JPWO2020086967A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020086967A5
JPWO2020086967A5 JP2021523055A JP2021523055A JPWO2020086967A5 JP WO2020086967 A5 JPWO2020086967 A5 JP WO2020086967A5 JP 2021523055 A JP2021523055 A JP 2021523055A JP 2021523055 A JP2021523055 A JP 2021523055A JP WO2020086967 A5 JPWO2020086967 A5 JP WO2020086967A5
Authority
JP
Japan
Prior art keywords
hsa
mir
pir
data
processing circuitry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021523055A
Other languages
Japanese (ja)
Other versions
JP2022512829A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2019/058073 external-priority patent/WO2020086967A1/en
Publication of JP2022512829A publication Critical patent/JP2022512829A/en
Publication of JPWO2020086967A5 publication Critical patent/JPWO2020086967A5/ja
Pending legal-status Critical Current

Links

Claims (13)

自閉症スペクトラム障害(ASD)を診断する機械学習分類器であって、処理回路を備え、
前記処理回路が、患者病歴及び患者唾液から得られるデータを、特徴の検査パネルに対応するデータへと変換し、前記特徴についての前記データが、ヒトマイクロトランスクリプトームデータ及び微生物トランスクリプトームデータを含み、前記トランスクリプトームデータが、ASDに対するそれぞれのRNAカテゴリーと関連し、
前記検査パネルの前記特徴と関連するトレーニングデータを使用してASDを検出するようにトレーニングされている前記処理回路に前記変換データを適用することによって前記データを前記処理回路が分類し、
前記トレーニングされた処理回路が、分類境界を定義するベクトルを含み、
前記トレーニングされた処理回路が、サポートベクトルマシンであり、前記分類境界を定義する前記ベクトルが、サポートベクトルであり、
前記処理回路が、前記データを、前記特徴の検査パネルに対応するデータへと変換し、前記特徴の検査パネルが、
患者データ主成分及び患者年齢、
マイクロRNA(hsa-mir-146a、hsa-mir-146b、hsa-miR-92a-3p、hsa-miR-106-5p、hsa-miR-3916、hsa-mir-10a、hsa-miR-378a-3p、hsa-miR-125a-5p、hsa-miR146b-5p、hsa-miR-361-5p、hsa-mir-410を含む)、
piRNA(piR-hsa-15023、piR-hsa-27400、piR-hsa-9491、piR-hsa-29114、piR-hsa-6463、piR-hsa-24085、piR-hsa-12423、piR-hsa-24684を含む)、
核小体低分子RNA(SNORD118を含む)、ならびに
微生物(Streptococcus gallolyticusの亜種gallolyticus DSM16831、Yarrowia lipolytica CLIB122、Clostridiales、Oenococcus oeni PSU-1、Fusarium、Alphaproteobacteria、Lactobacillus fermentum、Corynebacterium uterequi、Ottowia属の1種oral taxon894、Pasteurella multocidaの亜種multocida OH4807、Leadbetterella byssophila DSM17132、Staphylococcusを含む)、
を含む、
機械学習分類器。
1. A machine learning classifier for diagnosing autism spectrum disorder (ASD), comprising a processing circuit,
The processing circuitry converts data obtained from the patient history and patient saliva into data corresponding to a test panel of characteristics, the data for the characteristics comprising human microtranscriptome data and microbial transcriptome data. wherein the transcriptome data are associated with each RNA category for ASD;
said processing circuitry classifying said data by applying said transformation data to said processing circuitry that has been trained to detect ASD using training data associated with said features of said test panel;
wherein the trained processing circuitry includes vectors defining classification boundaries;
said trained processing circuitry is a support vector machine, said vectors defining said classification boundaries are support vectors;
The processing circuitry converts the data into data corresponding to the inspection panel of features, the inspection panel of features:
patient data principal components and patient age,
MicroRNAs (hsa-mir-146a, hsa-mir-146b, hsa-miR-92a-3p, hsa-miR-106-5p, hsa-miR-3916, hsa-mir-10a, hsa-miR-378a-3p , hsa-miR-125a-5p, hsa-miR146b-5p, hsa-miR-361-5p, hsa-mir-410),
piRNA (piR-hsa-15023, piR-hsa-27400, piR-hsa-9491, piR-hsa-29114, piR-hsa-6463, piR-hsa-24085, piR-hsa-12423, piR-hsa-24684 include),
核小体低分子RNA(SNORD118を含む)、ならびに 微生物(Streptococcus gallolyticusの亜種gallolyticus DSM16831、Yarrowia lipolytica CLIB122、Clostridiales、Oenococcus oeni PSU-1、Fusarium、Alphaproteobacteria、Lactobacillus fermentum、Corynebacterium uterequi、Ottowia属の1種oral taxon 894, Pasteurella multocida subspecies multocida OH4807, Leadbetterella byssophila DSM17132, Staphylococcus),
including,
Machine learning classifier.
前記トレーニングされた処理回路が、前記分類の結果に基づいて、ASDを有する確率を予測する、請求項1に記載の機械学習分類器。 2. The machine learning classifier of claim 1, wherein the trained processing circuitry predicts a probability of having ASD based on results of the classification. 前記処理回路が、前記データを、前記特徴の検査パネルに対応するデータへと変換し、前記特徴の検査パネルが、hsa-mir-4461、hsa-miR-15a-5p、hsa-miR-6763-3p、hsa-miR-196a-5p、hsa-miR-4668-5p、hsa-miR-378d、hsa-miR-142-3p、hsa-mir-30c-1、hsa-mir-101-2、hsa-mir-151a、hsa-miR-125b-2-3p、hsa-mir-148a-5p、hsa-mir-548I、hsa-miR-98-5p、hsa-miR-8065、hsa-mir-378d-1、hsa-let-7f-1、hsa-let-7d-3p、hsa-let-7a-2、hsa-let-7f-2、hsa-let-7f-5p、hsa-mir-106a、hsa-mir-107、hsa-miR-10b-5p、hsa-miR-1244、hsa-miR-125a-5p、hsa-mir-1268a、hsa-miR-146a-5p、hsa-mir-155、hsa-mir-18a、hsa-mir-195、hsa-mir-199a-1、hsa-mir-19a、hsa-miR-218-5p、hsa-mir-29a、hsa-miR-29b-3p、hsa-miR-29c-3p、hsa-miR-3135b、hsa-mir-3182、hsa-mir-3665、hsa-mir-374a、hsa-mir-421、hsa-mir-4284、hsa-miR-4436b-3p、hsa-miR-4698、hsa-mir-4763、hsa-mir-4798、hsa-mir-502、hsa-miR-515-5p、hsa-mir-5572、hsa-miR-6724-5p、hsa-mir-6739、hsa-miR-6748-3p、及びhsa-miR-6770-5pからなる群から選択される少なくとも1つのマイクロRNAを含む、請求項1に記載の機械学習分類器。 The processing circuit converts the data into data corresponding to the feature test panel, the feature test panel being hsa-mir-4461, hsa-miR-15a-5p, hsa-miR-6763- 3p, hsa-miR-196a-5p, hsa-miR-4668-5p, hsa-miR-378d, hsa-miR-142-3p, hsa-mir-30c-1, hsa-mir-101-2, hsa- mir-151a, hsa-miR-125b-2-3p, hsa-mir-148a-5p, hsa-mir-548I, hsa-miR-98-5p, hsa-miR-8065, hsa-mir-378d-1, hsa-let-7f-1, hsa-let-7d-3p, hsa-let-7a-2, hsa-let-7f-2, hsa-let-7f-5p, hsa-mir-106a, hsa-mir- 107, hsa-miR-10b-5p, hsa-miR-1244, hsa-miR-125a-5p, hsa-mir-1268a, hsa-miR-146a-5p, hsa-mir-155, hsa-mir-18a, hsa-mir-195, hsa-mir-199a-1, hsa-mir-19a, hsa-miR-218-5p, hsa-mir-29a, hsa-miR-29b-3p, hsa-miR-29c-3p, hsa-miR-3135b, hsa-mir-3182, hsa-mir-3665, hsa-mir-374a, hsa-mir-421, hsa-mir-4284, hsa-miR-4436b-3p, hsa-miR-4698, hsa-mir-4763, hsa-mir-4798, hsa-mir-502, hsa-miR-515-5p, hsa-mir-5572, hsa-miR-6724-5p, hsa-mir-6739, hsa-miR- 6748-3p, and hsa-miR-6770-5p, comprising at least one microRNA selected from the group consisting of hsa-miR-6770-5p. 前記処理回路が、前記データを、前記特徴の検査パネルに対応するデータへと変換し、前記特徴の検査パネルが、piR-hsa-3405、piR-hsa-324、piR-hsa-18905、piR-hsa-23248、piR-hsa-28223、piR-hsa-28400、piR-hsa-1177、piR-hsa-26592、piR-hsa-11361、piR-hsa-26131、piR-hsa-27133、piR-hsa-27134、piR-hsa-27282、及びpiR-hsa-27728からなる群から選択される少なくとも1つのpiRNAを含む、請求項1に記載の機械学習分類器。 The processing circuit converts the data into data corresponding to the feature test panel, the feature test panel being piR-hsa-3405, piR-hsa-324, piR-hsa-18905, piR- hsa-23248, piR-hsa-28223, piR-hsa-28400, piR-hsa-1177, piR-hsa-26592, piR-hsa-11361, piR-hsa-26131, piR-hsa-27133, piR-hsa- 27134, piR-hsa-27282, and piR-hsa-27728, comprising at least one piRNA selected from the group consisting of piR-hsa-27728. 前記処理回路が、前記データを、前記特徴の検査パネルに対応するデータへと変換し、前記特徴の検査パネルが、RNA5S、MTRNR2L4、及びMTRNR2L8からなる群から選択される少なくとも1つのリボソームRNA、並びに/又は、SNORD29、SNORD53B、SNORD68、SNORD20、SNORD41、SNORD30、SNORD34、SNORD110、SNORD28、SNORD45B、及びSNORD92からなる群から選択される少なくとも1つの核小体低分子RNA、並びに/又は、少なくとも1つの長鎖非コードRNAである特徴を含む、請求項1に記載の機械学習分類器。 at least one ribosomal RNA selected from the group consisting of RNA5S, MTRNR2L4, and MTRNR2L8, wherein said processing circuitry converts said data into data corresponding to said test panel of characteristics; /or at least one small nucleolar RNA selected from the group consisting of SNORD29, SNORD53B, SNORD68, SNORD20, SNORD41, SNORD30, SNORD34, SNORD110, SNORD28, SNORD45B, and SNORD92, and/or at least one long 2. The machine learning classifier of claim 1, comprising features that are strand non-coding RNA. 前記処理回路が、前記データを、前記特徴の検査パネルに対応するデータへと変換し、前記特徴の検査パネルが、Rothia、Cryptococcus gattii WM276、Neisseriaceae、Rothia dentocariosa ATCC17931、Chryseobacterium属の1種IHB B 17019、Streptococcus agalactiae CNCTC10/84、Streptococcus pneumoniae SPNA45、Tsukamurella paurometabola DSM20162、Streptococcus mutans UA159-FR、Actinomyces oris、Comamonadaceae、Streptococcus halotolerans、Flavobacterium columnare、Streptomyces griseochromogenes、Neisseria、Porphyromonas、Streptococcus salivarius CCHSS3、Megasphaera elsdenii DSM20460、Pasteurellaceae、未分類のBurkholderiales、Arthrobacter、Dickeya、Jeotgalibacillus、Kocuria、Leuconostoc、Lysinibacillus、Maribacter、Methylophilus、Mycobacterium、Ottowia、Trichormusからなる群から選択される微生物を含む、請求項1に記載の機械学習分類器。 The processing circuitry converts the data into data corresponding to the characteristic test panel, wherein the characteristic test panel is Rothia, Cryptococcus gattii WM276, Neisseriaceae, Rothia dentocariosa ATCC17931, Chryseobacterium sp. IHB B 17019. 、Streptococcus agalactiae CNCTC10/84、Streptococcus pneumoniae SPNA45、Tsukamurella paurometabola DSM20162、Streptococcus mutans UA159-FR、Actinomyces oris、Comamonadaceae、Streptococcus halotolerans、Flavobacterium columnare、Streptomyces griseochromogenes、Neisseria、Porphyromonas、Streptococcus salivarius CCHSS3、Megasphaera elsdenii DSM20460、Pasteurellaceae、未Claim 1. A machine learning classifier of microorganisms selected from the group consisting of: Burkholderiales, Arthrobacter, Dickeya, Jeotgalibacillus, Kocuria, Leuconostoc, Lysinibacillus, Maribacter, Methylophilus, Mycobacterium, Ottowia, Trichormus. 前記患者病歴から得られる前記データが、カテゴリー患者特徴及び数値患者特徴に対応し、
前記処理回路が、前記カテゴリー患者特徴を因子分解し、それぞれの特徴をバイナリ応答に変換する、請求項1に記載の機械学習分類器。
wherein the data obtained from the patient history correspond to categorical and numerical patient characteristics;
2. The machine learning classifier of claim 1, wherein the processing circuitry factors the categorical patient features and transforms each feature into a binary response.
前記処理回路が、前記データを、前記特徴の検査パネルに対応するデータへと変換し、前記特徴の検査パネルが、
前記患者データ主成分、患者年齢、及び患者性別、
マイクロRNA(hsa-let-7a-2、hsa-miR-10b-5p、hsa-miR-125a-5p、hsa-miR-125b-2-3p、hsa-miR-142-3p、hsa-miR-146a-5p、hsa-miR-218-5p、hsa-mir-378d-1、hsa-mir-410、hsa-mir-421、hsa-mir-4284、hsa-miR-4698、hsa-mir-4798、hsa-miR-515-5p、hsa-mir-5572、hsa-miR-6748-3pを含む)、
piRNA(piR-hsa-12423、piR-hsa-15023、piR-hsa-18905、piR-hsa-23638、piR-hsa-24684、piR-hsa-27133、piR-hsa-324、piR-hsa-9491を含む)、
微生物(Actinomyces、Arthrobacter、Jeotgalibacillus、Leadbetterella、Leuconostoc、Mycobacterium、Ottowia、Saccharomycesを含む)、ならびに
微生物活性(K00520、K14221、K01591、K02111、K14255、K1432、K00133、K03111を含む)、
を含む、請求項7に記載の機械学習分類器。
The processing circuitry converts the data into data corresponding to the inspection panel of features, the inspection panel of features:
the patient data principal components, patient age, and patient gender;
MicroRNAs (hsa-let-7a-2, hsa-miR-10b-5p, hsa-miR-125a-5p, hsa-miR-125b-2-3p, hsa-miR-142-3p, hsa-miR-146a -5p, hsa-miR-218-5p, hsa-mir-378d-1, hsa-mir-410, hsa-mir-421, hsa-mir-4284, hsa-miR-4698, hsa-mir-4798, hsa -miR-515-5p, hsa-mir-5572, hsa-miR-6748-3p),
piRNA (piR-hsa-12423, piR-hsa-15023, piR-hsa-18905, piR-hsa-23638, piR-hsa-24684, piR-hsa-27133, piR-hsa-324, piR-hsa-9491 include),
微生物(Actinomyces、Arthrobacter、Jeotgalibacillus、Leadbetterella、Leuconostoc、Mycobacterium、Ottowia、Saccharomycesを含む)、ならびに 微生物活性(K00520、K14221、K01591、K02111、K14255、K1432、K00133、K03111を含む)、
8. The machine learning classifier of claim 7, comprising:
自閉症スペクトラム障害(ASD)を診断する機械学習分類器であって、処理回路を備え、
前記処理回路が、患者病歴及び患者唾液から得られるデータを、特徴の検査パネルに対応するデータへと変換し、前記特徴についての前記データが、ヒトマイクロトランスクリプトームデータ及び微生物トランスクリプトームデータを含み、前記トランスクリプトームデータが、ASDに対するそれぞれのRNAカテゴリーと関連し、
前記検査パネルの前記特徴と関連するトレーニングデータを使用してASDを検出するようにトレーニングされている前記処理回路に前記変換データを適用することによって前記データを前記処理回路が分類し、
前記トレーニングされた処理回路が、分類境界を定義するベクトルを含み、
前記トレーニングされた処理回路が、サポートベクトルマシンであり、前記分類境界を定義する前記ベクトルが、サポートベクトルであり、
前記特徴の検査パネルと、前記分類境界を定義する前記ベクトルとが、特徴のマスターパネル中の特徴の数を順位順序で増やしながら予測性能がプラトーに達するまで予測モデルをフィッティングさせることによって前記処理回路によって決定され、
第2の機械学習モデルが、前記特徴を順位付けし、前記マスターパネルにおける特徴の順位順序を生成するために用いられ、前記第2の機械学習モデルは、前記サポートベクトルマシンとは異なる、
機械学習分類器。
1. A machine learning classifier for diagnosing autism spectrum disorder (ASD), comprising a processing circuit,
The processing circuitry converts data obtained from the patient history and patient saliva into data corresponding to a test panel of characteristics, the data for the characteristics comprising human microtranscriptome data and microbial transcriptome data. wherein the transcriptome data are associated with each RNA category for ASD;
said processing circuitry classifying said data by applying said transformation data to said processing circuitry that has been trained to detect ASD using training data associated with said features of said test panel;
wherein the trained processing circuitry includes vectors defining classification boundaries;
said trained processing circuitry is a support vector machine, said vectors defining said classification boundaries are support vectors;
said test panel of features and said vectors defining said classification boundaries said processing circuit by fitting a predictive model while increasing the number of features in the master panel of features in rank order until predictive performance reaches a plateau; determined by
a second machine learning model is used to rank the features and generate a ranking order of the features in the master panel, the second machine learning model being different from the support vector machine;
Machine learning classifier.
前記予測モデルが、放射カーネルを用いるサポートベクトルマシンモデルである、請求項9に記載の機械学習分類器。 10. The machine learning classifier of claim 9, wherein the predictive model is a support vector machine model with radial kernels. 前記患者病歴から得られる前記データが、カテゴリー患者特徴及び数値患者特徴に対応し、
前記処理回路が、前記カテゴリー患者特徴を主成分上に射影し、
前記処理回路が、前記データを、前記特徴のマスターパネルに対応するデータへと変換し、前記特徴のマスターパネルが、
因子分解された患者のデータ及び患者年齢、
マイクロRNA(hsa-mir-146a、hsa-mir-146b、hsa-miR-92a-3p、hsa-miR-106-5p、hsa-miR-3916、hsa-mir-10a、hsa-miR-378a-3p、hsa-miR-125a-5p、hsa-miR146b-5p、hsa-miR-361-5p、hsa-mir-410、hsa-mir-4461、hsa-miR-15a-5p、hsa-miR-6763-3p、hsa-miR-196a-5p、hsa-miR-4668-5p、hsa-miR-378d、hsa-miR-142-3p、hsa-mir-30c-1、hsa-mir-101-2、hsa-mir-151a、hsa-miR-125b-2-3p、hsa-mir-148a-5p、hsa-mir-548I、hsa-miR-98-5p、hsa-miR-8065、hsa-mir-378d-1、hsa-let-7f-1、及びhsa-let-7d-3pを含む)、
piRNA(piR-hsa-15023、piR-hsa-27400、piR-hsa-9491、piR-hsa-29114、piR-hsa-6463、piR-hsa-24085、piR-hsa-12423、piR-hsa-24684、piR-hsa-3405、piR-hsa-324、piR-hsa-18905、piR-hsa-23248、piR-hsa-28223、piR-hsa-28400、piR-hsa-1177、及びpiR-hsa-26592を含む)、
核小体低分子RNA(SNORD118、SNORD29、SNORD53B、SNORD68、SNORD20、SNORD41、SNORD30、及びSNORD34を含む)、
リボソームRNA(RNA5S、MTRNR2L4、及びMTRNR2L8を含む)、
長鎖非コードRNA(LOC730338を含む)、
微生物(Streptococcus gallolyticusの亜種gallolyticus DSM16831、Yarrowia lipolytica CLIB122、Clostridiales、Oenococcus oeni PSU-1、Fusarium、Alphaproteobacteria、Lactobacillus fermentum、Corynebacterium uterequi、Ottowia属の1種oral taxon894、Pasteurella multocidaの亜種multocida OH4807、Leadbetterella byssophila DSM17132、Staphylococcus、Rothia、Cryptococcus gattii WM276、Neisseriaceae、Rothia dentocariosa ATCC17931、Chryseobacterium属の1種IHB B 17019、Streptococcus agalactiae CNCTC10/84、Streptococcus pneumoniae SPNA45、Tsukamurella paurometabola DSM20162、Streptococcus mutans UA159-FR、Actinomyces oris、Comamonadaceae、Streptococcus halotolerans、Flavobacterium columnare、Streptomyces griseochromogenes、Neisseria、Porphyromonas、Streptococcus salivarius CCHSS3、Megasphaera elsdenii DSM20460、Pasteurellaceae、及び未分類のBurkholderialesを含む)、
を含む、請求項9に記載の機械学習分類器。
wherein the data obtained from the patient history correspond to categorical and numerical patient characteristics;
the processing circuitry projects the categorical patient features onto principal components;
The processing circuitry transforms the data into data corresponding to the master panel of features, the master panel of features comprising:
factorized patient data and patient age,
MicroRNAs (hsa-mir-146a, hsa-mir-146b, hsa-miR-92a-3p, hsa-miR-106-5p, hsa-miR-3916, hsa-mir-10a, hsa-miR-378a-3p , hsa-miR-125a-5p, hsa-miR146b-5p, hsa-miR-361-5p, hsa-mir-410, hsa-mir-4461, hsa-miR-15a-5p, hsa-miR-6763-3p , hsa-miR-196a-5p, hsa-miR-4668-5p, hsa-miR-378d, hsa-miR-142-3p, hsa-mir-30c-1, hsa-mir-101-2, hsa-mir -151a, hsa-miR-125b-2-3p, hsa-mir-148a-5p, hsa-mir-548I, hsa-miR-98-5p, hsa-miR-8065, hsa-mir-378d-1, hsa -let-7f-1, and hsa-let-7d-3p),
piRNA (piR-hsa-15023, piR-hsa-27400, piR-hsa-9491, piR-hsa-29114, piR-hsa-6463, piR-hsa-24085, piR-hsa-12423, piR-hsa-24684, including piR-hsa-3405, piR-hsa-324, piR-hsa-18905, piR-hsa-23248, piR-hsa-28223, piR-hsa-28400, piR-hsa-1177, and piR-hsa-26592 ),
small nucleolar RNAs (including SNORD118, SNORD29, SNORD53B, SNORD68, SNORD20, SNORD41, SNORD30, and SNORD34),
ribosomal RNA (including RNA5S, MTRNR2L4, and MTRNR2L8),
long non-coding RNAs (including LOC730338),
微生物(Streptococcus gallolyticusの亜種gallolyticus DSM16831、Yarrowia lipolytica CLIB122、Clostridiales、Oenococcus oeni PSU-1、Fusarium、Alphaproteobacteria、Lactobacillus fermentum、Corynebacterium uterequi、Ottowia属の1種oral taxon894、Pasteurella multocidaの亜種multocida OH4807、Leadbetterella byssophila DSM17132、Staphylococcus、Rothia、Cryptococcus gattii WM276、Neisseriaceae、Rothia dentocariosa ATCC17931、Chryseobacterium属の1種IHB B 17019、Streptococcus agalactiae CNCTC10/84、Streptococcus pneumoniae SPNA45、Tsukamurella paurometabola DSM20162、Streptococcus mutans UA159-FR、Actinomyces oris、Comamonadaceae、 Streptococcus halotolerans、Flavobacterium columnare、Streptomyces griseochromogenes、Neisseria、Porphyromonas、Streptococcus salivarius CCHSS3、Megasphaera elsdenii DSM20460、Pasteurellaceae、及び未分類のBurkholderialesを含む)、
10. The machine learning classifier of claim 9, comprising
自閉症スペクトラム障害(ASD)を診断する機械学習分類器であって、処理回路を備え、
前記処理回路が、患者病歴及び患者唾液から得られるデータを、特徴の検査パネルに対応するデータへと変換し、前記特徴についての前記データが、ヒトマイクロトランスクリプトームデータ及び微生物トランスクリプトームデータを含み、前記トランスクリプトームデータが、ASDに対するそれぞれのRNAカテゴリーと関連し、
前記検査パネルの前記特徴と関連するトレーニングデータを使用してASDを検出するようにトレーニングされている前記処理回路に前記変換データを適用することによって前記データを前記処理回路が分類し、
前記トレーニングされた処理回路が、分類境界を定義するベクトルを含み、
前記トレーニングされた処理回路が、サポートベクトルマシンであり、前記分類境界を定義する前記ベクトルが、サポートベクトルであり、
前記処理回路が、前記特徴の検査パネルを決定し、前記特徴の検査パネルが、
マイクロRNA(hsa_let_7d_5p、hsa_let_7g_5p、hsa_miR_101_3p、hsa_miR_1307_5p、hsa_miR_142_5p、hsa_miR_151a_3p、hsa_miR_15a_5p、hsa_miR_210_3p、hsa_miR_28_3p、hsa_miR_29a_3p、hsa_miR_3074_5p、hsa_miR_374a_5p、hsa_miR_92a_3pを含む)、
piRNA(hsa-piRNA_3499、hsa-piRNA_1433、hsa-piRNA_9843、hsa-piRNA_2533を含む)、
微生物(Actinomyces meyeri、Eubacterium、Kocuria flava、Kocuria rhizophila、Kocuria turfanensis、Lactobacillus fermentum、Lysinibacillus sphaericus、Micrococcus luteus、Ottowia、Rothia dentocariosa、Streptococcus dysgalactiaeを含む)、
微生物活性(K01867、K02005、K02795、K19972を含む)、
を含む、機械学習分類器。
1. A machine learning classifier for diagnosing autism spectrum disorder (ASD), comprising a processing circuit,
The processing circuitry converts data obtained from the patient history and patient saliva into data corresponding to a test panel of characteristics, the data for the characteristics comprising human microtranscriptome data and microbial transcriptome data. wherein the transcriptome data are associated with each RNA category for ASD;
said processing circuitry classifying said data by applying said transformation data to said processing circuitry that has been trained to detect ASD using training data associated with said features of said test panel;
wherein the trained processing circuitry includes vectors defining classification boundaries;
said trained processing circuitry is a support vector machine, said vectors defining said classification boundaries are support vectors;
The processing circuitry determines the inspection panel of features, the inspection panel of features comprising:
マイクロRNA(hsa_let_7d_5p、hsa_let_7g_5p、hsa_miR_101_3p、hsa_miR_1307_5p、hsa_miR_142_5p、hsa_miR_151a_3p、hsa_miR_15a_5p、hsa_miR_210_3p、hsa_miR_28_3p、hsa_miR_29a_3p、hsa_miR_3074_5p、hsa_miR_374a_5p、hsa_miR_92a_3pを含む)、
piRNAs (including hsa-piRNA_3499, hsa-piRNA_1433, hsa-piRNA_9843, hsa-piRNA_2533),
微生物(Actinomyces meyeri、Eubacterium、Kocuria flava、Kocuria rhizophila、Kocuria turfanensis、Lactobacillus fermentum、Lysinibacillus sphaericus、Micrococcus luteus、Ottowia、Rothia dentocariosa、Streptococcus dysgalactiaeを含む)、
microbial activity (including K01867, K02005, K02795, K19972);
, including machine learning classifiers.
前記第2の機械学習モデルは、確率的勾配ブースティングロジスティック回帰マシンである、請求項9に記載の機械学習分類器。 10. The machine learning classifier of claim 9, wherein the second machine learning model is a stochastic gradient boosting logistic regression machine.
JP2021523055A 2018-10-25 2019-10-25 Methods and machine learning for disease diagnosis Pending JP2022512829A (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201862750401P 2018-10-25 2018-10-25
US201862750378P 2018-10-25 2018-10-25
US62/750,401 2018-10-25
US62/750,378 2018-10-25
US201962816328P 2019-03-11 2019-03-11
US62/816,328 2019-03-11
PCT/US2019/058073 WO2020086967A1 (en) 2018-10-25 2019-10-25 Methods and machine learning for disease diagnosis

Publications (2)

Publication Number Publication Date
JP2022512829A JP2022512829A (en) 2022-02-07
JPWO2020086967A5 true JPWO2020086967A5 (en) 2022-11-02

Family

ID=70331670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021523055A Pending JP2022512829A (en) 2018-10-25 2019-10-25 Methods and machine learning for disease diagnosis

Country Status (5)

Country Link
US (1) US20210383924A1 (en)
EP (1) EP3847281A4 (en)
JP (1) JP2022512829A (en)
CA (1) CA3117218A1 (en)
WO (1) WO2020086967A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12020820B1 (en) 2017-03-03 2024-06-25 Cerner Innovation, Inc. Predicting sphingolipidoses (fabry's disease) and decision support
US11335461B1 (en) * 2017-03-06 2022-05-17 Cerner Innovation, Inc. Predicting glycogen storage diseases (Pompe disease) and decision support
US11923048B1 (en) 2017-10-03 2024-03-05 Cerner Innovation, Inc. Determining mucopolysaccharidoses and decision support tool
BR112021018770A2 (en) * 2019-03-22 2022-02-15 Cognoa Inc Personalized digital therapy methods and devices
US11915834B2 (en) 2020-04-09 2024-02-27 Salesforce, Inc. Efficient volume matching of patients and providers
CN111696675B (en) * 2020-05-22 2023-09-19 深圳赛安特技术服务有限公司 User data classification method and device based on Internet of things data and computer equipment
WO2022020646A1 (en) * 2020-07-22 2022-01-27 Spora Health, Inc. Model-based evaluation of assessment questions, assessment answers, and patient data to detect conditions
EP3988675A1 (en) * 2020-10-21 2022-04-27 Private Universität Witten/Herdecke Gmbh Method for differential diagnosis of prostate disease and marker for differential diagnosis of prostate disease as well as kit therefor
US20230046986A1 (en) * 2021-08-11 2023-02-16 Canon Medical Systems Corporation Medical information processing system, medical information processing method, and storage medium
US20240062897A1 (en) * 2022-08-18 2024-02-22 Montera d/b/a Forta Artificial intelligence method for evaluation of medical conditions and severities

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140045702A1 (en) * 2012-08-13 2014-02-13 Synapdx Corporation Systems and methods for distinguishing between autism spectrum disorders (asd) and non-asd development delay
WO2015022545A2 (en) * 2013-08-14 2015-02-19 Reneuron Limited Stem cell microparticles and mirna
WO2016170348A2 (en) * 2015-04-22 2016-10-27 Mina Therapeutics Limited Sarna compositions and methods of use
WO2016187234A1 (en) * 2015-05-18 2016-11-24 Karius, Inc. Compositions and methods for enriching populations of nucleic acids
KR102359013B1 (en) * 2017-03-21 2022-02-04 콰드런트 바이오사이언시즈 인코포레이티드 Analysis of Autism Spectrum Disorders
US20190228836A1 (en) * 2018-01-15 2019-07-25 SensOmics, Inc. Systems and methods for predicting genetic diseases

Similar Documents

Publication Publication Date Title
Nobuta et al. Distinct size distribution of endogenous siRNAs in maize: Evidence from deep sequencing in the mop1-1 mutant
JPWO2020086967A5 (en)
Tripathi et al. DeepLNC, a long non-coding RNA prediction tool using deep neural network
Mejía-Guerra et al. A k-mer grammar analysis to uncover maize regulatory architecture
Zararsız et al. A comprehensive simulation study on classification of RNA-Seq data
Zhao et al. Methods of MicroRNA promoter prediction and transcription factor mediated regulatory network
US11769073B2 (en) Methods and systems for producing an expanded training set for machine learning using biological sequences
Smolander et al. Comparing deep belief networks with support vector machines for classifying gene expression data from complex disorders
Zhang et al. Predicting miRNA-disease associations via node-level attention graph auto-encoder
Ji et al. A semi-supervised learning method for MiRNA-disease association prediction based on variational autoencoder
Lan et al. IGNSCDA: predicting CircRNA-disease associations based on improved graph convolutional network and negative sampling
CN109960749A (en) Model acquisition methods, keyword generation method, device, medium and calculating equipment
CN110556184A (en) non-coding RNA and disease relation prediction method based on Hessian regular nonnegative matrix decomposition
CN113724814A (en) Diagnosis method, diagnosis device, calculation equipment and storage medium
US20220139498A1 (en) Apparatuses, systems, and methods for extracting meaning from dna sequence data using natural language processing (nlp)
CN104462870A (en) Method and device for identifying human gene promoter
Fiannaca et al. MiRNATIP: a SOM-based miRNA-target interactions predictor
EP4167138A1 (en) Method and system for neural document embedding based ontology mapping
US20220309290A1 (en) Amplification of initial training data
Ding et al. Biomarker identification via a factorization machine-based neural network with binary pairwise encoding
CN111738455B (en) Fault diagnosis method and system based on integration domain self-adaptation
Dai et al. csuWGCNA: a combination of signed and unsigned WGCNA to capture negative correlations
CN117355899A (en) Novel diagnostic biomarker and/or therapeutic target search method, search device, and search program
Bao et al. A deep embedded clustering algorithm for the binning of metagenomic sequences
Wu et al. IMPMD: an integrated method for predicting potential associations between miRNAs and diseases