with the at least second non-stationary output to produce a fused output;
a feature extractor operable to extract at least one feature of at least one of said first and second non-stationary signals; operable to analyze said at least one characteristic to ascertain health; and
a machine control module, the machine control module operable to control execution of at least one of a repair operation, a maintenance operation and a modification of an operating parameter of the at least one machine based on the condition; ,
said system.
前記信号プロセッサーが、前記の少なくとも第2非定常性出力に基づいて前記の少なくとも第1非定常性出力を修正するように動作する、請求項12に記載の少なくとも1つの機械をモニタリングするためのシステム。 13. The system for monitoring at least one machine according to claim 12 , wherein said signal processor is operable to modify said at least first non-stationary output based on said at least second non-stationary output. . 前記の少なくとも第1非定常性信号が前記機械の機械的状態を表し、かつ、前記の少なくとも第2非定常性信号が前記機械の動作的状態を表す、請求項12または請求項13に記載の少なくとも1つの機械をモニタリングするためのシステム。 14. A method according to claim 12 or claim 13 , wherein said at least first non-stationary signal represents a mechanical state of said machine and said at least a second non-stationary signal represents an operational state of said machine. A system for monitoring at least one machine. 前記の少なくとも1つの特徴が前記の融合された出力から直接抽出される、請求項1214のいずれか一項に記載のシステム。 A system according to any one of claims 12 to 14 , wherein said at least one feature is extracted directly from said fused output.
JP2021525314A 2018-11-09 2019-11-07 Automatic analysis of unsteady mechanical performance Active JP7408653B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862758054P 2018-11-09 2018-11-09
US62/758,054 2018-11-09
PCT/IL2019/051217 WO2020095303A1 (en) 2018-11-09 2019-11-07 Automated analysis of non-stationary machine performance

Publications (3)

Publication Number Publication Date
JP2022507110A JP2022507110A (en) 2022-01-18
JPWO2020095303A5 true JPWO2020095303A5 (en) 2022-08-29
JP7408653B2 JP7408653B2 (en) 2024-01-05

Family

ID=70610693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021525314A Active JP7408653B2 (en) 2018-11-09 2019-11-07 Automatic analysis of unsteady mechanical performance

Country Status (7)

Country Link
US (3) US11556121B2 (en)
EP (1) EP3877819A4 (en)
JP (1) JP7408653B2 (en)
KR (1) KR20210091737A (en)
CN (1) CN113287072B (en)
AU (1) AU2019375200A1 (en)
WO (1) WO2020095303A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11556121B2 (en) 2018-11-09 2023-01-17 Augury Systems Ltd. Automated analysis of non-stationary machine performance
US11544557B2 (en) * 2019-11-04 2023-01-03 Cisco Technology, Inc. IoT-based network architecture for detecting faults using vibration measurement data
AU2020395182B9 (en) 2019-12-03 2023-04-27 Fluid Handling Llc Operational condition monitoring system
US20220350691A1 (en) * 2019-12-30 2022-11-03 Jiangsu Nangao Intelligent Equipment Innovation Center Co., Ltd. Fault prediction system based on sensor data on numerical control machine tool and method therefor
JP7442390B2 (en) * 2020-06-01 2024-03-04 株式会社日立ビルシステム Bearing inspection equipment and bearing inspection method
CN111678699B (en) * 2020-06-18 2021-06-04 山东大学 Early fault monitoring and diagnosing method and system for rolling bearing
CN112284735B (en) * 2020-10-21 2022-07-15 兰州理工大学 Multi-sensor rolling bearing fault diagnosis based on one-dimensional convolution and dynamic routing
CN112488238B (en) * 2020-12-14 2022-11-15 桂林电子科技大学 Hybrid anomaly detection method based on countermeasure self-encoder
US20220203536A1 (en) * 2020-12-31 2022-06-30 Robert Bosch Gmbh Dynamic spatiotemporal beamforming self-diagonostic system
JP7446249B2 (en) 2021-02-01 2024-03-08 株式会社日立製作所 Monitoring and diagnostic equipment for electromagnetic equipment
CN114444588B (en) * 2022-01-19 2024-09-17 天津大学 Time-varying feature composition-based time sequence prediction method for various measuring points on gas turbine
EP4277116A1 (en) * 2022-05-13 2023-11-15 Siemens Aktiengesellschaft Methods and systems for monitoring of an electrical machine
CN118502330B (en) * 2024-07-18 2024-09-17 青岛智和精密科技有限公司 Rotary positioning control method for torque motor in swinging environment

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6199018B1 (en) * 1998-03-04 2001-03-06 Emerson Electric Co. Distributed diagnostic system
US7308322B1 (en) 1998-09-29 2007-12-11 Rockwell Automation Technologies, Inc. Motorized system integrated control and diagnostics using vibration, pressure, temperature, speed, and/or current analysis
US7539549B1 (en) * 1999-09-28 2009-05-26 Rockwell Automation Technologies, Inc. Motorized system integrated control and diagnostics using vibration, pressure, temperature, speed, and/or current analysis
JP3476702B2 (en) 1999-02-24 2003-12-10 新キャタピラー三菱株式会社 Pump failure diagnosis device
US6539343B2 (en) * 2000-02-03 2003-03-25 Xerox Corporation Methods for condition monitoring and system-level diagnosis of electro-mechanical systems with multiple actuating components operating in multiple regimes
US6366862B1 (en) * 2000-04-19 2002-04-02 National Instruments Corporation System and method for analyzing signals generated by rotating machines
US7027953B2 (en) * 2002-12-30 2006-04-11 Rsl Electronics Ltd. Method and system for diagnostics and prognostics of a mechanical system
JP4635194B2 (en) * 2004-12-02 2011-02-16 財団法人石油産業活性化センター Anomaly detection device
CN101937207B (en) * 2010-08-27 2012-09-05 上海交通大学 Intelligent visualized monitoring and diagnosing method of mechanical equipment state
JP5259797B2 (en) 2011-09-05 2013-08-07 株式会社東芝 Learning type process abnormality diagnosis device and operator judgment estimation result collection device
CN102335872B (en) * 2011-09-14 2013-04-03 桂林电子科技大学 Artificial neural network-based method and device for automatically trimming grinding wheel of grinding machine
CN103557884B (en) * 2013-09-27 2016-06-29 杭州银江智慧城市技术集团有限公司 A kind of Fusion method for early warning of electric power line pole tower monitoring
US9518839B2 (en) 2013-11-26 2016-12-13 Northrop Grumman Systems Corporation Wavelet based monitoring of system parameters
US10552762B2 (en) 2015-07-16 2020-02-04 Falkonry Inc. Machine learning of physical conditions based on abstract relations and sparse labels
CN105426822B (en) * 2015-11-05 2018-09-04 郑州轻工业学院 Non-stationary signal multi-fractal features extracting method based on dual-tree complex wavelet transform
US10410113B2 (en) 2016-01-14 2019-09-10 Preferred Networks, Inc. Time series data adaptation and sensor fusion systems, methods, and apparatus
US10387769B2 (en) 2016-06-30 2019-08-20 Samsung Electronics Co., Ltd. Hybrid memory cell unit and recurrent neural network including hybrid memory cell units
JP2018156151A (en) 2017-03-15 2018-10-04 ファナック株式会社 Abnormality detecting apparatus and machine learning device
WO2018198111A1 (en) 2017-04-26 2018-11-01 Augury Systems Ltd. Systems and methods for monitoring of mechanical and electrical machines
US11556121B2 (en) 2018-11-09 2023-01-17 Augury Systems Ltd. Automated analysis of non-stationary machine performance

Similar Documents

Publication Publication Date Title
JPWO2020095303A5 (en)
CN104471542B (en) The hidden Kalman filter of differentiation for the classification of the sensing data flowed in Stateful Inspection
KR20210091737A (en) Automated analysis of abnormal machine performance
CN106094749B (en) Based on the nonlinear fault detection method and application for improving nuclear entropy constituent analysis
CN105787561A (en) Recurrent neural network model construction method and gearbox fault detection method and device
CN117290800B (en) Timing sequence anomaly detection method and system based on hypergraph attention network
CN111241673A (en) Health state prediction method for industrial equipment in noisy environment
CN111523659A (en) Machine fault prediction diagnosis method based on three-level neural network modeling
Kamaruddin et al. A simple model-free butterfly shape-based detection (BSD) method integrated with deep learning CNN for valve stiction detection and quantification
CN117040917A (en) Intelligent switch with monitoring and early warning functions
CN111428685A (en) Machine fault detection, classification and grading method based on neural network unified modeling
CN111488935A (en) Coal mill fault diagnosis method based on neural network unified modeling
CN112508242A (en) Method for constructing bearing fault location and classification model of wind power generator
CN117493980B (en) Bearing fault diagnosis method integrating feature extraction and sequencing causal discovery
CN117672255B (en) Abnormal equipment identification method and system based on artificial intelligence and equipment operation sound
Cheansunan et al. Detecting anomalous events on distributed systems using convolutional neural networks
CN110779988A (en) Bolt life prediction method based on deep learning
CN117874612A (en) Power system equipment model anomaly detection method based on artificial intelligence
JP2020166407A (en) Model generation device, abnormality occurrence prediction device, abnormality occurrence prediction model generation method and abnormality occurrence prediction method
CN111026095B (en) Fault diagnosis method with noise label based on recurrent neural network
CN116933643A (en) Intelligent data monitoring method based on partial robust M regression and multiple interpolation
CN112241751B (en) Anomaly detection method and system, and computer readable storage medium
JP7251955B2 (en) Detection device and machine learning method
CN115100592B (en) Method and device for identifying hidden danger of external damage of power transmission channel and storage medium
CN115758086A (en) Method, device and equipment for detecting faults of cigarette cut-tobacco drier and readable storage medium