JPWO2020092975A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020092975A5
JPWO2020092975A5 JP2021523351A JP2021523351A JPWO2020092975A5 JP WO2020092975 A5 JPWO2020092975 A5 JP WO2020092975A5 JP 2021523351 A JP2021523351 A JP 2021523351A JP 2021523351 A JP2021523351 A JP 2021523351A JP WO2020092975 A5 JPWO2020092975 A5 JP WO2020092975A5
Authority
JP
Japan
Prior art keywords
cells
interleukin
region
microfluidic device
kit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021523351A
Other languages
Japanese (ja)
Other versions
JP2022506154A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2019/059495 external-priority patent/WO2020092975A2/en
Publication of JP2022506154A publication Critical patent/JP2022506154A/en
Publication of JPWO2020092975A5 publication Critical patent/JPWO2020092975A5/ja
Pending legal-status Critical Current

Links

Claims (24)

マイクロ流体デバイスにおいてTリンパ球(T細胞)の抗原特異性細胞毒性をアッセイする方法であって、
前記T細胞を前記マイクロ流体デバイス内に配置することと、
標的細胞を前記T細胞の近傍に配置することと、
前記標的細胞の生存率を特定することと、
を含み、
前記マイクロ流体デバイスが、第1の流体培地のフローを含むためのフロー領域と、前記フロー領域に開口されたチャンバと、を備える、
方法。
A method of assaying antigen-specific cytotoxicity of T lymphocytes (T cells) in a microfluidic device, comprising:
placing the T cells in the microfluidic device;
placing target cells in proximity to said T cells;
determining the viability of the target cells;
including
said microfluidic device comprising a flow region for containing a flow of a first fluid medium and a chamber open to said flow region;
Method.
前記T細胞が特異的な抗原を前記標的細胞が発現する、請求項に記載の方法。 2. The method of claim 1 , wherein said target cell expresses an antigen to which said T cell is specific. 前記アッセイが、前記T細胞の第1の分泌生体分子を捕捉するように構成された第1の捕捉物体を前記T細胞の近傍に配置することと、前記第1の捕捉物体に捕捉された前記第1の分泌生体分子を検出することとを更に含む、請求項又はに記載の方法。 The assay comprises placing a first capture entity in the vicinity of the T cell configured to capture a first secreted biomolecule of the T cell; and 3. The method of claim 1 or 2 , further comprising detecting the first secreted biomolecule. 前記第1の分泌生体分子が、タンパク質である、請求項に記載の方法。 4. The method of claim 3 , wherein said first secreted biomolecule is a protein. 前記T細胞前記第1の分泌生体分子が、サイトカインである、請求項3又は4に記載の方法。 5. The method of claim 3 or 4 , wherein said first secreted biomolecule of said T cell is a cytokine. 前記サイトカインが、腫瘍壊死因子α(TNFα)、形質転換増殖因子β(TGFβ)、インターフェロンγ(IFNγ)、インターロイキン-1β(IL1β)、インターロイキン-2(IL2)、インターロイキン-4(IL4)、インターロイキン-5(IL5)、インターロイキン-6(IL6)、インターロイキン-10(IL10)、インターロイキン-12(IL12)、インターロイキン-13(IL13)、インターロイキン-17A(IL17A)、又はインターロイキン-22(IL22)である、請求項に記載の方法。 The cytokine is tumor necrosis factor alpha (TNFα), transforming growth factor beta (TGFβ), interferon gamma (IFNγ), interleukin-1β (IL1β), interleukin-2 (IL2), interleukin-4 (IL4) , interleukin-5 (IL5), interleukin-6 (IL6), interleukin-10 (IL10), interleukin-12 (IL12), interleukin-13 (IL13), interleukin-17A (IL17A), or 6. The method of claim 5 , which is interleukin-22 (IL22). 前記標的細胞が癌細胞である、請求項1から6のいずれか1項に記載の方法。 7. The method of any one of claims 1-6 , wherein the target cells are cancer cells. 前記標的細胞が、メラノーマ、乳癌、又は肺癌に関連する抗原を発現する、請求項に記載の方法。 8. The method of claim 7 , wherein the target cells express antigens associated with melanoma, breast cancer, or lung cancer. 前記T細胞が哺乳類T細胞である、請求項1から8のいずれか1項に記載の方法。 9. The method of any one of claims 1-8 , wherein said T cells are mammalian T cells. 前記T細胞が、腫瘍関連抗原に対して抗原特異である、及び/又はキメラ抗原受容体を発現する、請求項1から9のいずれか1項に記載の方法。 10. The method of any one of claims 1-9, wherein said T cells are antigen -specific for tumor-associated antigens and/or express chimeric antigen receptors . 前記T細胞が、キメラ抗原受容体を発現しない、請求項1から9のいずれか1項に記載の方法。 10. The method of any one of claims 1-9, wherein said T cells do not express chimeric antigen receptors. 前記チャンバが隔離囲いを備え
前記隔離囲いが、第2の流体培地を含むための分離領域と、前記分離領域を前記フロー領域に流体的に接続する接続領域と、を備え、
前記分離領域が1つの開口部を備え、前記マイクロ流体デバイスの非掃引領域である、
請求項1から11のいずれか1項に記載の方法。
said chamber comprising an isolation enclosure ;
said isolation enclosure comprising a separation region for containing a second fluid medium and a connection region fluidly connecting said separation region to said flow region;
the separation region comprises one opening and is a non-swept region of the microfluidic device;
12. A method according to any one of claims 1-11.
前記T細胞及び前記標的細胞が各々、前記チャンバに配置される、請求項1から12のいずれか1項に記載の方法。 13. The method of any one of claims 1-12, wherein the T cells and the target cells are each arranged in the chamber. 前記T細胞及び前記標的細胞が各々、前記隔離囲いの前記分離領域に配置される、請求項12に記載の方法。 13. The method of claim 12 , wherein said T cells and said target cells are each arranged in said isolation region of said isolation pen. 前記標的細胞の前記生存率を特定することが、非生存細胞を標識するように構成された検出可能なマーカで前記標的細胞に接触することを含む、請求項1から14のいずれか1項に記載の方法。 15. The method of any one of claims 1-14, wherein determining the viability of the target cells comprises contacting the target cells with a detectable marker configured to label non-viable cells. described method. 前記非生存細胞を標識するように構成された検出可能なマーカが、アポトーシス細胞を標識するように構成される、請求項15に記載の方法。 16. The method of claim 15 , wherein the detectable marker configured to label non-viable cells is configured to label apoptotic cells. 前記非生存細胞を標識するように構成された検出可能なマーカが、カルシウム流又はミトコンドリア膜電位を標識するように構成される、請求項15に記載の方法。 16. The method of claim 15 , wherein the detectable marker configured to label non-viable cells is configured to label calcium flux or mitochondrial membrane potential. 前記標的細胞の前記生存率を特定することが、前記T細胞への複数の露光期間にわたり繰り返される、請求項1から17のいずれか1項に記載の方法。 18. The method of any one of claims 1-17, wherein determining the viability of the target cells is repeated over multiple periods of exposure to the T cells. 増殖、活性化、代謝活性、記憶、疲弊、及び/又は成熟に関連する1つ以上の細胞表面マーカの存在について前記T細胞を標識することを更に含む請求項1から18のいずれか1項に記載の方法。 19. Any one of claims 1-18 , further comprising labeling said T cells for the presence of one or more cell surface markers associated with proliferation, activation, metabolic activity, memory, exhaustion, and/or maturation. The method described in . マイクロ流体デバイスにおいてTリンパ球(T細胞)による抗原特異性細胞毒性をアッセイするキットであって、
第1の流体培地のフローを含むためのフロー領域及び前記フロー領域に開口されたチャンバを備えるマイクロ流体デバイスと、
標的細胞の生存率を検出するように構成された細胞毒性検出試薬と
備えるキット。
A kit for assaying antigen-specific cytotoxicity by T lymphocytes (T cells) in a microfluidic device, comprising:
a microfluidic device comprising a flow region for containing a flow of a first fluid medium and a chamber open to said flow region;
a cytotoxicity detection reagent configured to detect target cell viability ;
Kit with .
前記細胞毒性検出試薬が、アポトーシス細胞を標識するように構成された試薬を含む、請求項20に記載のキット。 21. The kit of Claim 20 , wherein said cytotoxicity detection reagent comprises a reagent configured to label apoptotic cells. 前記細胞毒性検出試薬が、カルシウム流又はミトコンドリア膜電位を検出するように構成された試薬を含む、請求項20に記載のキット。 21. The kit of claim 20 , wherein said cytotoxicity detection reagents comprise reagents configured to detect calcium flux or mitochondrial membrane potential. T細胞の第1の分泌生体分子を捕捉するように構成された第1の捕捉物体を更に含む請求項20から22いずれか1項に記載のキット。 23. The kit of any one of claims 20-22 , further comprising a first capture entity configured to capture a first secreted biomolecule of T cells. 前記チャンバが隔離囲いを備え、 said chamber comprising an isolation enclosure;
前記隔離囲いが、第2の流体培地を含むための分離領域と、前記分離領域を前記フロー領域に流体的に接続する接続領域と、を備え、 said isolation enclosure comprising a separation region for containing a second fluid medium and a connection region fluidly connecting said separation region to said flow region;
前記分離領域が1つの開口部を備え、前記マイクロ流体デバイスの非掃引領域である、 the separation region comprises one opening and is a non-swept region of the microfluidic device;
請求項20から23のいずれか1項に記載のキット。 24. A kit according to any one of claims 20-23.
JP2021523351A 2018-11-01 2019-11-01 Methods for Assaying Living Cells in a Microfluidic Environment Pending JP2022506154A (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201862754147P 2018-11-01 2018-11-01
US201862754107P 2018-11-01 2018-11-01
US62/754,147 2018-11-01
US62/754,107 2018-11-01
US201962881129P 2019-07-31 2019-07-31
US62/881,129 2019-07-31
PCT/US2019/059495 WO2020092975A2 (en) 2018-11-01 2019-11-01 Methods for assaying biological cells in a microfluidic device

Publications (2)

Publication Number Publication Date
JP2022506154A JP2022506154A (en) 2022-01-17
JPWO2020092975A5 true JPWO2020092975A5 (en) 2022-11-04

Family

ID=70462874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021523351A Pending JP2022506154A (en) 2018-11-01 2019-11-01 Methods for Assaying Living Cells in a Microfluidic Environment

Country Status (10)

Country Link
US (1) US20210349075A1 (en)
EP (1) EP3874265A4 (en)
JP (1) JP2022506154A (en)
KR (1) KR20210089193A (en)
CN (1) CN113366312A (en)
AU (1) AU2019371417A1 (en)
CA (1) CA3118957A1 (en)
IL (1) IL282821A (en)
SG (1) SG11202103866RA (en)
WO (1) WO2020092975A2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3118957A1 (en) * 2018-11-01 2020-05-07 Berkeley Lights, Inc. Methods for assaying biological cells in a microfluidic environment
WO2021097449A1 (en) 2019-11-17 2021-05-20 Berkeley Lights, Inc. Systems and methods for analyses of biological samples
CN113145183B (en) * 2020-01-22 2022-12-06 京东方科技集团股份有限公司 Biological chip and its making method
EP4150336A4 (en) * 2020-05-14 2024-06-26 Bifrost Biosystems A microfluidic device having specifically designed detection chambers
US20220351347A1 (en) * 2021-02-25 2022-11-03 California Institute Of Technology Computational refocusing-assisted deep learning
WO2022213077A1 (en) * 2021-03-29 2022-10-06 Berkeley Lights, Inc. Methods of assaying biomolecules within a microfluidic device
NL1043994B1 (en) * 2021-04-14 2022-10-25 Digi Bio B V A method for identifying the best therapeutics producing candidates using a digital microfuidics based lab-on-a-chip platform
WO2023164712A2 (en) * 2022-02-28 2023-08-31 Bio-Rad Laboratories, Inc. Wide-spectrum analysis system
CN114693646B (en) * 2022-03-31 2023-04-11 中山大学中山眼科中心 Corneal endothelial cell active factor analysis method based on deep learning
CN115895864A (en) * 2022-11-30 2023-04-04 重庆大学 Micro-fluidic chip detection system based on planar electrode

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8242792B2 (en) * 2008-10-30 2012-08-14 Bose Corporation Impedance measurement system and method
US8242248B2 (en) * 2009-03-23 2012-08-14 Nodality, Inc. Kits for multiparametric phospho analysis
US8932586B2 (en) * 2011-09-06 2015-01-13 Intrexon Corporation Modified forms of Pseudomonas exotoxin A
CN109342710A (en) * 2013-03-28 2019-02-15 英属哥伦比亚大学 Micro fluidic device and its application method in many cells secretion detection
EP3060645B1 (en) * 2013-10-22 2019-01-02 Berkeley Lights, Inc. Microfluidic devices having isolation pens and methods of testing biological micro-objects with same
KR102466814B1 (en) * 2015-12-08 2022-11-11 버클리 라잇츠, 인크. Microfluidic devices and kits and methods for their use
TWI808934B (en) * 2015-12-31 2023-07-21 美商伯克利之光生命科技公司 Tumor infilitrating cells engineered to express a pro-inflammatory polypeptide
WO2017118979A1 (en) * 2016-01-07 2017-07-13 B. G. Negev Technologies And Applications Ltd., At Ben-Gurion University Compositions and methods for generating immunotolerant responses
KR102669330B1 (en) * 2016-12-01 2024-05-28 버클리 라잇츠, 인크. Automated detection and repositioning of micro-objects in microfluidic devices
EP3573997A4 (en) * 2017-01-24 2020-12-09 Abexxa Biologics, Inc. Methods and compositions for targeting a complex comprising non-classical hla-i and neoantigen in cancer
KR20200030593A (en) * 2017-07-21 2020-03-20 버클리 라잇츠, 인크. Antigen presenting synthetic surfaces, covalently functionalized surfaces, activated T cells, and uses thereof
CA3118957A1 (en) * 2018-11-01 2020-05-07 Berkeley Lights, Inc. Methods for assaying biological cells in a microfluidic environment

Similar Documents

Publication Publication Date Title
JPWO2020092975A5 (en)
Sausville et al. Histopathologic staging at initial diagnosis of mycosis fungoides and the Sézary syndrome: definition of three distinctive prognostic groups
Onishi et al. An assessment of the immunological environment based on intratumoral cytokine production in renal cell carcinoma
Read et al. In vitro differentiation of effector CD4+ T helper cell subsets
Takada et al. Oversecretion of IL‐18 in haemophagocytic lymphohistiocytosis: a novel marker of disease activity
CN101833001B (en) Protein chip kit for detecting inflammatory factors and preparation method thereof
NO20045236L (en) Fusions of cytokines and tumor-targeting proteins
Rodríguez-Bayona et al. Cutting edge: IL-21 derived from human follicular helper T cells acts as a survival factor for secondary lymphoid organ, but not for bone marrow, plasma cells
Li et al. Comprehensive evaluation of the effects of long-term cryopreservation on peripheral blood mononuclear cells using flow cytometry
Mahmood et al. Microfluidic‐based, live‐cell analysis allows assessment of NK‐cell migration in response to crosstalk with dendritic cells
Glickstein et al. Inflammatory cytokine production predominates in early Lyme disease in patients with erythema migrans
Collins Cytokine and cytokine receptor expression as a biological indicator of immune activation: important considerations in the development of in vitro model systems
Sandhu et al. Methotrexate preferentially affects Tc1 and Tc17 subset of CD8 T lymphocytes
Owonikoko et al. Soluble FAS ligand as a biomarker of disease recurrence in differentiated thyroid cancer
Pohla et al. High immune response rates and decreased frequencies of regulatory T cells in metastatic renal cell carcinoma patients after tumor cell vaccination
Kouwenhoven et al. Enzyme-linked immunospot assays provide a sensitive tool for detection of cytokine secretion by monocytes
Firestein et al. Cellular immunity in the joints of patients with rheumatoid arthritis and other forms of chronic synovitis
JP2020530486A5 (en)
Elsässer-Beile et al. Impaired cytokine production in whole blood cell cultures of patients with urological carcinomas
JP2007535668A5 (en)
West et al. Intravenous oncolytic vaccinia virus therapy results in a differential immune response between cancer patients
Calcagno et al. Novel three-dimensional biochip pulmonary sarcoidosis model
Cassaniti et al. Memory T cells specific for HBV enumerated by a peptide-based cultured enzyme-linked immunospot assay in healthy HBV-vaccinated subjects
Dillman et al. Genomic, proteomic, and immunologic associations with a durable complete remission of measurable metastatic melanoma induced by a patient-specific dendritic cell vaccine
Vancurova Cytokine bioassays