JPWO2020085158A1 - Manufacturing method of insulating structure of rotary electric machine and insulating structure of rotary electric machine - Google Patents

Manufacturing method of insulating structure of rotary electric machine and insulating structure of rotary electric machine Download PDF

Info

Publication number
JPWO2020085158A1
JPWO2020085158A1 JP2020553215A JP2020553215A JPWO2020085158A1 JP WO2020085158 A1 JPWO2020085158 A1 JP WO2020085158A1 JP 2020553215 A JP2020553215 A JP 2020553215A JP 2020553215 A JP2020553215 A JP 2020553215A JP WO2020085158 A1 JPWO2020085158 A1 JP WO2020085158A1
Authority
JP
Japan
Prior art keywords
iron core
resin
laminated iron
insulating
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020553215A
Other languages
Japanese (ja)
Other versions
JP7109573B2 (en
Inventor
一利 山添
一利 山添
祐輝 岩村
祐輝 岩村
田中 雅宏
雅宏 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2020085158A1 publication Critical patent/JPWO2020085158A1/en
Application granted granted Critical
Publication of JP7109573B2 publication Critical patent/JP7109573B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/10Applying solid insulation to windings, stators or rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation

Abstract

鋼板が積層されてなる積層鉄心(5)を備えるとともに、この積層鉄心(5)には少なくともコイル(4)が巻回される箇所の表面部を覆って樹脂絶縁部(6)が形成されている回転電機の絶縁構造体であって、樹脂絶縁部(6)は、積層鉄心(5)の軸方向(X)に沿って両端面よりも中央側において周方向(R)に向けて肉厚となるように膨出部(6d)を備える。A laminated iron core (5) formed by laminating steel plates is provided, and a resin insulating portion (6) is formed on the laminated iron core (5) so as to cover at least the surface portion where the coil (4) is wound. In the insulating structure of the rotating electric machine, the resin insulating portion (6) is thickened in the circumferential direction (R) on the central side of both end faces along the axial direction (X) of the laminated iron core (5). A bulging portion (6d) is provided so as to be.

Description

本願は回転電機の絶縁構造体および回転電機の絶縁構造体の製造方法に関するものである。 The present application relates to an insulating structure of a rotary electric machine and a method of manufacturing an insulating structure of a rotary electric machine.

従来、電磁鋼板をプレス金型で打ち抜いた鋼板を複数枚積層してなる積層鉄心にコイルを巻回するとともに、このコイルと積層鉄心との電気的導通を防止するための絶縁用樹脂からなる樹脂絶縁部を一体成形して構成された回転電機の回転子または固定子などの絶縁構造体が知られている(例えば、下記の特許文献1参照)。 Conventionally, a coil is wound around a laminated iron core formed by laminating a plurality of steel plates obtained by punching an electromagnetic steel plate with a press mold, and a resin made of an insulating resin for preventing electrical conduction between the coil and the laminated iron core. An insulating structure such as a rotor or a stator of a rotary electric machine formed by integrally molding an insulating portion is known (see, for example, Patent Document 1 below).

特開平8−98473号公報Japanese Unexamined Patent Publication No. 8-98473

上記特許文献1に記載のような回転電機の回転子または固定子の絶縁構造体において、絶縁用樹脂よりなる樹脂絶縁部を一体成形する場合、射出成形方法を用いて成形金型に絶縁用樹脂を充填する際に、絶縁用樹脂の増粘、硬化などの流動抵抗の増加に起因して充填圧力の損失が発生する。この圧力損失は、特に絶縁用樹脂の樹脂流動末端部において大きくなり、絶縁用樹脂を十分に充填できない、または電気的な絶縁性能が低下するといった問題がある。 In the case of integrally molding a resin insulating portion made of an insulating resin in an insulating structure of a rotor or a stator of a rotary electric machine as described in Patent Document 1, an insulating resin is molded into a molding mold by using an injection molding method. When filling the resin, a loss of filling pressure occurs due to an increase in flow resistance such as thickening and hardening of the insulating resin. This pressure loss becomes large especially at the resin flow end portion of the insulating resin, and there is a problem that the insulating resin cannot be sufficiently filled or the electrical insulation performance is deteriorated.

その対策として、流動性の良い絶縁用樹脂の材料を新たに調合して、成形金型に充填する際の圧力損失の低下を抑えることが考えられる。しかし、このような流動性の良い絶縁用樹脂は、特別に材料調合する必要があるため高価になり、ひいては回転電機の製造コストが増加するという不具合を生じる。 As a countermeasure, it is conceivable to newly mix a material of an insulating resin having good fluidity to suppress a decrease in pressure loss when filling the molding die. However, such a highly fluid insulating resin has a problem that it becomes expensive because it is necessary to specially prepare a material, and the manufacturing cost of a rotary electric machine increases.

また、他の対策として、積層鉄心と成形金型との間の隙間を大きく設定して、絶縁用樹脂を充填する際の絶縁用樹脂の樹脂流動末端部における充填圧力の損失を抑えることが考えられる。しかし、このように積層鉄心と成形金型との間の隙間を大きく設定した場合には、結果的に、積層鉄心を覆う絶縁用樹脂の肉厚が大きくなり、積層鉄心に対してコイルを巻回できる領域が小さくなり、回転電機の性能が低下するという不具合が生じる。 In addition, as another measure, it is conceivable to set a large gap between the laminated iron core and the molding die to suppress the loss of filling pressure at the resin flow end of the insulating resin when filling the insulating resin. Be done. However, when the gap between the laminated iron core and the molding die is set large in this way, as a result, the wall thickness of the insulating resin covering the laminated iron core becomes large, and the coil is wound around the laminated iron core. There is a problem that the area that can be rotated becomes smaller and the performance of the rotating electric machine deteriorates.

本願は、上記のような問題点を解決するためになされたものであり、余分なコストアップまたは性能低下を招来することなく、小型で高効率、かつ絶縁性能を有する回転電機の絶縁構造体および回転電機の絶縁構造体の製造方法を提供することを目的とする。 The present application has been made to solve the above-mentioned problems, and the insulating structure of a rotating electric machine having a small size, high efficiency, and insulating performance without causing an extra cost increase or performance deterioration. An object of the present invention is to provide a method for manufacturing an insulating structure of a rotary electric machine.

本願に開示される回転電機の絶縁構造体は、
複数枚の鋼板が積層されてなる積層鉄心を備えるとともに、前記積層鉄心には少なくともコイルが巻装される箇所の表面部を覆って樹脂絶縁部が一体形成されている回転電機の絶縁構造体において、
前記樹脂絶縁部は、前記積層鉄心の軸方向に沿って両端面よりも中央側において周方向に向けて肉厚に形成された膨出部を備えるものである。
また、本願に開示される回転電機の絶縁構造体は、
複数枚の鋼板が積層されてなる積層鉄心を備えるとともに、前記積層鉄心には少なくともコイルが巻装される箇所の表面部を覆う樹脂絶縁部が軸方向の2方向以上から組み立てられる回転電機の絶縁構造体において、
前記樹脂絶縁部は、前記積層鉄心の軸方向の端面に形成された箇所の最大厚さが、前記積層鉄心の軸方向に沿って形成された箇所の最大厚さよりも厚く、かつ、前記積層鉄心の軸方向の端面に形成された箇所に樹脂注入口痕を有し、
前記樹脂絶縁部は、前記積層鉄心の軸方向の端面の形成された箇所の厚さが均一に形成され、
前記樹脂絶縁部は、前記積層鉄心の軸方向に沿って両端面よりも中央側において周方向に向けて肉厚に形成されたものである。
また、本願に開示される回転電機の絶縁構造体の製造方法は、
鋼板が積層されてなる積層鉄心を備えるとともに、前記積層鉄心には少なくともコイルが巻装される箇所の表面部を覆って樹脂絶縁部が一体形成されている回転電機の絶縁構造体を製造方法であって、
前記樹脂絶縁部の射出成形用の成形金型を適用し、この成形金型の金型内壁には前記積層鉄心の軸方向に沿って両端面よりも中央側において周方向に向けて肉厚となる膨出部形成用の凹部を予め形成しておき、前記成形金型の内部に前記積層鉄心を配置した後、前記成形金型の樹脂注入口から絶縁用樹脂を注入して前記樹脂絶縁部を成形するものである。
また、本願に開示される回転電機の絶縁構造体の製造方法は、
複数枚の鋼板が積層されてなる積層鉄心を備えるとともに、前記積層鉄心には少なくともコイルが巻装される箇所の表面部を覆う樹脂絶縁部が軸方向の2方向以上から組み立てられる回転電機の絶縁構造体の製造方法であって、
前記樹脂絶縁部を軸方向の2方向以上に分割した射出成形用の成形金型を適用し、この成形金型の金型内壁には前記積層鉄心の軸方向に沿って両端面よりも中央側において周方向に向けて肉厚となる膨出部形成用の凹部を予め形成しておき、前記成形金型の樹脂注入口から絶縁用樹脂を注入して軸方向の2方向以上に分割された前記樹脂絶縁部を成形し、前記成形金型から軸方向の2方向以上に分割された前記樹脂絶縁部を取り出した後、前記積層鉄心に軸方向の2方向以上に分割された前記樹脂絶縁部を軸方向の2方向以上から組み立てるものである。
The insulating structure of a rotary electric machine disclosed in the present application is
In an insulating structure of a rotating electric machine, which is provided with a laminated iron core in which a plurality of steel plates are laminated, and a resin insulating portion is integrally formed on the laminated iron core by at least covering the surface portion of a portion where a coil is wound. ,
The resin insulating portion includes a bulging portion formed thickly in the circumferential direction on the central side of both end surfaces along the axial direction of the laminated iron core.
Further, the insulating structure of the rotary electric machine disclosed in the present application is:
Insulation of a rotary electric machine is provided with a laminated iron core in which a plurality of steel plates are laminated, and a resin insulating portion covering at least the surface portion of a portion where a coil is wound is assembled from two or more axial directions on the laminated iron core. In the structure
In the resin insulating portion, the maximum thickness of the portion formed on the axial end face of the laminated iron core is thicker than the maximum thickness of the portion formed along the axial direction of the laminated iron core, and the laminated iron core is formed. Has a resin injection port mark on the end face in the axial direction of
In the resin insulating portion, the thickness of the portion where the end face in the axial direction of the laminated iron core is formed is uniformly formed.
The resin insulating portion is formed to be thicker in the circumferential direction on the central side than both end faces along the axial direction of the laminated iron core.
Further, the method for manufacturing an insulating structure of a rotary electric machine disclosed in the present application is described.
A method of manufacturing an insulating structure of a rotary electric machine, which is provided with a laminated iron core formed by laminating steel plates, and in which a resin insulating portion is integrally formed by covering at least the surface portion of a portion where a coil is wound. There,
A molding die for injection molding of the resin insulating portion is applied, and the inner wall of the molding die has a wall thickness in the circumferential direction on the central side of both end faces along the axial direction of the laminated iron core. A recess for forming a bulging portion is formed in advance, the laminated iron core is arranged inside the molding die, and then an insulating resin is injected from the resin injection port of the molding die to form the resin insulating portion. Is to be molded.
Further, the method for manufacturing an insulating structure of a rotary electric machine disclosed in the present application is described.
Insulation of a rotary electric machine is provided with a laminated iron core in which a plurality of steel plates are laminated, and a resin insulating portion covering at least a surface portion where a coil is wound is assembled from two or more axial directions on the laminated iron core. It is a method of manufacturing a structure.
A molding mold for injection molding in which the resin insulating portion is divided into two or more directions in the axial direction is applied, and the inner wall of the mold of the molding mold is on the center side of both end faces along the axial direction of the laminated iron core. In the above, a concave portion for forming a bulging portion that becomes thicker in the circumferential direction was formed in advance, and an insulating resin was injected from the resin injection port of the molding mold to be divided into two or more directions in the axial direction. After molding the resin insulating portion and taking out the resin insulating portion divided into two or more directions in the axial direction from the molding mold, the resin insulating portion divided into two or more axial directions in the laminated iron core. Is assembled from two or more axial directions.

本願の回転電機の絶縁構造体および回転電機の絶縁構造体の製造方法によれば、
余分なコストアップまたは性能低下を招来することなく、小型で高効率、かつ絶縁性能を有することができる。
According to the method for manufacturing the insulating structure of the rotating electric machine and the insulating structure of the rotating electric machine of the present application,
It is possible to have small size, high efficiency, and insulation performance without causing an extra cost increase or performance decrease.

実施の形態1の回転電機の絶縁構造体として固定子に適用した場合の半周分である6個のティース分を示す斜視図である。It is a perspective view which shows 6 teeth part which is a half circumference part when it is applied to a stator as the insulating structure of the rotary electric machine of Embodiment 1. FIG. 図1の固定子を構成する分割固定子の一つを示す斜視図である。It is a perspective view which shows one of the split stators which make up the stator of FIG. 図2の分割固定子を構成する絶縁分割鉄心を示す斜視図である。It is a perspective view which shows the insulation division iron core which comprises the division stator of FIG. 図3の絶縁分割鉄心を径方向から見た正面図である。It is a front view which looked at the insulation division iron core of FIG. 3 from the radial direction. 図4の絶縁分割鉄心をA−A線に沿って切断した場合の斜視図である。It is a perspective view when the insulation division iron core of FIG. 4 is cut along the line AA. 図3の絶縁分割鉄心を構成する積層鉄心を示す斜視図である。It is a perspective view which shows the laminated iron core which comprises the insulation division iron core of FIG. 実施の形態1において絶縁分割鉄心にコイルが巻装された状態を示す断面図である。It is sectional drawing which shows the state which the coil is wound around the insulation division iron core in Embodiment 1. FIG. 比較技術1における絶縁分割鉄心の上にコイルが巻装された状態を示す断面図である。It is sectional drawing which shows the state which the coil is wound on the insulation division iron core in the comparative technique 1. 実施の形態1における固定子の製造方法の工程を示すフローチャートである。It is a flowchart which shows the process of the manufacturing method of the stator in Embodiment 1. 実施の形態1において成形金型を用いて積層鉄心に樹脂絶縁部を射出成形する場合の手順を示す説明図である。It is explanatory drawing which shows the procedure in the case of injection molding the resin insulating part into the laminated iron core by using the molding die in Embodiment 1. FIG. 実施の形態1において成形金型を用いて積層鉄心に樹脂絶縁部を射出成形する場合の手順を示す説明図である。It is explanatory drawing which shows the procedure in the case of injection molding the resin insulating part into the laminated iron core by using the molding die in Embodiment 1. FIG. 実施の形態1において成形金型を用いて積層鉄心に樹脂絶縁部を射出成形する場合の手順を示す説明図である。It is explanatory drawing which shows the procedure in the case of injection molding the resin insulating part into the laminated iron core by using the molding die in Embodiment 1. FIG. 実施の形態1において成形金型を用いて積層鉄心に樹脂絶縁部を射出成形する場合の手順を示す説明図である。It is explanatory drawing which shows the procedure in the case of injection molding the resin insulating part into the laminated iron core by using the molding die in Embodiment 1. FIG. 実施の形態1において成形金型を用いて積層鉄心に樹脂絶縁部を射出成形する場合の手順を示す説明図である。It is explanatory drawing which shows the procedure in the case of injection molding the resin insulating part into the laminated iron core by using the molding die in Embodiment 1. FIG. 実施の形態1において成形金型を用いて積層鉄心に樹脂絶縁部を射出成形する場合の手順を示す説明図である。It is explanatory drawing which shows the procedure in the case of injection molding the resin insulating part into the laminated iron core by using the molding die in Embodiment 1. FIG. 実施の形態1において成形金型を用いて絶縁用樹脂を積層鉄心に注入する場合の部分拡大断面図である。FIG. 5 is a partially enlarged cross-sectional view of the case where the insulating resin is injected into the laminated iron core using the molding die in the first embodiment. 実施の形態1において成形金型を用いて絶縁用樹脂を積層鉄心に注入する場合の絶縁用樹脂の流動状態を示す説明図である。It is explanatory drawing which shows the flow state of the insulating resin at the time of injecting the insulating resin into a laminated iron core by using the molding die in Embodiment 1. FIG. 成形金型を用いて絶縁用樹脂を注入する場合の絶縁用樹脂に生じる流動抵抗の説明図である。It is explanatory drawing of the flow resistance generated in the insulating resin when the insulating resin is injected using the molding die. 比較技術2において成形金型を用いて絶縁用樹脂を積層鉄心に注入する場合の部分拡大断面図である。FIG. 5 is a partially enlarged cross-sectional view of a case where an insulating resin is injected into a laminated iron core using a molding die in Comparative Technique 2. 実施の形態1において積層鉄心に形成される樹脂絶縁部の膨出部の変形例にコイルが巻装された状態とともに示す断面図である。FIG. 5 is a cross-sectional view showing a modified example of a bulging portion of a resin insulating portion formed on a laminated iron core in the first embodiment together with a state in which a coil is wound. 実施の形態1において積層鉄心に形成される樹脂絶縁部の膨出部の他の変形例にコイルが巻装された状態とともに示す断面図である。FIG. 5 is a cross-sectional view showing a state in which a coil is wound around another modified example of a bulging portion of a resin insulating portion formed on a laminated iron core in the first embodiment. 実施の形態2の回転電機の絶縁構造体として回転子に適用した場合の斜視図である。It is a perspective view when it is applied to a rotor as an insulating structure of the rotary electric machine of Embodiment 2. 図17の回転子を構成する絶縁鉄心とシャフトを示す分解斜視図である。FIG. 5 is an exploded perspective view showing an insulated iron core and a shaft constituting the rotor of FIG. 図17の回転子の平面図である。It is a top view of the rotor of FIG. 図19の回転子をB−B線に沿って切断した場合の斜視図である。It is a perspective view when the rotor of FIG. 19 is cut along the line BB. 図17の固定子の絶縁鉄心を構成する積層鉄心を示す斜視図である。It is a perspective view which shows the laminated iron core which constitutes the insulating iron core of the stator of FIG. 実施の形態2において絶縁鉄心の上にコイルが巻装された状態を示す断面図である。FIG. 5 is a cross-sectional view showing a state in which a coil is wound on an insulated iron core in the second embodiment. 比較技術3において絶縁鉄心の上にコイルが巻装された状態を示す断面図である。It is sectional drawing which shows the state which the coil is wound on the insulated iron core in the comparative technique 3. 実施の形態2における回転子の製造方法の工程を示すフローチャートである。It is a flowchart which shows the process of the manufacturing method of the rotor in Embodiment 2. 実施の形態2において成形金型を用いて積層鉄心ごとに樹脂絶縁部を射出成形する場合の手順を示す説明図である。It is explanatory drawing which shows the procedure in the case of injection molding the resin insulating part for each laminated iron core by using the molding die in Embodiment 2. 実施の形態2において成形金型を用いて積層鉄心ごとに樹脂絶縁部を射出成形する場合の手順を示す説明図である。It is explanatory drawing which shows the procedure in the case of injection molding the resin insulating part for each laminated iron core by using the molding die in Embodiment 2. 実施の形態2において成形金型を用いて積層鉄心ごとに樹脂絶縁部を射出成形する場合の手順を示す説明図である。It is explanatory drawing which shows the procedure in the case of injection molding the resin insulating part for each laminated iron core by using the molding die in Embodiment 2. 実施の形態2において成形金型を用いて積層鉄心ごとに樹脂絶縁部を射出成形する場合の手順を示す説明図である。It is explanatory drawing which shows the procedure in the case of injection molding the resin insulating part for each laminated iron core by using the molding die in Embodiment 2. 実施の形態2において成形金型を用いて積層鉄心ごとに樹脂絶縁部を射出成形する場合の手順を示す説明図である。It is explanatory drawing which shows the procedure in the case of injection molding the resin insulating part for each laminated iron core by using the molding die in Embodiment 2. 実施の形態2において成形金型を用いて積層鉄心ごとに樹脂絶縁部を射出成形する場合の手順を示す説明図である。It is explanatory drawing which shows the procedure in the case of injection molding the resin insulating part for each laminated iron core by using the molding die in Embodiment 2. 実施の形態2において成形金型を用いて絶縁用樹脂を積層鉄心に注入する場合の部分拡大断面図である。FIG. 5 is a partially enlarged cross-sectional view of the case where the insulating resin is injected into the laminated iron core using the molding die in the second embodiment. 実施の形態2において成形金型を用いて絶縁用樹脂を積層鉄心に注入する場合の絶縁用樹脂の流動状態を示す説明図である。It is explanatory drawing which shows the flow state of the insulating resin at the time of injecting the insulating resin into a laminated iron core by using the molding die in Embodiment 2. FIG. 比較技術4において成形金型を用いて絶縁用樹脂を積層鉄心に注入する場合の部分拡大断面図である。FIG. 5 is a partially enlarged cross-sectional view of a case where an insulating resin is injected into a laminated iron core using a molding die in Comparative Technique 4. 実施の形態2において積層鉄心に形成される樹脂絶縁部の膨出部の変形例にコイルが巻装された状態とともに示す断面図である。FIG. 5 is a cross-sectional view showing a modified example of a bulging portion of a resin insulating portion formed on a laminated iron core in the second embodiment together with a state in which a coil is wound. 実施の形態2において積層鉄心に形成される樹脂絶縁部の膨出部の他の変形例にコイルが巻装された状態とともに示す断面図である。FIG. 5 is a cross-sectional view showing a state in which a coil is wound around another modification of the bulging portion of the resin insulating portion formed on the laminated iron core in the second embodiment. 実施の形態2においての樹脂絶縁部が一体成形される積層鉄心の変形例を示す断面図である。It is sectional drawing which shows the modification of the laminated iron core in which the resin insulating part is integrally formed in Embodiment 2. FIG. 実施の形態2においての樹脂絶縁部が一体成形される積層鉄心の他の変形例を示す断面図である。FIG. 5 is a cross-sectional view showing another modified example of the laminated iron core in which the resin insulating portion is integrally formed according to the second embodiment. 実施の形態2においての樹脂絶縁部が一体成形される積層鉄心の他の変形例を示す断面図である。FIG. 5 is a cross-sectional view showing another modified example of the laminated iron core in which the resin insulating portion is integrally formed according to the second embodiment. 実施の形態3の回転電機の絶縁構造体として固定子に適用した場合の半周分である6個のティース分を示す斜視図である。It is a perspective view which shows 6 teeth part which is a half circumference part when it is applied to a stator as an insulating structure of the rotary electric machine of Embodiment 3. 図34の固定子を構成する分割固定子の一つを示す斜視図である。It is a perspective view which shows one of the split stators constituting the stator of FIG. 34. 図35の分割固定子を構成する絶縁分割鉄心を示す斜視図である。It is a perspective view which shows the insulation division iron core which comprises the division stator of FIG. 35. 図36の絶縁分割鉄心を径方向から見た正面図である。It is a front view which looked at the insulation division iron core of FIG. 36 from the radial direction. 図37の絶縁分割鉄心をC−C線に沿って切断した場合の斜視図である。It is a perspective view when the insulation division iron core of FIG. 37 is cut along the CC line. 図36の絶縁分割鉄心を構成する積層鉄心を示す斜視図である。It is a perspective view which shows the laminated iron core which comprises the insulation division iron core of FIG. 36. 実施の形態3において絶縁分割鉄心の上にコイルが巻装された状態を示す断面図である。It is sectional drawing which shows the state which the coil is wound on the insulating division iron core in Embodiment 3. 比較技術5において絶縁分割鉄心の上にコイルが巻装された状態を示す断面図である。It is sectional drawing which shows the state which the coil is wound on the insulating division iron core in the comparative technique 5. 実施の形態3における回転子の製造方法の工程を示すフローチャートである。It is a flowchart which shows the process of the manufacturing method of the rotor in Embodiment 3. 実施の形態3において回転電機の絶縁構造体の組み立ての手順を示す説明図である。It is explanatory drawing which shows the procedure of assembling the insulating structure of the rotary electric machine in Embodiment 3. FIG. 実施の形態3において回転電機の絶縁構造体の組み立ての手順を示す説明図である。It is explanatory drawing which shows the procedure of assembling the insulating structure of the rotary electric machine in Embodiment 3. FIG. 実施の形態3において回転電機の絶縁構造体の組み立ての手順を示す説明図である。It is explanatory drawing which shows the procedure of assembling the insulating structure of the rotary electric machine in Embodiment 3. FIG. 実施の形態3において成形金型を用いて樹脂絶縁部を射出成形する場合の手順を示す説明図である。It is explanatory drawing which shows the procedure in the case of injection molding a resin insulating part using a molding die in Embodiment 3. 実施の形態3において成形金型を用いて樹脂絶縁部を射出成形する場合の手順を示す説明図である。It is explanatory drawing which shows the procedure in the case of injection molding a resin insulating part using a molding die in Embodiment 3. 実施の形態3において成形金型を用いて樹脂絶縁部を射出成形する場合の手順を示す説明図である。It is explanatory drawing which shows the procedure in the case of injection molding a resin insulating part using a molding die in Embodiment 3. 実施の形態3において成形金型を用いて樹脂絶縁部を射出成形する場合の手順を示す説明図である。It is explanatory drawing which shows the procedure in the case of injection molding a resin insulating part using a molding die in Embodiment 3. 実施の形態3において成形金型を用いて樹脂絶縁部を射出成形する場合の手順を示す説明図である。It is explanatory drawing which shows the procedure in the case of injection molding a resin insulating part using a molding die in Embodiment 3. 実施の形態3において成形金型を用いて樹脂絶縁部を射出成形する場合の部分拡大断面図である。FIG. 5 is a partially enlarged cross-sectional view of the case where the resin insulating portion is injection-molded using a molding die in the third embodiment. 実施の形態3において成形金型を用いて絶縁用樹脂を注入する場合の絶縁用樹脂の流動状態を示す説明図である。It is explanatory drawing which shows the flow state of the insulating resin at the time of injecting the insulating resin by using the molding die in Embodiment 3. FIG. 比較技術6において絶縁分割鉄心の構成を示す断面図である。It is sectional drawing which shows the structure of the insulation division iron core in the comparative technique 6. 実施の形態3において積層鉄心に組み立てられる樹脂絶縁部の膨出部の変形例にコイルが巻装された状態とともに示す断面図である。FIG. 5 is a cross-sectional view showing a modified example of a bulging portion of a resin insulating portion assembled on a laminated iron core in the third embodiment together with a state in which a coil is wound. 実施の形態3において積層鉄心に組み立てられる樹脂絶縁部の膨出部の他の変形例にコイルが巻装された状態とともに示す断面図である。FIG. 5 is a cross-sectional view showing a state in which a coil is wound around another modified example of a bulging portion of a resin insulating portion assembled on a laminated iron core in the third embodiment.

実施の形態1.
図1は、本願の実施の形態1の回転電機の絶縁構造体として固定子に適用した場合の半周分である6個のティース分を示す斜視図、図2は図1の固定子を構成する分割固定子の一つを示す斜視図、図3は図2の分割固定子を構成する絶縁分割鉄心を示す斜視図である。また、図4は図3の絶縁分割鉄心を周方向から見た正面図、図5は図4の絶縁分割鉄心をA−A線に沿って切断した場合の斜視図である。また、図6は図3の絶縁分割鉄心を構成する積層鉄心の斜視図、図7は実施の形態1において絶縁分割鉄心にコイルが巻装された状態を示す断面図である。なお、ここでは固定子または分割固定子の軸方向を符号X、径方向を符号D、周方向を符号Rでそれぞれ示すものとする。
Embodiment 1.
FIG. 1 is a perspective view showing six teeth, which is a half circumference when applied to a stator as an insulating structure of a rotary electric machine according to the first embodiment of the present application, and FIG. 2 constitutes the stator of FIG. A perspective view showing one of the split stators, FIG. 3 is a perspective view showing an insulating split iron core constituting the split stator of FIG. 2. Further, FIG. 4 is a front view of the insulated split iron core of FIG. 3 viewed from the circumferential direction, and FIG. 5 is a perspective view of the insulated split iron core of FIG. 4 cut along the line AA. Further, FIG. 6 is a perspective view of the laminated iron core constituting the insulated divided iron core of FIG. 3, and FIG. 7 is a cross-sectional view showing a state in which a coil is wound around the insulated divided iron core in the first embodiment. Here, it is assumed that the axial direction of the stator or the split stator is indicated by reference numeral X, the radial direction is indicated by reference numeral D, and the circumferential direction is indicated by reference numeral R.

この実施の形態1の固定子1は、回転電機の周方向Rに沿って12個のティース分の分割固定子2を円環状に連結配置して構成されている。この場合の各々の分割固定子2は、絶縁分割鉄心3とコイル4とからなる。コイル4は、例えば銅電線、アルミ電線などの導体を所望の回数だけ絶縁分割鉄心3に巻回したものである。なお、ここではティースの数を12個としているが、これに限らず、回転電機の性能、構造に合わせて任意に設計することができる。 The stator 1 of the first embodiment is configured by connecting and arranging twelve teeth-split stators 2 in an annular shape along the circumferential direction R of the rotary electric machine. In this case, each of the split stators 2 is composed of an insulating split iron core 3 and a coil 4. The coil 4 is formed by winding a conductor such as a copper electric wire or an aluminum electric wire around an insulating divided iron core 3 a desired number of times. Although the number of teeth is set to 12 here, the number is not limited to this, and it can be arbitrarily designed according to the performance and structure of the rotary electric machine.

絶縁分割鉄心3は、図3〜図5に示すように、積層鉄心5と樹脂絶縁部6とからなる。
ここに、積層鉄心5は、図6に示すように、厚み寸法が0.1mm〜3.0mm程度の電磁鋼板、または珪素鋼板からなる所定枚数の鋼板を所望の軸長寸法L0に合わせて積層して構成されている。そして、積層鉄心5は、周方向Rに沿って平面視で扇状に広がるバックヨーク部5a、このバックヨーク部5aから固定子1の中心方向に突出するティース部5b、およびティース部5bから周方向Rに沿って延びる突出部5cを有する。
As shown in FIGS. 3 to 5, the insulating divided iron core 3 includes a laminated iron core 5 and a resin insulating portion 6.
Here, as shown in FIG. 6, the laminated iron core 5 is formed by laminating a predetermined number of steel sheets made of an electromagnetic steel sheet or a silicon steel sheet having a thickness dimension of about 0.1 mm to 3.0 mm in accordance with a desired axial length dimension L0. It is composed of. The laminated iron core 5 has a back yoke portion 5a that extends in a fan shape in a plan view along the circumferential direction R, a teeth portion 5b that protrudes from the back yoke portion 5a toward the center of the stator 1, and a circumferential direction from the teeth portion 5b. It has a protruding portion 5c extending along R.

また、樹脂絶縁部6は、例えばPPS(Poly Phenylene Sulfide)、LCP(Liquid Crystal Polymer)、PBT(Polybutylene terephthalate)、POM(Polyoxymethylene)、PET(Polyethylene terephthalate)、PA(Polyamide)、SPS(Syndiotactic Polystyrene)などの熱可塑性樹脂、あるいはエポキシ樹脂、またはBMC(Bulk Molding Compound)、SMC(Sheet Molding Compound)などの熱硬化性樹脂を用いて射出成形することで積層鉄心5と一体成形されている。 Further, the resin insulating portion 6 includes, for example, PPS (PolyPheneylene Sulfide), LCP (Liquid Crystal Polymer), PBT (Polybutylene terephthalate), POM (Polyoxymethylene), PET (Polythethylene) It is integrally molded with the laminated iron core 5 by injection molding using a thermoplastic resin such as, or an epoxy resin, or a thermosetting resin such as BMC (Bulk Molding Compound) or SMC (Sheet Molding Compound).

すなわち、樹脂絶縁部6は、積層鉄心5のティース部5b、バックヨーク部5aの軸方向Xの両端面、および突出部5cの軸方向Xの両端面をそれぞれ覆う状態で形成されている。具体的には、バックヨーク部5aおよび突出部5cの軸方向Xの両端面をそれぞれ覆う樹脂絶縁部は、積層鉄心5の軸方向の端面からそれぞれ所定長さL1分だけ突出した鍔部6a、6bとして形成されている。各鍔部6a、6bは、コイル4の巻装位置よりもさらに軸方向Xに突出することによりコイル4の絶縁状態を確実に保つように設定されている。 That is, the resin insulating portion 6 is formed so as to cover the teeth portion 5b of the laminated iron core 5, both end faces of the back yoke portion 5a in the axial direction X, and both end faces of the protruding portion 5c in the axial direction X, respectively. Specifically, the resin insulating portions covering both end faces of the back yoke portion 5a and the protruding portion 5c in the axial direction X have flange portions 6a protruding from the axial end faces of the laminated iron core 5 by a predetermined length L1 respectively. It is formed as 6b. Each of the flange portions 6a and 6b is set so as to reliably maintain the insulated state of the coil 4 by projecting further in the axial direction X than the winding position of the coil 4.

また、コイル4が巻装されるティース部5bの表面を覆う樹脂絶縁部は、ティース部5bの軸方向Xの両端面を覆ってそれぞれ形成された端面巻装部6cと、ティース部5bの周方向Rに対面して軸方向Xに沿って伸びる側面部分を覆って形成された側面巻装部6dとからなる。側面巻装部6dは、自ティース部に巻装するコイルと周方向Rに隣接する他ティース部のコイルとの干渉を避け、かつ、自ティース部に巻装するコイルのコイル占積率を向上させるため、厚さを薄く、軸方向Xに長く形成することが望まれる。そして、端面巻装部6cは、コイル4を形成する導体の最小屈曲半径を害さないよう構成され、その厚さは、図7に示すように、(端面巻装部6cの最大厚さT1)>(側面巻装部6dの最大厚さW2)となるように形成される。樹脂絶縁部6には、積層鉄心5の軸方向Xの端面に形成された箇所に樹脂注入口痕を備える。 Further, the resin insulating portion covering the surface of the teeth portion 5b around which the coil 4 is wound covers the end face winding portions 6c formed by covering both end faces of the teeth portion 5b in the axial direction X and the circumference of the teeth portion 5b. It is composed of a side winding portion 6d formed so as to cover a side surface portion extending along the axial direction X facing the direction R. The side winding portion 6d avoids interference between the coil wound around the own teeth portion and the coil of the other teeth portion adjacent to the circumferential direction R, and improves the coil space factor of the coil wound around the own teeth portion. Therefore, it is desired to form the thickness thin and long in the axial direction X. The end face winding portion 6c is configured so as not to impair the minimum bending radius of the conductor forming the coil 4, and the thickness thereof is as shown in FIG. 7 (maximum thickness T1 of the end face winding portion 6c). > (Maximum thickness W2 of the side winding portion 6d). The resin insulating portion 6 is provided with a resin injection port mark at a portion formed on the end face of the laminated iron core 5 in the axial direction X.

このように、積層鉄心5の少なくともコイル4が巻回されるティース部5bの表面部を覆って樹脂絶縁部6(すなわち、端面巻装部6cと側面巻装部6d)が形成されることにより、絶縁分割鉄心3とコイル4とが電気的に絶縁されて回転電機の所要の特性を発揮することができる。 In this way, the resin insulating portion 6 (that is, the end face winding portion 6c and the side winding portion 6d) is formed by covering the surface portion of the teeth portion 5b around which at least the coil 4 of the laminated iron core 5 is wound. The insulating split iron core 3 and the coil 4 are electrically insulated so that the required characteristics of the rotary electric machine can be exhibited.

さらに、この実施の形態1の場合(図7参照)、端面巻装部6cの厚さT1は全面で均一であるが、側面巻装部6dの厚さは、軸方向Xに沿う両端面の厚さW1よりも中央側において周方向Rに向けての厚さW2が肉厚となるように膨出部として形成されている。よって、上述した、厚さT1が端面巻装部6cの最大厚さT1となり、厚さW2が側面巻装部6dの最大厚さW2となる。すなわち、この場合の側面巻装部である膨出部6dは、軸方向Xの中央を頂点として両端面に向かって厚さが次第に減少するように断面が半紡錘状に形成されている。しかも、この場合、膨出部6dは、図7に示すように、膨出部6dの上にコイル4が巻装された場合にティース部5bの周方向Rに対面する表面を基準にコイル4との間に生じる巻膨れ隙間G1よりも小さい範囲内で周方向Rに向けて膨出するように形成されている。 Further, in the case of the first embodiment (see FIG. 7), the thickness T1 of the end face winding portion 6c is uniform over the entire surface, but the thickness of the side winding portion 6d is the thickness of both end faces along the axial direction X. It is formed as a bulging portion so that the thickness W2 in the circumferential direction R becomes the wall thickness on the central side of the thickness W1. Therefore, the thickness T1 described above is the maximum thickness T1 of the end face winding portion 6c, and the thickness W2 is the maximum thickness W2 of the side winding portion 6d. That is, the bulging portion 6d, which is the side winding portion in this case, is formed in a semi-spindle shape so that the thickness gradually decreases toward both end faces with the center of the axial direction X as the apex. Moreover, in this case, as shown in FIG. 7, the bulging portion 6d is the coil 4 with reference to the surface of the teeth portion 5b facing the circumferential direction R when the coil 4 is wound on the bulging portion 6d. It is formed so as to bulge in the circumferential direction R within a range smaller than the winding swelling gap G1 generated between the two.

積層鉄心5のティース部5bの表面部を覆う端面巻装部6cと側面巻装部6dに対して、弾性体である銅電線、アルミ電線などの導体を巻回してコイル4を形成する場合、導体の弾性により直線に巻くことができず、端面巻装部6cと側面巻装部6dにおいて円弧状に膨れて配置される。このため、図7に示すように、特にティース部5bの周方向Rに対面する表面を基準にコイル4との間に巻膨れ隙間G1が生じるが、この実施の形態1では、上記のように側面巻装部としての膨出部6dは、巻膨れ隙間G1よりも小さい範囲内で周方向Rに向けて膨出するように形成されているので、膨出部6dの周方向Rの厚さを可能な限り大きくして絶縁性を確保できるとともに、巻装されるコイル4の周回数を減らす必要性がない。すなわち、膨出部6dが形成されても、コイル4のコイル占積率を低下させることはない。そのため、回転電機の性能を徒に低下させることなく、絶縁機能を向上させることができ、効率の良い回転電機を得ることができる。 When forming a coil 4 by winding conductors such as copper electric wires and aluminum electric wires, which are elastic bodies, around an end face winding portion 6c and a side winding portion 6d covering the surface portion of the tooth portion 5b of the laminated iron core 5. Due to the elasticity of the conductor, it cannot be wound in a straight line, and is bulged and arranged in an arc shape at the end face winding portion 6c and the side winding portion 6d. Therefore, as shown in FIG. 7, a winding swelling gap G1 is generated between the teeth portion 5b and the coil 4 with reference to the surface facing the circumferential direction R. In the first embodiment, as described above. Since the bulging portion 6d as the side winding portion is formed so as to bulge in the circumferential direction R within a range smaller than the winding bulging gap G1, the thickness of the bulging portion 6d in the circumferential direction R It is not necessary to reduce the number of turns of the coil 4 to be wound while ensuring the insulating property by making the coil 4 as large as possible. That is, even if the bulging portion 6d is formed, the coil space factor of the coil 4 is not lowered. Therefore, the insulation function can be improved without significantly deteriorating the performance of the rotary electric machine, and an efficient rotary electric machine can be obtained.

これに対して、図8に示す比較技術1の場合には、積層鉄心5のティース部5bの表面部を覆う樹脂絶縁部6の内、特に側面巻装部606dは、周方向Rに向けて膨出するように形成されておらず、軸方向Xに沿った厚さは、均一な平坦部として形成されている。 On the other hand, in the case of the comparative technique 1 shown in FIG. 8, among the resin insulating portions 6 covering the surface portion of the teeth portion 5b of the laminated iron core 5, particularly the side winding portion 606d is directed toward the circumferential direction R. It is not formed to bulge, and the thickness along the axial direction X is formed as a uniform flat portion.

このように、図8に示す比較技術1の場合、側面巻装部606dの周方向Rの厚さは、軸方向Xに沿って薄く均一なので、コイル4と積層鉄心5とを電気的に絶縁する機能が低下する。この対策として、側面巻装部606dの厚さを均一に大きく設定すると、絶縁機能の低下は防げるが、巻装されるコイル4の周回数が少なくなってしまい、回転電機の性能が低下する。本願の場合はこのような比較技術1による不都合は生じない。 As described above, in the case of the comparative technique 1 shown in FIG. 8, since the thickness of the side winding portion 606d in the circumferential direction R is thin and uniform along the axial direction X, the coil 4 and the laminated iron core 5 are electrically insulated. The ability to do is reduced. As a countermeasure, if the thickness of the side winding portion 606d is set to be uniformly large, the deterioration of the insulating function can be prevented, but the number of turns of the coil 4 to be wound is reduced, and the performance of the rotary electric machine is deteriorated. In the case of the present application, such inconvenience due to the comparison technique 1 does not occur.

次に、図1に示した回転電機の固定子1の製造工程について説明する。
図9は本願の実施の形態1における固定子の製造方法の工程を示すフローチャート、図10A〜図10Fは成形金型を用いて積層鉄心ごとに樹脂絶縁部を射出成形する場合の手順を示す説明図、図11は成形金型を用いて絶縁用樹脂を積層鉄心に注入する場合の部分拡大断面図、図12は成形金型を用いて絶縁用樹脂を積層鉄心に注入する場合の絶縁用樹脂の流動状態を示す説明図である。
Next, the manufacturing process of the stator 1 of the rotary electric machine shown in FIG. 1 will be described.
FIG. 9 is a flowchart showing the process of the stator manufacturing method according to the first embodiment of the present application, and FIGS. 10A to 10F show a procedure in the case of injection molding a resin insulating portion for each laminated iron core using a molding die. FIG. 11 is a partially enlarged sectional view when the insulating resin is injected into the laminated iron core using a molding die, and FIG. 12 is an insulating resin when the insulating resin is injected into the laminated iron core using a molding die. It is explanatory drawing which shows the flow state of.

図9のフローチャートに示すように、まず、鋼板をプレス成形して積層することにより図10A(図6)に示す積層鉄心5を複数個形成する。そして、図10Aに示す積層鉄心5を成形金型7内に位置決め、固定する(図10Bおよび図10C)。その後、成形金型7内に絶縁用樹脂を射出成形し、積層鉄心5に樹脂絶縁部6が一体形成された図3に示した絶縁分割鉄心3を形成する(図10D)。射出成形が終了した後は、絶縁分割鉄心3を成形金型7から分離し(図10E)、不要樹脂部分を除去する(図10F)。この際、樹脂注入口痕が残る。次に、この絶縁分割鉄心3に導体を巻回してコイル4を形成し、図2に示した分割固定子2を構成する。そして、所定数の分割固定子2を周方向Rに沿って円環状に連結配置することで固定子1が構成される。 As shown in the flowchart of FIG. 9, first, a plurality of laminated iron cores 5 shown in FIG. 10A (FIG. 6) are formed by press-molding and laminating steel plates. Then, the laminated iron core 5 shown in FIG. 10A is positioned and fixed in the molding die 7 (FIGS. 10B and 10C). After that, an insulating resin is injection-molded in the molding die 7 to form the insulating split iron core 3 shown in FIG. 3 in which the resin insulating portion 6 is integrally formed with the laminated iron core 5 (FIG. 10D). After the injection molding is completed, the insulating split iron core 3 is separated from the molding die 7 (FIG. 10E), and the unnecessary resin portion is removed (FIG. 10F). At this time, a resin injection port mark remains. Next, a conductor is wound around the insulating split iron core 3 to form a coil 4, and the split stator 2 shown in FIG. 2 is formed. Then, the stator 1 is configured by connecting and arranging a predetermined number of the dividing stators 2 in an annular shape along the circumferential direction R.

ここで、積層鉄心5ごとに樹脂絶縁部6を射出成形する場合の方法について、さらに詳しく説明する。 Here, a method for injection molding the resin insulating portion 6 for each laminated iron core 5 will be described in more detail.

図10Bおよび図10Cに示すように、まず、図10A(図6)に示した積層鉄心5を成形金型7内に入れて位置決めして、固定する。成形金型7は、積層鉄心5のバックヨーク部5a、ティース部5b、および突出部5cを密閉する金型内壁7aと、軸方向Xの上下それぞれの平坦な端面に設けられた樹脂注入口7bとを有する。 As shown in FIGS. 10B and 10C, first, the laminated iron core 5 shown in FIG. 10A (FIG. 6) is placed in the molding die 7, positioned, and fixed. The molding die 7 includes a mold inner wall 7a for sealing the back yoke portion 5a, the teeth portion 5b, and the protruding portion 5c of the laminated iron core 5, and a resin injection port 7b provided on each of the upper and lower flat end faces in the axial direction X. And have.

特に、この実施の形態1に適用される成形金型7は、図10B〜図10E、図11に示すように、コイル占積率を向上させることを目的にして軸方向Xの側面に側面巻装部6dを形成するためのキャビティ、および、コイル4を形成する導体の最小屈曲半径を確保するために軸方向の端面に端面巻装部6cを形成するためのキャビティを有する。積層鉄心5の軸方向Xに沿って両端面よりも中央側において周方向に向けて肉厚となる膨出部6dを形成するための凹部7dが予め形成されている。また、図12に示すように、樹脂注入口7bは、例えば樹脂絶縁部6の鍔部6bまたは端面巻装部6cを形成する位置などに任意に設けられ、樹脂注入口7bから絶縁用樹脂が注入される。 In particular, the molding die 7 applied to the first embodiment is side-wound on the side surface in the axial direction X for the purpose of improving the coil space factor, as shown in FIGS. 10B to 10E and 11. It has a cavity for forming the mounting portion 6d and a cavity for forming the end face winding portion 6c on the end face in the axial direction in order to secure the minimum bending radius of the conductor forming the coil 4. A recess 7d for forming a bulging portion 6d having a wall thickness in the circumferential direction is formed in advance on the central side of both end faces along the axial direction X of the laminated iron core 5. Further, as shown in FIG. 12, the resin injection port 7b is arbitrarily provided at a position where, for example, the flange portion 6b or the end face winding portion 6c of the resin insulating portion 6 is formed, and the insulating resin is provided from the resin injection port 7b. Infused.

図12中の矢印は、一例として上下の各樹脂注入口7bから絶縁用樹脂が注入された場合の流れる方向を示す。注入された絶縁用樹脂は、金型内壁7aと積層鉄心5との間の空間であるキャビティ内を流れ、充填後に硬化することで、積層鉄心5を覆って一体化された樹脂絶縁部6が形成される。よって、図12の場合、各樹脂注入口7bから絶縁用樹脂が注入されるため、積層鉄心5の軸方向Xに沿ってキャビティ内を流れ込み、軸方向Xにおける中央部分が樹脂流動末端部E1になる。 The arrows in FIG. 12 indicate, for example, the flow direction when the insulating resin is injected from the upper and lower resin injection ports 7b. The injected insulating resin flows through the cavity, which is the space between the inner wall 7a of the mold and the laminated iron core 5, and is cured after filling, so that the resin insulating portion 6 integrated to cover the laminated iron core 5 is formed. It is formed. Therefore, in the case of FIG. 12, since the insulating resin is injected from each resin injection port 7b, it flows into the cavity along the axial direction X of the laminated iron core 5, and the central portion in the axial direction X becomes the resin flow end portion E1. Become.

絶縁用樹脂が積層鉄心5と金型内壁7aとの間のキャビティ内を流れる過程で、流動抵抗による圧力損失を受ける。ここで、図13に示すように、キャビティ内の流路深さをM、流路幅をN、流路長さをL、比例乗数をK、流量をQとし、絶縁用樹脂を注入する始端の圧力をPin、終端の圧力をPoutとすると、圧力損失ΔP(=Pin−Pout)は、次の(式1)で示される。 In the process of the insulating resin flowing in the cavity between the laminated iron core 5 and the inner wall 7a of the mold, it receives a pressure loss due to flow resistance. Here, as shown in FIG. 13, the flow path depth in the cavity is M, the flow path width is N, the flow path length is L, the proportional multiplier is K, the flow rate is Q, and the starting end for injecting the insulating resin. The pressure loss ΔP (= Pin-Pout) is expressed by the following (Equation 1), where Pin is the pressure of and Pout is the end pressure.

ΔP=(12×K×L×Q)/(N×M) (式1)ΔP = (12 × K × L × Q) / (N × M 3 ) (Equation 1)

上記(式1)から分かるように、絶縁用樹脂の流路断面におけるキャビティの流路深さMが小さいほど流動抵抗が大きくなって圧力損失ΔPが大きくなる。つまり、絶縁用樹脂がキャビティ内を流れる際、キャビティ内の流路深さMが小さいと、図12に示した樹脂注入口7bから樹脂流動末端部E1に至るまでの圧力損失ΔPが大きくなり、樹脂流動末端部E1で圧力が不足し易くなる。そして、樹脂流動末端部E1で圧力が不足すると絶縁用樹脂の流動が停止し、絶縁用樹脂の充填不良と絶縁機能の低下が生じる。このことは、積層鉄心5に樹脂絶縁部6が形成された後の結果から見ると、樹脂絶縁部6の厚さ(流路深さMに相当)が薄い程、絶縁用樹脂の充填不良と絶縁機能の低下が生じ易いことを意味する。 As can be seen from the above (Equation 1), the smaller the flow path depth M of the cavity in the flow path cross section of the insulating resin, the larger the flow resistance and the larger the pressure loss ΔP. That is, when the insulating resin flows through the cavity, if the flow path depth M in the cavity is small, the pressure loss ΔP from the resin injection port 7b shown in FIG. 12 to the resin flow end portion E1 becomes large. The pressure tends to be insufficient at the resin flow end portion E1. When the pressure is insufficient at the resin flow end portion E1, the flow of the insulating resin is stopped, resulting in poor filling of the insulating resin and deterioration of the insulating function. From the result after the resin insulating portion 6 is formed on the laminated iron core 5, the thinner the thickness of the resin insulating portion 6 (corresponding to the flow path depth M), the poorer the filling of the insulating resin. This means that the insulation function is likely to deteriorate.

この実施の形態1の場合、成形金型7には、図10A〜図10F、図11(図7参照)に示したように、樹脂絶縁部6の絶縁用樹脂の樹脂流動末端部E1である軸方向Xに沿って両端面(樹脂絶縁部6形成後の図7の側面巻装部6dの厚さW1の箇所に相当)よりも中央側(樹脂絶縁部6形成後の図7の側面巻装部6dの厚さW2の箇所に相当)において周方向Rに向けて肉厚となる膨出部形成用の凹部7dが予め形成されている。従って、樹脂注入口7bから樹脂流動末端部E1に至るに従ってキャビティの流路深さMが次第に大きくなるため、圧力損失ΔPの低下が抑制される。その結果、樹脂流動末端部E1における充填不良が防止され、絶縁機能を向上させることができる。 In the case of the first embodiment, as shown in FIGS. 10A to 10F and 11 (see FIG. 7), the molding die 7 has a resin flow end portion E1 of the insulating resin of the resin insulating portion 6. Along the axial direction X, the side winding of FIG. 7 after forming the resin insulating portion 6 is located on the center side of both end surfaces (corresponding to the portion of the thickness W1 of the side winding portion 6d of FIG. 7 after forming the resin insulating portion 6). A recess 7d for forming a bulging portion, which becomes thicker in the circumferential direction R, is formed in advance in the portion 6d having a thickness W2). Therefore, since the flow path depth M of the cavity gradually increases from the resin injection port 7b to the resin flow end portion E1, the decrease in the pressure loss ΔP is suppressed. As a result, poor filling at the resin flow end portion E1 can be prevented, and the insulating function can be improved.

そして、軸方向Xに沿う両端面のように肉厚の厚さW1が薄い側面巻装部6dの近傍に樹脂注入口7bを配置しても、上記に示した圧力損失の(式1)により、端面巻装部6c、バックヨーク部5a上の鍔部6a、突出部5c上の鍔部6bに絶縁用樹脂が流動しやすく、側面巻装部6dが絶縁用樹脂の樹脂流動末端部E1になる。 Then, even if the resin injection port 7b is arranged in the vicinity of the side winding portion 6d having a thin wall thickness W1 such as both end faces along the axial direction X, the pressure loss shown above (Equation 1) causes , The insulating resin easily flows to the end face winding portion 6c, the flange portion 6a on the back yoke portion 5a, and the flange portion 6b on the protruding portion 5c, and the side winding portion 6d becomes the resin flow end portion E1 of the insulating resin. Become.

これに対して、図14に示す比較技術2の場合には、本願の実施の形態1のような周方向に向けて肉厚となる膨出部形成用の凹部7dは形成されておらず、キャビティ内の流路深さMが軸方向Xに沿って薄く均一になる金型内壁607aが形成されているので、樹脂注入口7bから樹脂流動末端部に至るに従って圧力損失ΔPが増加し、絶縁用樹脂の流動が停止し、樹脂の充填不良と絶縁機能の低下が生じ易い。 On the other hand, in the case of the comparative technique 2 shown in FIG. 14, the recess 7d for forming the bulging portion, which becomes thicker in the circumferential direction as in the first embodiment of the present application, is not formed. Since the mold inner wall 607a is formed in which the flow path depth M in the cavity becomes thin and uniform along the axial direction X, the pressure loss ΔP increases from the resin injection port 7b to the resin flow end portion, and insulation is provided. The flow of the resin for use stops, and poor resin filling and deterioration of the insulating function are likely to occur.

以上のように、この実施の形態1では、積層鉄心5と一体化された樹脂絶縁部6には、積層鉄心5の軸方向Xに沿って両端面の厚さW1よりも中央側において周方向Rに向けての厚さW2が肉厚となる膨出部6dが形成されているので、成形金型7を用いて絶縁用樹脂を射出成形する際の流動抵抗の増加に起因した圧力損失ΔPを低減することができ、絶縁用樹脂の充填性の向上と絶縁性能を向上することができる。 As described above, in the first embodiment, the resin insulating portion 6 integrated with the laminated iron core 5 is provided in the circumferential direction on the central side of the thickness W1 of both end surfaces along the axial direction X of the laminated iron core 5. Since the bulging portion 6d having a wall thickness W2 toward R is formed, the pressure loss ΔP due to the increase in flow resistance when the insulating resin is injection-molded using the molding die 7. Can be reduced, and the filling property of the insulating resin and the insulating performance can be improved.

しかも、巻装されるコイル4の中央が弾性変形により巻膨らむが、樹脂絶縁部6の膨出部6dは、その両端面の厚さW1よりも中央側において周方向Rに向けての厚さW2が肉厚となるように形成されているため、コイル4と膨出部6dとの間の隙間が小さくなり、巻装されるコイル4の周回数を減らすことがなく、コイル4の占積率の低下が抑えられる。このため、回転電機の性能を低下させることなく、絶縁機能を向上させることができ、小型で高効率、かつ十分な絶縁性能を有する回転電機の絶縁構造体を提供することが可能となる。 Moreover, the center of the coil 4 to be wound swells due to elastic deformation, but the bulging portion 6d of the resin insulating portion 6 has a thickness in the circumferential direction R on the center side of the thickness W1 of both end faces thereof. Since W2 is formed to be thick, the gap between the coil 4 and the bulging portion 6d becomes small, and the number of turns of the coil 4 to be wound is not reduced, and the coil 4 is occupied. The decrease in the rate is suppressed. Therefore, the insulation function can be improved without deteriorating the performance of the rotary electric machine, and it is possible to provide an insulating structure of the rotary electric machine having a small size, high efficiency, and sufficient insulation performance.

また、流動性が良い高価な絶縁用樹脂を選定する必要がなく、また、絶縁用樹脂の流動性を向上するために成形金型7の局所加熱を行う必要性もないので、材料費および設備費を抑制することで安価な回転電機を提供することができる。 Further, since it is not necessary to select an expensive insulating resin having good fluidity and it is not necessary to locally heat the molding die 7 in order to improve the fluidity of the insulating resin, the material cost and equipment By controlling the cost, it is possible to provide an inexpensive rotary electric machine.

ところで、図10A〜図10F、図11に示したように、成形金型7の軸方向Xの両端にそれぞれ樹脂注入口7bを設けると、樹脂流動末端部E1が側面巻装部6dの軸方向Xに沿った中央部分にできるが、樹脂絶縁部6の形状によっては絶縁用樹脂の流れ方と樹脂流動末端部E1の位置が変化する。 By the way, as shown in FIGS. 10A to 10F and 11, when resin injection ports 7b are provided at both ends of the molding die 7 in the axial direction X, the resin flow end portion E1 is in the axial direction of the side winding portion 6d. Although it is formed in the central portion along X, the flow of the insulating resin and the position of the resin flow end portion E1 change depending on the shape of the resin insulating portion 6.

そこで、樹脂絶縁部6の膨出部6dは、軸方向Xに沿ってその両端面の厚さW1から中央側において次第に周方向Rに厚さW2の肉厚となるように半紡錘状に形成したものに限らず、例えば図15に示すように、軸方向Xに沿ってその両端面の厚さW1よりも中央側において周方向Rに向けて厚さW2を有する断面が台形状に形成された膨出部6d、または、図16に示すように、軸方向Xに沿ってその両端面の厚さW1よりも中央側において周方向Rに向けて厚さW2を有する断面が突起状に形成された膨出部6dが形成されるように、成形金型7の凹部7dの形状を変更することで、成形金型7を用いて絶縁用樹脂を射出成形する際の流動抵抗の増加を局部的に抑えて絶縁機能の改善を図ることが可能である。 Therefore, the bulging portion 6d of the resin insulating portion 6 is formed in a semi-spindle shape so as to have a wall thickness of a thickness W2 gradually in the circumferential direction R from the thickness W1 of both end surfaces thereof along the axial direction X. For example, as shown in FIG. 15, a cross section having a thickness W2 in the circumferential direction R on the central side of the thickness W1 of both end faces thereof is formed in a trapezoidal shape along the axial direction X. As shown in FIG. 16 or the bulging portion 6d, a cross section having a thickness W2 in the circumferential direction R is formed in a protruding shape on the central side of the thickness W1 of both end surfaces thereof along the axial direction X. By changing the shape of the recess 7d of the molding die 7 so that the formed bulging portion 6d is formed, the increase in flow resistance when injection molding the insulating resin using the molding die 7 is locally increased. It is possible to improve the insulation function by suppressing the target.

また、成形金型7の樹脂注入口7bを、例えば軸方向Xの片側1ヵ所にのみ設ける場合には、樹脂流動末端部E1が側面巻装部(膨出部)6dの軸方向Xの中央位置からずれる可能性がある。その場合にも、図15に示した断面が台形状の膨出部6d、または、図16に示した断面が突起状に形成された膨出部6dの位置を軸方向Xの中央位置から適宜ずらして形成することで、同様の絶縁機能の向上効果が得られる。 Further, when the resin injection port 7b of the molding die 7 is provided at only one place on one side in the axial direction X, for example, the resin flow end portion E1 is at the center of the side winding portion (bulging portion) 6d in the axial direction X. It may shift from the position. Also in that case, the position of the bulging portion 6d having a trapezoidal cross section shown in FIG. 15 or the bulging portion 6d having a protruding cross section shown in FIG. 16 is appropriately positioned from the central position in the axial direction X. By forming them in a staggered manner, the same effect of improving the insulating function can be obtained.

なお、この実施の形態1の回転電機の絶縁構造体は、サーボモータ用、燃料噴射バルブ開閉タイミング制御ユニット、空調用ファンモータ、車載用燃料ポンプユニット、巻上機用などの各種の回転電機の固定子に適用することができる。 The insulating structure of the rotary electric machine according to the first embodiment is of various rotary electric machines for servo motors, fuel injection valve opening / closing timing control units, air conditioning fan motors, in-vehicle fuel pump units, hoisting machines, and the like. It can be applied to stators.

上記のように構成された実施の形態1の回転電機の絶縁構造体によれば、
複数枚の鋼板が積層されてなる積層鉄心を備えるとともに、前記積層鉄心には少なくともコイルが巻装される箇所の表面部を覆って樹脂絶縁部が一体形成されている回転電機の絶縁構造体において、
前記樹脂絶縁部は、前記積層鉄心の軸方向に沿って両端面よりも中央側において周方向に向けて肉厚に形成された膨出部を備えるので、
また、回転電機の絶縁構造体の製造方法によれば、
鋼板が積層されてなる積層鉄心を備えるとともに、前記積層鉄心には少なくともコイルが巻装される箇所の表面部を覆って樹脂絶縁部が一体形成されている回転電機の絶縁構造体の製造方法であって、
前記樹脂絶縁部の射出成形用の成形金型を適用し、この成形金型の金型内壁には前記積層鉄心の軸方向に沿って両端面よりも中央側において周方向に向けて肉厚となる膨出部形成用の凹部を予め形成しておき、前記成形金型の内部に前記積層鉄心を配置した後、前記成形金型の樹脂注入口から絶縁用樹脂を注入して前記樹脂絶縁部を成形するので、
巻回されるコイルの軸方向の中央部分が弾性変形により巻膨らむが、膨出部は、その軸方向の両端面よりも中央側において周方向に向けて肉厚となるように形成されているため、コイルのコイル占積率を低下させることなく絶縁性能を向上することができ、同じ性能で小型の回転電機の絶縁構造体、ひいては回転電機を得られることができる。また、コイルと樹脂絶縁部との間の空気層を減らすことで、コイルによる発熱を積層鉄心に伝達する効率が向上するため、従来構造に対し、余分なコストアップまたは性能低下を招来することなく、同じサイズで高効率、放熱部品を削減した回転電機の絶縁構造体、ひいては回転電機を得ることができる。
さらに、成形金型の金型内壁には積層鉄心の軸方向に沿って両端面よりも中央側において周方向に向けて肉厚となる膨出部形成用の凹部を予め形成しておき、成形金型の内部に積層鉄心を配置した後、成形金型の樹脂注入口から絶縁用樹脂を注入するので、
絶縁用樹脂を充填する際の流動抵抗の増加に起因した圧力損失を低減することができる。このため、絶縁用樹脂の充填性が向上するので、流動性が良い高価な絶縁用樹脂を選定する必要がなく、また、絶縁用樹脂の流動性を向上するために成形金型の局所加熱を行う必要性もないので、材料費および設備費を抑制することができ、安価な回転電機の絶縁構造体、ひいては回転電機を提供することができる。
According to the insulating structure of the rotary electric machine of the first embodiment configured as described above,
In an insulating structure of a rotating electric machine, which is provided with a laminated iron core in which a plurality of steel plates are laminated, and a resin insulating portion is integrally formed on the laminated iron core by at least covering the surface portion of a portion where a coil is wound. ,
Since the resin insulating portion includes a bulging portion formed thickly in the circumferential direction on the central side of both end faces along the axial direction of the laminated iron core, the resin insulating portion includes a bulging portion.
Further, according to the manufacturing method of the insulating structure of the rotary electric machine,
A method for manufacturing an insulating structure of a rotating electric machine, which is provided with a laminated iron core formed by laminating steel plates, and a resin insulating portion is integrally formed on the laminated iron core by at least covering the surface portion of a portion where a coil is wound. There,
A molding die for injection molding of the resin insulating portion is applied, and the inner wall of the molding die has a wall thickness in the circumferential direction on the central side of both end faces along the axial direction of the laminated iron core. A recess for forming a bulging portion is formed in advance, the laminated iron core is arranged inside the molding die, and then an insulating resin is injected from the resin injection port of the molding die to form the resin insulating portion. Because it molds
The central portion of the wound coil in the axial direction swells due to elastic deformation, but the bulging portion is formed so as to become thicker in the circumferential direction on the central side than both end faces in the axial direction. Therefore, the insulation performance can be improved without lowering the coil space factor of the coil, and an insulating structure of a small rotary electric machine, and eventually a rotary electric machine can be obtained with the same performance. Further, by reducing the air layer between the coil and the resin insulating portion, the efficiency of transmitting the heat generated by the coil to the laminated iron core is improved, so that the conventional structure does not cause an extra cost increase or performance deterioration. It is possible to obtain an insulating structure of a rotating electric machine having the same size, high efficiency, and reduced heat dissipation parts, and by extension, a rotating electric machine.
Further, the inner wall of the die of the molding die is formed by preliminarily forming a recess for forming a bulging portion which becomes thicker in the circumferential direction on the central side than both end faces along the axial direction of the laminated iron core. After arranging the laminated iron core inside the mold, the insulating resin is injected from the resin injection port of the molding mold.
It is possible to reduce the pressure loss caused by the increase in the flow resistance when filling the insulating resin. Therefore, since the filling property of the insulating resin is improved, it is not necessary to select an expensive insulating resin having good fluidity, and local heating of the molding die is performed in order to improve the fluidity of the insulating resin. Since there is no need to do so, material costs and equipment costs can be suppressed, and an inexpensive insulating structure for a rotating electric machine, and thus a rotating electric machine can be provided.

また、前記樹脂絶縁部は、前記積層鉄心の軸方向の端面に形成された箇所の最大厚さが、前記積層鉄心の軸方向に沿って形成された箇所の最大厚さよりも厚く、かつ、前記積層鉄心の軸方向の端面に形成された箇所に樹脂注入口痕を備えるので、
絶縁用樹脂の充填性をさらに向上できる。
Further, in the resin insulating portion, the maximum thickness of the portion formed on the axial end face of the laminated iron core is thicker than the maximum thickness of the portion formed along the axial direction of the laminated iron core, and the said. Since the resin injection port mark is provided at the position formed on the axial end face of the laminated iron core,
The filling property of the insulating resin can be further improved.

また、前記樹脂絶縁部は、前記積層鉄心の軸方向の端面の形成された箇所の厚さが均一に形成されているので、
積層鉄心の軸方向の両端において、樹脂絶縁部とコイルとの絶縁性を確保することができる。
Further, in the resin insulating portion, the thickness of the portion where the end face in the axial direction of the laminated iron core is formed is uniformly formed.
Insulation between the resin insulating portion and the coil can be ensured at both ends of the laminated iron core in the axial direction.

また、前記膨出部は、前記積層鉄心と前記コイルとの間の巻膨れ隙間よりも小さい範囲内で施されているので、
膨出部は、コイルのコイル占積率を確実に低下させることなく絶縁性能を確実に向上することができ、同じ性能で小型の回転電機を確実に得ることができる。また、コイルと樹脂絶縁部との間の空気層を確実に減らすことで、コイルによる発熱を積層鉄心に伝達する効率が確実に向上するため、従来構造に対し、余分なコストアップまたは性能低下を招来することなく、同じサイズで高効率、放熱部品を削減した回転電機の絶縁構造体、ひいては回転電機を確実に得ることができる。
Further, since the bulging portion is provided within a range smaller than the winding bulging gap between the laminated iron core and the coil, the bulging portion is formed.
The bulging portion can surely improve the insulation performance without surely lowering the coil space factor of the coil, and can surely obtain a small rotary electric machine with the same performance. In addition, by reliably reducing the air layer between the coil and the resin insulating part, the efficiency of transmitting heat generated by the coil to the laminated iron core is surely improved, resulting in an extra cost increase or performance decrease compared to the conventional structure. It is possible to surely obtain an insulating structure of a rotating electric machine having the same size, high efficiency, and reduced heat dissipation parts, and by extension, a rotating electric machine without inviting.

また、前記膨出部は、前記積層鉄心の周方向に対面するティース側面部に対応する箇所に形成されているので、
膨出部を簡便に形成することができる。
Further, since the bulging portion is formed at a portion corresponding to the tooth side surface portion facing the laminated iron core in the circumferential direction, the bulging portion is formed.
The bulging portion can be easily formed.

また、前記膨出部は、前記軸方向の中央を頂点として前記両端面に向かって厚さが次第に減少する断面が半紡錘状に形成されているので、
絶縁用樹脂の充填性をさらに向上できる。
Further, since the bulging portion has a semi-spindle-shaped cross section whose thickness gradually decreases toward both end faces with the center in the axial direction as the apex.
The filling property of the insulating resin can be further improved.

また、前記膨出部は、断面が台形状に形成されているので、
膨出部を簡便に形成することができる。
Further, since the bulging portion has a trapezoidal cross section,
The bulging portion can be easily formed.

また、前記膨出部は、断面が突起状に形成されているので、
膨出部を簡便に形成することができる。
Further, since the cross section of the bulging portion is formed in a protruding shape,
The bulging portion can be easily formed.

実施の形態2.
図17は本願の実施の形態2の回転電機の絶縁構造体として回転子に適用した場合の斜視図、図18は回転子を構成する絶縁鉄心とシャフトを示す分解斜視図、図19は図17の回転子の平面図、図20は図19の回転子をB−B線に沿って切断した場合の斜視図である。また、図21は図17の固定子の絶縁鉄心を構成する積層鉄心の斜視図、図22は実施の形態2において絶縁鉄心の上にコイルが巻装された状態を示す断面図である。なお、ここでは回転子および絶縁鉄心の軸方向を符号X、径方向を符号D、周方向を符号Rでそれぞれ示すものとする。
Embodiment 2.
17 is a perspective view when applied to a rotor as an insulating structure of a rotary electric machine according to a second embodiment of the present application, FIG. 18 is an exploded perspective view showing an insulating iron core and a shaft constituting the rotor, and FIG. 19 is FIG. 17 20 is a perspective view of the rotor of FIG. 19 when the rotor of FIG. 19 is cut along the line BB. 21 is a perspective view of a laminated iron core constituting the insulating iron core of the stator of FIG. 17, and FIG. 22 is a cross-sectional view showing a state in which a coil is wound on the insulated iron core in the second embodiment. Here, it is assumed that the axial direction of the rotor and the insulating iron core is indicated by reference numeral X, the radial direction is indicated by reference numeral D, and the circumferential direction is indicated by reference numeral R.

この実施の形態2の回転子11は、回転電機の回転軸となるシャフト12、絶縁鉄心13、および絶縁鉄心13に巻回された図示していないコイルからなる。なお、ここでは絶縁鉄心13のティースの数が4個ある場合を示しているが、これに限らず、ティースの数は回転電機の性能、構造に合わせて任意に設計することができる。また、巻装された図示しないコイルは、導体である銅電線、アルミ電線等を所望の回数だけ巻回するなど、回転電機の性能、構造に合わせて任意に設計することができる。 The rotor 11 of the second embodiment includes a shaft 12 that serves as a rotation shaft of a rotary electric machine, an insulated iron core 13, and a coil (not shown) wound around the insulated iron core 13. Although the case where the number of teeth of the insulating iron core 13 is four is shown here, the number of teeth is not limited to this, and the number of teeth can be arbitrarily designed according to the performance and structure of the rotary electric machine. Further, the wound coil (not shown) can be arbitrarily designed according to the performance and structure of the rotary electric machine, such as winding a copper electric wire, an aluminum electric wire, etc., which are conductors, a desired number of times.

絶縁鉄心13は、積層鉄心15と樹脂絶縁部16とからなる。
ここに、積層鉄心15は、図21に示すように、厚み寸法が0.1mm〜3.0mm程度の電磁鋼板、または珪素鋼板からなる所定枚数の鋼板を所望の軸長寸法に合わせて積層して構成されており、シャフト12の挿入穴15aが形成された円筒状の鉄心中央部15b、この鉄心中央部15bから径方向Dの外周側に突出するティース部15c、およびティース部15cから周方向Rに沿って延びる平面視で扇型の鉄心外周部15dを有する。
The insulating iron core 13 includes a laminated iron core 15 and a resin insulating portion 16.
Here, as shown in FIG. 21, the laminated iron core 15 is formed by laminating a predetermined number of steel sheets made of an electromagnetic steel sheet or a silicon steel sheet having a thickness dimension of about 0.1 mm to 3.0 mm according to a desired axial length dimension. A cylindrical central portion 15b in which an insertion hole 15a of the shaft 12 is formed, a teeth portion 15c protruding from the central portion 15b of the iron core to the outer peripheral side in the radial direction D, and a circumferential direction from the teeth portion 15c. It has a fan-shaped outer peripheral portion 15d of an iron core in a plan view extending along R.

また、樹脂絶縁部16は、例えばPPS、LCP、PBT、POM、PA、PET、SPSなどの熱可塑性樹脂、エポキシ樹脂、BMCなどの熱硬化性樹脂を用いて射出成形することで積層鉄心15と一体成形されている。 Further, the resin insulating portion 16 is formed by injection molding using, for example, a thermoplastic resin such as PPS, LCP, PBT, POM, PA, PET, SPS, an epoxy resin, or a thermosetting resin such as BMC to form a laminated iron core 15. It is integrally molded.

ここで、樹脂絶縁部16は、積層鉄心15の全面を覆うように形成されている。すなわち、積層鉄心15の鉄心中央部15b、ティース部15c、および鉄心外周部15dの全面を全て覆うように形成されている。 Here, the resin insulating portion 16 is formed so as to cover the entire surface of the laminated iron core 15. That is, it is formed so as to cover the entire surface of the core central portion 15b, the teeth portion 15c, and the outer peripheral portion 15d of the laminated iron core 15.

特に、積層鉄心15のコイルが巻回されるティース部15cの表面を覆う樹脂絶縁部16は、ティース部15cの軸方向Xの両端面を覆ってそれぞれ形成された端面巻装部16cと、ティース部15cの周方向Rに対面して軸方向Xに沿って伸びる側面部分を覆って形成された側面巻装部16dとからなる。側面巻装部16dは、自ティース部に巻装するコイルと周方向Rに隣接する他ティース部のコイルとの干渉を避け、かつ、自ティース部に巻装するコイルのコイル占積率を向上させるため、厚さを薄く、軸方向Xに長く形成することが望まれる。そして、端面巻装部16cは、コイル14を形成する導体の最小屈曲半径を害さないよう構成され、その厚さは、図22に示すように、(端面巻装部16cの最大厚さT11)>(側面巻装部16dの最大厚さW12)となるように形成される。樹脂絶縁部16には、積層鉄心15の軸方向Xの端面に形成された箇所に樹脂注入口痕を備える。 In particular, the resin insulating portion 16 that covers the surface of the teeth portion 15c around which the coil of the laminated iron core 15 is wound is the end face winding portion 16c formed by covering both end faces of the teeth portion 15c in the axial direction X and the teeth. It is composed of a side winding portion 16d formed by covering a side surface portion extending along the axial direction X facing the circumferential direction R of the portion 15c. The side winding portion 16d avoids interference between the coil wound around the own teeth portion and the coil of another teeth portion adjacent to the circumferential direction R, and improves the coil space factor of the coil wound around the own teeth portion. Therefore, it is desired to form the thickness thin and long in the axial direction X. The end face winding portion 16c is configured so as not to impair the minimum bending radius of the conductor forming the coil 14, and the thickness thereof is as shown in FIG. 22 (maximum thickness T11 of the end face winding portion 16c). > (Maximum thickness W12 of the side winding portion 16d). The resin insulating portion 16 is provided with a resin injection port mark at a portion formed on the end face of the laminated iron core 15 in the axial direction X.

このように、積層鉄心15の少なくともコイルが巻回されるティース部15cの表面部を覆って樹脂絶縁部16(すなわち、端面巻装部16cと側面巻装部16d)が形成されることにより、絶縁鉄心13とコイルとが電気的に絶縁されて回転電機の所要の特性を発揮することができる。 In this way, the resin insulating portion 16 (that is, the end face winding portion 16c and the side winding portion 16d) is formed by covering at least the surface portion of the teeth portion 15c around which the coil is wound of the laminated iron core 15. The insulated iron core 13 and the coil are electrically insulated so that the required characteristics of the rotary electric machine can be exhibited.

さらに、この実施の形態2の場合(図22参照)、端面巻装部16cの厚さT11は全面で均一であるが、側面巻装部16dの厚さは、軸方向Xに沿って両端面の厚さW11よりも中央側において周方向Rに向けての厚さW12が肉厚となるように膨出部として形成されている。よって、上述した、厚さT11が端面巻装部16cの最大厚さT11となり、厚さW12が側面巻装部16dの最大厚さW12となる。すなわち、この場合の側面巻装部である膨出部16dは、軸方向Xの中央を頂点として両端面に向かって厚さが次第に減少するように断面が半紡錘状に形成されている。しかも、この場合、膨出部16dは、図22に示すように、膨出部16dの上にコイル14が巻装された場合にティース部15cの周方向Rに対面する表面を基準にコイル14との間に生じる巻膨れ隙間G2よりも小さい範囲内で周方向Rに向けて膨出するように形成されている。 Further, in the case of the second embodiment (see FIG. 22), the thickness T11 of the end surface winding portion 16c is uniform over the entire surface, but the thickness of the side winding portion 16d is the thickness of both end faces along the axial direction X. The bulge portion is formed so that the thickness W12 in the circumferential direction R becomes the wall thickness on the central side of the thickness W11. Therefore, the thickness T11 described above is the maximum thickness T11 of the end face winding portion 16c, and the thickness W12 is the maximum thickness W12 of the side winding portion 16d. That is, the bulging portion 16d, which is the side winding portion in this case, is formed in a semi-spindle shape so that the thickness gradually decreases toward both end faces with the center of the axial direction X as the apex. Moreover, in this case, as shown in FIG. 22, the bulging portion 16d is the coil 14 with reference to the surface of the teeth portion 15c facing the circumferential direction R when the coil 14 is wound on the bulging portion 16d. It is formed so as to bulge in the circumferential direction R within a range smaller than the winding swelling gap G2 generated between the two.

積層鉄心15のティース部15cの表面部を覆う端面巻装部16cと側面巻装部16dに対して、導体を巻回してコイル14とする場合、導体の弾性により直線に巻くことができず、端面巻装部16cと側面巻装部16dにおいて円弧状に膨れて配置される。このため、図22に示すように、特にティース部15cの周方向Rに対面する表面を基準にコイル14との間に巻膨れ隙間G2が生じるが、この実施の形態2では、上記のように側面巻装部としての膨出部16dは、コイル14の巻膨れ隙間G2よりも小さい範囲内で周方向Rに向けて膨出するように形成されているので、実施の形態1の場合と同様、膨出部16dの周方向Rの厚さを可能な限り大きくして絶縁性を確保できるとともに、巻装されるコイル14の周回数を減らす必要性がない。すなわち、膨出部16dが形成されても、コイル14のコイル占積率を低下させることはない。そのため、回転電機の性能を徒に低下させることなく、絶縁機能を向上させることができ、効率の良い回転電機を得ることができる。 When a conductor is wound around the end face winding portion 16c and the side winding portion 16d covering the surface portion of the tooth portion 15c of the laminated iron core 15 to form a coil 14, the conductor cannot be wound in a straight line due to the elasticity of the conductor. The end face winding portion 16c and the side winding portion 16d are arranged in an arc shape. Therefore, as shown in FIG. 22, a winding swelling gap G2 is generated between the tooth portion 15c and the coil 14 with reference to the surface facing the circumferential direction R. In the second embodiment, as described above. Since the bulging portion 16d as the side winding portion is formed so as to bulge in the circumferential direction R within a range smaller than the winding bulging gap G2 of the coil 14, it is the same as in the case of the first embodiment. The thickness of the bulging portion 16d in the circumferential direction R can be made as large as possible to ensure insulation, and there is no need to reduce the number of turns of the coil 14 to be wound. That is, even if the bulging portion 16d is formed, the coil space factor of the coil 14 is not lowered. Therefore, the insulation function can be improved without significantly deteriorating the performance of the rotary electric machine, and an efficient rotary electric machine can be obtained.

これに対して、図23に示す比較技術3の場合には、積層鉄心15のティース部15cの表面部を覆う樹脂絶縁部16の内、特に側面巻装部616dは、周方向Rに向けて膨出するように形成されておらず、軸方向に沿った厚さは、均一な平坦部として形成されている。 On the other hand, in the case of the comparative technique 3 shown in FIG. 23, among the resin insulating portions 16 covering the surface portion of the teeth portion 15c of the laminated iron core 15, particularly the side winding portion 616d is directed toward the circumferential direction R. It is not formed to bulge, and the thickness along the axial direction is formed as a uniform flat portion.

このように、図23に示す比較技術3の場合、側面巻装部616dの周方向Rの厚さは軸方向Xに沿って薄く均一なので、コイル14と積層鉄心15とを電気的に絶縁する機能が低下する。この対策として、側面巻装部616dの厚さを均一に大きく設定すると、絶縁機能の低下は防げるが、巻装されるコイル14の周回数が少なくなってしまい、回転電機の性能が低下する。本実施の形態の場合はこのような比較技術3による不都合は生じない。 As described above, in the case of the comparative technique 3 shown in FIG. 23, since the thickness of the side winding portion 616d in the circumferential direction R is thin and uniform along the axial direction X, the coil 14 and the laminated iron core 15 are electrically insulated. Function is reduced. As a countermeasure, if the thickness of the side winding portion 616d is set to be uniformly large, the deterioration of the insulating function can be prevented, but the number of turns of the coil 14 to be wound is reduced, and the performance of the rotary electric machine is deteriorated. In the case of the present embodiment, such inconvenience due to the comparison technique 3 does not occur.

次に、図17〜図20に示した回転電機の回転子の製造工程について説明する。
図24は本願の実施の形態2における回転子の製造方法の工程を示すフローチャート、図25A〜図25Fは成形金型を用いて積層鉄心ごとに樹脂絶縁部を射出成形する場合の手順を示す説明図、図26は成形金型を用いて絶縁用樹脂を積層鉄心に注入する場合の部分拡大断面図、図27は成形金型を用いて絶縁用樹脂を積層鉄心に注入する場合の絶縁用樹脂の流動状態を示す説明図である。
Next, the manufacturing process of the rotor of the rotary electric machine shown in FIGS. 17 to 20 will be described.
FIG. 24 is a flowchart showing the process of the rotor manufacturing method according to the second embodiment of the present application, and FIGS. 25A to 25F show a procedure in the case of injection molding a resin insulating portion for each laminated iron core using a molding die. FIG. 26 is a partially enlarged cross-sectional view when the insulating resin is injected into the laminated iron core using a molding die, and FIG. 27 is an insulating resin when the insulating resin is injected into the laminated iron core using a molding die. It is explanatory drawing which shows the flow state of.

図24のフローチャートに示すように、まず、鋼板をプレス成形して積層することにより図25A(図21)に示す積層鉄心15を形成する。そして、図25Aに示す積層鉄心15を成形金型17内に位置決め、固定する(図25Bおよび図25C)。その後、成形金型17内に絶縁用樹脂を射出成形し、積層鉄心15に樹脂絶縁部16が一体形成された図17〜図20に示す絶縁鉄心13を形成する(図25D)。射出成形が終了した後は、絶縁鉄心13を成形金型17から分離し(図25E)、不要樹脂部分を除去する(図25F)。この際、樹脂注入口痕が残る。次に、絶縁鉄心13にシャフト12を挿入し、この絶縁鉄心13に導体を巻回してコイル14を形成することで回転子が構成される。なお、その際、積層鉄心15にシャフト12を挿入した後に絶縁用樹脂を射出して樹脂絶縁部16を一体成形する方法と、積層鉄心15に絶縁用樹脂を射出して樹脂絶縁部16を一体成形した後にシャフト12を挿入する方法とがあるが、いずれの方法でもあってもよい。 As shown in the flowchart of FIG. 24, first, the laminated iron core 15 shown in FIG. 25A (FIG. 21) is formed by press-molding and laminating the steel plates. Then, the laminated iron core 15 shown in FIG. 25A is positioned and fixed in the molding die 17 (FIGS. 25B and 25C). After that, an insulating resin is injection-molded in the molding die 17 to form the insulated iron core 13 shown in FIGS. 17 to 20 in which the resin insulating portion 16 is integrally formed with the laminated iron core 15 (FIG. 25D). After the injection molding is completed, the insulating iron core 13 is separated from the molding die 17 (FIG. 25E), and the unnecessary resin portion is removed (FIG. 25F). At this time, a resin injection port mark remains. Next, the rotor is formed by inserting the shaft 12 into the insulated iron core 13 and winding a conductor around the insulated iron core 13 to form the coil 14. At that time, a method of injecting an insulating resin after inserting the shaft 12 into the laminated iron core 15 to integrally mold the resin insulating portion 16 and a method of injecting an insulating resin into the laminated iron core 15 to integrally integrate the resin insulating portion 16. There is a method of inserting the shaft 12 after molding, but any method may be used.

ここで、積層鉄心15に対して樹脂絶縁部16を射出成形する場合の方法について、さらに詳しく説明する。 Here, a method for injection molding the resin insulating portion 16 with respect to the laminated iron core 15 will be described in more detail.

図25Bおよび図25Cに示すように、まず、図25A(図21)に示した積層鉄心15を成形金型17内に入れて位置決めして、固定する。成形金型17は、積層鉄心15の鉄心中央部15b、ティース部15c、および鉄心外周部15dを密閉する金型内壁17aと、軸方向Xの上下それぞれの平坦な端面に設けられた樹脂注入口17bとを有する。 As shown in FIGS. 25B and 25C, first, the laminated iron core 15 shown in FIG. 25A (FIG. 21) is placed in the molding die 17, positioned, and fixed. The molding die 17 includes a mold inner wall 17a that seals the core central portion 15b, the teeth portion 15c, and the iron core outer peripheral portion 15d of the laminated iron core 15, and resin injection ports provided on the upper and lower flat end faces in the axial direction X. It has 17b and.

特に、この場合の成形金型17は、図25B〜図25E、図26に示すように、コイル占積率を向上させることを目的にして軸方向Xの側面に側面巻装部16dを形成するためのキャビティ、および、コイル14を形成する導体の最小屈曲半径を確保するために軸方向の端面に端面巻装部16cを形成するためのキャビティを有する。積層鉄心15の軸方向Xに沿って両端面よりも中央側において周方向に向けて肉厚となる膨出部16dを形成するための凹部17dが予め形成されている。また、図27に示すように樹脂注入口17bは、例えば積層鉄心15の鉄心中央部15bまたは鉄心外周部15dの軸方向Xの両端面の位置に任意に設けられ、樹脂注入口17bから絶縁用樹脂が注入される。 In particular, in the molding die 17 in this case, as shown in FIGS. 25B to 25E and 26, a side winding portion 16d is formed on the side surface in the axial direction X for the purpose of improving the coil space factor. It has a cavity for forming the end face winding portion 16c on the end face in the axial direction in order to secure the minimum bending radius of the conductor forming the coil 14. A recess 17d for forming a bulging portion 16d having a wall thickness in the circumferential direction is formed in advance on the central side of both end faces along the axial direction X of the laminated iron core 15. Further, as shown in FIG. 27, the resin injection port 17b is arbitrarily provided at the position of both end faces of the central portion 15b of the laminated iron core 15 or the outer peripheral portion 15d of the iron core in the axial direction X, and is used for insulation from the resin injection port 17b. The resin is injected.

図27中の矢印は、一例として上下の各樹脂注入口17bから絶縁用樹脂が注入された場合の流れる方向を示す。注入された絶縁用樹脂は、金型内壁17aと積層鉄心15との間の空間であるキャビティ内を流れ、充填後に硬化することで、積層鉄心15を覆って一体化された樹脂絶縁部16が形成される。よって、図27の場合、各樹脂注入口17bから絶縁用樹脂が注入されるため、積層鉄心15の軸方向Xに沿ってキャビティ内を流れ込む、軸方向Xにおける中央部分が樹脂流動末端部E2になる。 The arrows in FIG. 27 indicate, for example, the flow direction when the insulating resin is injected from the upper and lower resin injection ports 17b. The injected insulating resin flows through the cavity, which is the space between the inner wall 17a of the mold and the laminated iron core 15, and is cured after filling, so that the resin insulating portion 16 integrated to cover the laminated iron core 15 is formed. It is formed. Therefore, in the case of FIG. 27, since the insulating resin is injected from each resin injection port 17b, the central portion in the axial direction X that flows into the cavity along the axial direction X of the laminated iron core 15 becomes the resin flow end portion E2. Become.

絶縁用樹脂が積層鉄心15と金型内壁17aとの間のキャビティ内を流れる過程で、流動抵抗による圧力損失を受ける。圧力損失ΔPの大きさは前述の(式1)で示されており、絶縁用樹脂の流路断面における流路深さに相当する肉厚寸法Mが小さいほど抵抗が大きくなり、樹脂流動末端部で圧力が不足し易くなる。 In the process of the insulating resin flowing in the cavity between the laminated iron core 15 and the inner wall 17a of the mold, it receives a pressure loss due to flow resistance. The magnitude of the pressure loss ΔP is shown by the above-mentioned (Equation 1), and the smaller the wall thickness dimension M corresponding to the flow path depth in the flow path cross section of the insulating resin, the larger the resistance, and the resin flow end portion. The pressure tends to be insufficient.

しかしながら、この実施の形態2の場合、実施の形態1の場合と同様、成形金型17には、図25B〜図25E、図26(図22参照)に示したように、樹脂絶縁部16の絶縁用樹脂の樹脂流動末端部E2である軸方向Xに沿って両端面(樹脂絶縁部16形成後の図22の側面巻装部16dの厚さW11の箇所に相当)よりも中央側(樹脂絶縁部16形成後の図22の側面巻装部16dの厚さW12の箇所に相当)において周方向に向けて肉厚となる膨出部形成用の凹部17dが予め形成されているので、樹脂注入口17bから樹脂流動末端部E2に至るに従ってキャビティの流路深さMが次第に大きくなるため、圧力損失ΔPの低下が抑制される。その結果、樹脂流動末端部E2における充填不良が防止され、絶縁機能を向上させることができる。 However, in the case of the second embodiment, as in the case of the first embodiment, the molding die 17 has the resin insulating portion 16 as shown in FIGS. 25B to 25E and 26 (see FIG. 22). Along the axial direction X, which is the resin flow end portion E2 of the insulating resin, the center side (resin) from both end surfaces (corresponding to the portion of the side winding portion 16d in FIG. 22 after the resin insulating portion 16 is formed and the thickness W11). Since the recess 17d for forming the bulging portion, which becomes thicker in the circumferential direction, is formed in advance in the portion of the side winding portion 16d of FIG. 22 after the insulating portion 16 is formed, which corresponds to the thickness W12), the resin. Since the flow path depth M of the cavity gradually increases from the injection port 17b to the resin flow end portion E2, the decrease in the pressure loss ΔP is suppressed. As a result, poor filling at the resin flow end portion E2 can be prevented, and the insulating function can be improved.

そして、軸方向Xに沿う両端面のように肉厚の厚さW11が薄い側面巻装部6dの近傍に樹脂注入口17bを配置しても、上記に示した前述の圧力損失の(式1)により、端面巻装部16c(鉄心中央部15bおよび鉄心外周部15dの上を含む)に樹脂が流動しやすく、側面巻装部16dが絶縁用樹脂の樹脂流動末端部E2になる。 Then, even if the resin injection port 17b is arranged in the vicinity of the side winding portion 6d having a thin wall thickness W11 such as both end faces along the axial direction X, the above-mentioned pressure loss (Equation 1) shown above is obtained. ), The resin easily flows to the end face winding portion 16c (including the top of the iron core central portion 15b and the iron core outer peripheral portion 15d), and the side winding portion 16d becomes the resin flow end portion E2 of the insulating resin.

これに対して、図28に示す比較技術4の場合には、本願の実施の形態2のような周方向に向けて肉厚となる膨出部形成用の凹部17dは形成されておらず、キャビティ内の流路深さMが軸方向Xに沿って薄く均一になる金型内壁617aが形成されているので、樹脂注入口17bから樹脂流動末端部に至るに従って圧力損失ΔPが増加し、絶縁用樹脂の流動が停止し、樹脂の充填不良と絶縁機能の低下が生じ易い。 On the other hand, in the case of the comparative technique 4 shown in FIG. 28, the recess 17d for forming the bulging portion, which becomes thicker in the circumferential direction as in the second embodiment of the present application, is not formed. Since the mold inner wall 617a is formed so that the flow path depth M in the cavity becomes thin and uniform along the axial direction X, the pressure loss ΔP increases from the resin injection port 17b to the resin flow end portion, and insulation is provided. The flow of the resin for use stops, and poor resin filling and deterioration of the insulating function are likely to occur.

以上のように、この実施の形態2では、積層鉄心15と一体化された樹脂絶縁部16には、積層鉄心15の軸方向に沿って両端面の厚さW11よりも中央側において周方向Rに向けての厚さW12が肉厚となる膨出部16dが形成されているので、成形金型17を用いて絶縁用樹脂を射出成形する際の流動抵抗の増加に起因した圧力損失ΔPを低減することができ、絶縁用樹脂の充填性の向上と絶縁性能を向上することができる。 As described above, in the second embodiment, the resin insulating portion 16 integrated with the laminated iron core 15 has a circumferential direction R on the central side of the thickness W11 of both end surfaces along the axial direction of the laminated iron core 15. Since the bulging portion 16d having a thickness W12 toward the wall is formed, the pressure loss ΔP due to the increase in the flow resistance when the insulating resin is injection-molded using the molding die 17 is increased. It can be reduced, and the filling property of the insulating resin and the insulating performance can be improved.

しかも、巻装されたコイル14の中央が弾性変形により巻膨らむが、樹脂絶縁部16の膨出部16dは、その両端面の厚さW11よりも中央側において周方向Rに向けての厚さW12が肉厚となるように形成されているため、コイル14と膨出部16dとの間の隙間が小さくなり、巻装されるコイル14の周回数を減らすことがなく、コイル14の占積率の低下が抑えられる。このため、回転電機の性能を低下させることなく、絶縁機能を向上させることができ、小型で高効率、かつ十分な絶縁性能を有する回転電機の絶縁構造体を提供することが可能となる。 Moreover, the center of the wound coil 14 is wound and expanded due to elastic deformation, but the bulging portion 16d of the resin insulating portion 16 has a thickness in the circumferential direction R on the center side of the thickness W11 of both end surfaces thereof. Since the W12 is formed to be thick, the gap between the coil 14 and the bulging portion 16d becomes small, and the number of turns of the coil 14 to be wound is not reduced, and the coil 14 is occupied. The decrease in the rate is suppressed. Therefore, the insulation function can be improved without deteriorating the performance of the rotary electric machine, and it is possible to provide an insulating structure of the rotary electric machine having a small size, high efficiency, and sufficient insulation performance.

また、流動性が良い高価な絶縁用樹脂を選定する必要がなく、また、絶縁用樹脂の流動性を向上するために成形金型7の局所加熱を行う必要性もないので、材料費および設備費を抑制することで安価な回転電機を提供することができる。 Further, since it is not necessary to select an expensive insulating resin having good fluidity and it is not necessary to locally heat the molding die 7 in order to improve the fluidity of the insulating resin, the material cost and equipment By controlling the cost, it is possible to provide an inexpensive rotary electric machine.

ところで、図25B〜図25E、図26に示したように、成形金型17の軸方向Xの両端にそれぞれ樹脂注入口17bを設けると、樹脂流動末端部E2が側面巻装部16dの軸方向Xに沿った中央にできるが、樹脂絶縁部16の形状により、絶縁用樹脂の流れ方と樹脂流動末端部E2の位置が変化する。 By the way, as shown in FIGS. 25B to 25E and 26, when resin injection ports 17b are provided at both ends of the molding die 17 in the axial direction X, the resin flow end portion E2 is in the axial direction of the side winding portion 16d. Although it is formed in the center along X, the flow of the insulating resin and the position of the resin flow end portion E2 change depending on the shape of the resin insulating portion 16.

そこで、樹脂絶縁部16の膨出部16dは、軸方向Xに沿ってその両端面の厚さW11から中央側において次第に周方向Rに厚さW12の肉厚となるように半紡錘状に形成したものに限らず、例えば図29に示すように、軸方向Xに沿ってその両端面の厚さW11よりも中央側において周方向Rに向けて厚さW12を有する断面が台形状に形成された膨出部16d、または、図30に示すように、軸方向Xに沿ってその両端面の厚さW11よりも中央側において周方向Rに向けて厚さW12を有する断面が突起状に形成された膨出部16dが形成されるように、成形金型17の凹部17dの形状を変更することで、成形金型17を用いて絶縁用樹脂を射出成形する際の流動抵抗の増加を局部的に抑えて絶縁機能の改善を図ることが可能である。 Therefore, the bulging portion 16d of the resin insulating portion 16 is formed in a semi-spindle shape so as to have a wall thickness of W12 gradually in the circumferential direction R from the thickness W11 of both end surfaces thereof along the axial direction X. For example, as shown in FIG. 29, a cross section having a thickness W12 in the circumferential direction R on the central side of the thickness W11 of both end faces thereof is formed in a trapezoidal shape. As shown in FIG. 30 or the bulging portion 16d, a cross section having a thickness W12 in the circumferential direction R is formed in a protruding shape on the central side of the thickness W11 of both end surfaces thereof along the axial direction X. By changing the shape of the recess 17d of the molding die 17 so that the formed bulging portion 16d is formed, the increase in flow resistance when injection molding the insulating resin using the molding die 17 is locally increased. It is possible to improve the insulation function by suppressing the target.

また、成形金型17の樹脂注入口17bを、例えば軸方向Xの片側1ヵ所にのみ設ける場合には、樹脂流動末端部E2が側面巻装部(膨出部)16dの軸方向Xの中央位置からずれる可能性がある。その場合にも、図29に示した断面が台形状の膨出部16d、または、図30に示した断面が突起状に形成された膨出部16dの位置を軸方向Xの中央位置から適宜ずらして形成することで、同様の絶縁機能の向上効果が得られる。 Further, when the resin injection port 17b of the molding die 17 is provided at only one place on one side in the axial direction X, for example, the resin flow end portion E2 is at the center of the side winding portion (bulging portion) 16d in the axial direction X. It may shift from the position. Also in that case, the position of the bulging portion 16d having a trapezoidal cross section shown in FIG. 29 or the bulging portion 16d having a protruding cross section shown in FIG. 30 is appropriately positioned from the central position in the axial direction X. By forming them in a staggered manner, the same effect of improving the insulating function can be obtained.

なお、この実施の形態2の回転電機の絶縁構造体は、サーボモータ用、燃料噴射バルブ開閉タイミング制御ユニット、空調用ファンモータ、車載用燃料ポンプユニット、巻上機用などの各種の回転電機の回転子に適用することができる。 The insulating structure of the rotary electric machine according to the second embodiment is of various rotary electric machines for servo motors, fuel injection valve opening / closing timing control units, air conditioning fan motors, in-vehicle fuel pump units, hoisting machines, and the like. It can be applied to rotors.

なお、上記実施の形態1および実施の形態2においては、コイルが巻装される積層鉄心5、15の周方向Rの長さを、軸方向Xにおいていずれの位置でも同一の長さにて形成する例を示したが、これに限られることはなく、例えば図31から図33に示すように、コイルの巻装される箇所の積層鉄心5、15の周方向Rの長さを、軸方向Xの両端側の周方向Rの長さH1より、軸方向Xの中央側において周方向Rの長さH2が短く形成された箇所を形成する場合も考えられる。このように形成すれば、一体成形での樹脂流動末端部E1、E2に該当する部位が、積層鉄心5、15の周方向Rにおいてへこんだ位置となるため、絶縁用樹脂の粘度が増加する樹脂流動末端部E1、E2の充填性が向上し、樹脂絶縁部の絶縁性能を向上できる。 In the first and second embodiments, the lengths of the laminated iron cores 5 and 15 around which the coils are wound in the circumferential direction R are formed to have the same length at any position in the axial direction X. However, the present invention is not limited to this, and for example, as shown in FIGS. 31 to 33, the length of the circumferential direction R of the laminated iron cores 5 and 15 at the portion where the coil is wound is set in the axial direction. It is also conceivable to form a portion where the length H2 in the circumferential direction R is shorter than the length H1 in the circumferential direction R on both end sides of the X on the central side of the axial direction X. When formed in this way, the portions corresponding to the resin flow end portions E1 and E2 in the integral molding are dented positions in the circumferential direction R of the laminated iron cores 5 and 15, so that the viscosity of the insulating resin increases. The filling properties of the flow end portions E1 and E2 are improved, and the insulation performance of the resin insulating portion can be improved.

上記のように構成された実施の形態2の回転電機の絶縁構造体および回転電機の絶縁構造体の製造方法によれば、上記実施の形態1と同様の効果を奏するのはもちろんのこと、前記積層鉄心の前記コイルが巻装される箇所は、軸方向の両端側の周方向の長さよりも、軸方向の中央側において周方向の長さが短く形成された箇所を有するので、
絶縁用樹脂の充填性をさらに向上できる。
According to the method for manufacturing the insulating structure of the rotating electric machine and the insulating structure of the rotating electric machine according to the second embodiment configured as described above, it goes without saying that the same effect as that of the first embodiment is obtained. Since the portion of the laminated iron core around which the coil is wound has a portion formed in which the length in the circumferential direction is shorter on the central side in the axial direction than the length in the circumferential direction on both end sides in the axial direction.
The filling property of the insulating resin can be further improved.

実施の形態3.
図34は、本願の実施の形態3の回転電機の絶縁構造体として固定子に適用した場合の半周分である6個のティース分を示す斜視図、図35は図34の固定子を構成する分割固定子の一つを示す斜視図、図36は図35の分割固定子を構成する絶縁分割鉄心を示す斜視図である。また、図37は図36の絶縁分割鉄心を周方向から見た正面図、図38は図37の絶縁分割鉄心をC−C線に沿って切断した場合の斜視図である。また、図39は図36の絶縁分割鉄心を構成する積層鉄心の斜視図、図40は実施の形態3において絶縁分割鉄心にコイルが巻装された状態を示す断面図である。なお、ここでは固定子または分割固定子の軸方向を符号X、径方向を符号D、周方向を符号Rでそれぞれ示すものとする。
Embodiment 3.
FIG. 34 is a perspective view showing six teeth, which is a half circumference when applied to a stator as an insulating structure of a rotary electric machine according to a third embodiment of the present application, and FIG. 35 constitutes the stator of FIG. 34. A perspective view showing one of the split stators, FIG. 36 is a perspective view showing an insulating split iron core constituting the split stator of FIG. 35. Further, FIG. 37 is a front view of the insulated split iron core of FIG. 36 as viewed from the circumferential direction, and FIG. 38 is a perspective view of the case where the insulated split iron core of FIG. 37 is cut along the CC line. Further, FIG. 39 is a perspective view of the laminated iron core constituting the insulated divided iron core of FIG. 36, and FIG. 40 is a cross-sectional view showing a state in which a coil is wound around the insulated divided iron core in the third embodiment. Here, it is assumed that the axial direction of the stator or the split stator is indicated by reference numeral X, the radial direction is indicated by reference numeral D, and the circumferential direction is indicated by reference numeral R.

この実施の形態3の固定子101は、回転電機の周方向Rに沿って12個のティース分の分割固定子102を円環状に連結配置して構成されている。この場合の各々の分割固定子102は、絶縁分割鉄心103とコイル104とからなる。コイル104は、例えば銅電線、アルミ電線などの導体を所望の回数だけ絶縁分割鉄心103に巻回したものである。なお、ここではティースの数を12個としているが、これに限らず、回転電機の性能、構造に合わせて任意に設計することができる。 The stator 101 of the third embodiment is configured by connecting the dividing stators 102 for 12 teeth in an annular shape along the circumferential direction R of the rotary electric machine. In this case, each of the split stators 102 is composed of an insulating split iron core 103 and a coil 104. The coil 104 is formed by winding a conductor such as a copper electric wire or an aluminum electric wire around an insulating divided iron core 103 a desired number of times. Although the number of teeth is set to 12 here, the number is not limited to this, and it can be arbitrarily designed according to the performance and structure of the rotary electric machine.

絶縁分割鉄心103は、図36〜図38に示すように、積層鉄心105と樹脂絶縁部106とからなる。
ここに、積層鉄心105は、図39に示すように、厚み寸法が0.1mm〜3.0mm程度の電磁鋼板、または珪素鋼板からなる所定枚数の鋼板を所望の軸長寸法L100に合わせて積層して構成されている。そして、積層鉄心5は、周方向Rに沿って平面視で扇状に広がるバックヨーク部105a、このバックヨーク部105aから固定子101の中心方向に突出するティース部105b、およびティース部105bから周方向Rに沿って延びる突出部105cを有する。
As shown in FIGS. 36 to 38, the insulating divided iron core 103 includes a laminated iron core 105 and a resin insulating portion 106.
Here, as shown in FIG. 39, the laminated iron core 105 is formed by laminating a predetermined number of steel sheets made of an electromagnetic steel sheet or a silicon steel sheet having a thickness dimension of about 0.1 mm to 3.0 mm in accordance with a desired axial length dimension L100. It is composed of. The laminated iron core 5 has a back yoke portion 105a that extends in a fan shape in a plan view along the circumferential direction R, a teeth portion 105b that protrudes from the back yoke portion 105a toward the center of the stator 101, and a teeth portion 105b in the circumferential direction. It has a protrusion 105c extending along R.

また、樹脂絶縁部106は、例えばPPS、LCP、PBT、POM、PET、PA、SPSなどの熱可塑性樹脂、あるいはエポキシ樹脂、またはBMC、SMCなどの熱硬化性樹脂を用いて射出成形することで形成されている。 Further, the resin insulating portion 106 is injection-molded using, for example, a thermoplastic resin such as PPS, LCP, PBT, POM, PET, PA, SPS, an epoxy resin, or a thermosetting resin such as BMC, SMC. It is formed.

そして、樹脂絶縁部106は、積層鉄心105に対して軸方向Xの上下2方向から組み立てられることで、積層鉄心105のティース部105b、バックヨーク部105aの軸方向Xの両端面、および突出部105cの軸方向Xの両端面をそれぞれ覆うように形成されている。具体的には、バックヨーク部105aおよび突出部105cの軸方向Xの両端面をそれぞれ覆う樹脂絶縁部は、積層鉄心5の軸方向の端面からそれぞれ所定長さL101分だけ突出した鍔部106a、106bとして形成されている。各鍔部106a、106bは、コイル104の巻装位置よりもさらに軸方向Xに突出することによりコイル104の絶縁状態を確実に保つように設定されている。 The resin insulating portion 106 is assembled from two directions above and below the axial direction X with respect to the laminated iron core 105, so that the teeth portion 105b of the laminated iron core 105, both end faces of the back yoke portion 105a in the axial direction X, and the protruding portions. It is formed so as to cover both end faces of the axial direction X of 105c. Specifically, the resin insulating portions covering both end faces of the back yoke portion 105a and the protruding portion 105c in the axial direction X are flanged portions 106a protruding from the axial end faces of the laminated iron core 5 by a predetermined length L101, respectively. It is formed as 106b. The flange portions 106a and 106b are set so as to reliably maintain the insulated state of the coil 104 by projecting further in the axial direction X than the winding position of the coil 104.

また、コイル104が巻装されるティース部105bの表面を覆う樹脂絶縁部は、ティース部105bの軸方向Xの両端面を覆ってそれぞれ形成された端面巻装部106cと、ティース部105bの周方向Rに対面して軸方向Xに沿って伸びる側面部分を覆って形成された側面巻装部106dとからなる。側面巻装部106dは、自ティース部に巻装するコイルと周方向Rに隣接する他ティース部のコイルとの干渉を避け、かつ、自ティース部に巻装するコイルのコイル占積率を向上させるため、厚さを薄く、軸方向Xに長く形成することが望まれる。そして、端面巻装部106cは、コイル104を形成する導体の最小屈曲半径を害さないよう構成され、その厚さは、図40に示すように、(端面巻装部106cの最大厚さT111)>(側面巻装部106dの最大厚さW102)となるように形成される。樹脂絶縁部106には、積層鉄心105の軸方向Xの端面に形成された箇所に樹脂注入口痕106eを備える。 Further, the resin insulating portion covering the surface of the teeth portion 105b around which the coil 104 is wound covers the end face winding portions 106c formed by covering both end faces of the teeth portion 105b in the axial direction X and the circumference of the teeth portion 105b. It is composed of a side winding portion 106d formed so as to cover a side surface portion extending along the axial direction X facing the direction R. The side winding portion 106d avoids interference between the coil wound around the own teeth portion and the coil of another teeth portion adjacent to the circumferential direction R, and improves the coil space factor of the coil wound around the own teeth portion. Therefore, it is desired to form the thickness thin and long in the axial direction X. The end face winding portion 106c is configured so as not to impair the minimum bending radius of the conductor forming the coil 104, and its thickness is as shown in FIG. 40 (maximum thickness T111 of the end face winding portion 106c). > (Maximum thickness W102 of the side winding portion 106d). The resin insulating portion 106 is provided with a resin injection port mark 106e at a portion formed on the end surface of the laminated iron core 105 in the axial direction X.

このように、積層鉄心105の少なくともコイル104が巻回されるティース部105bの表面部を覆って樹脂絶縁部106(すなわち、端面巻装部106cと側面巻装部106d)が形成されることにより、絶縁分割鉄心103とコイル104とが電気的に絶縁されて回転電機の所要の特性を発揮することができる。 In this way, the resin insulating portion 106 (that is, the end surface winding portion 106c and the side winding portion 106d) is formed by covering the surface portion of the teeth portion 105b around which at least the coil 104 of the laminated iron core 105 is wound. The insulating split iron core 103 and the coil 104 are electrically insulated so that the required characteristics of the rotary electric machine can be exhibited.

さらに、この実施の形態3の場合(図40参照)、端面巻装部106cの厚さT111は全面で均一であるが、側面巻装部106dの厚さは、軸方向Xに沿う両端面の厚さW101よりも中央側において周方向Rに向けての厚さW102が肉厚となるように膨出部として形成されている。よって、上述した、厚さT111が端面巻装部106cの最大厚さT111となり、厚さW102が側面巻装部106dの最大厚さW102となる。すなわち、この場合の側面巻装部である膨出部106dは、軸方向Xの中央を頂点として両端面に向かって厚さが次第に減少するように断面が半紡錘状に形成されている。しかも、この場合、膨出部106dは、図40に示すように、膨出部106dの上にコイル104が巻装された場合にティース部105bの周方向Rに対面する表面を基準にコイル104との間に生じる巻膨れ隙間G3よりも小さい範囲内で周方向Rに向けて膨出するように形成されている。 Further, in the case of the third embodiment (see FIG. 40), the thickness T111 of the end face winding portion 106c is uniform over the entire surface, but the thickness of the side winding portion 106d is the thickness of both end faces along the axial direction X. It is formed as a bulging portion so that the thickness W102 in the circumferential direction R becomes thicker on the central side than the thickness W101. Therefore, the thickness T111 described above is the maximum thickness T111 of the end face winding portion 106c, and the thickness W102 is the maximum thickness W102 of the side winding portion 106d. That is, the bulging portion 106d, which is the side winding portion in this case, is formed in a semi-spindle shape so that the thickness gradually decreases toward both end faces with the center of the axial direction X as the apex. Moreover, in this case, as shown in FIG. 40, the bulging portion 106d is the coil 104 with reference to the surface of the teeth portion 105b facing the circumferential direction R when the coil 104 is wound on the bulging portion 106d. It is formed so as to bulge in the circumferential direction R within a range smaller than the winding swelling gap G3 generated between the two.

積層鉄心105のティース部105bの表面部を覆う端面巻装部106cと側面巻装部106dに対して、弾性体である銅電線、アルミ電線などの導体を巻回してコイル104を形成する場合、導体の弾性により直線に巻くことができず、端面巻装部106cと側面巻装部106dにおいて円弧状に膨れて配置される。このため、図40に示すように、特にティース部105bの周方向Rに対面する表面を基準にコイル104との間に巻膨れ隙間G3が生じるが、この実施の形態3では、上記のように側面巻装部としての膨出部106dは、巻膨れ隙間G3よりも小さい範囲内で周方向Rに向けて膨出するように形成されているので、膨出部106dの周方向Rの厚さを可能な限り大きくして絶縁性を確保できるとともに、巻装されるコイル104の周回数を減らす必要性がない。すなわち、膨出部106dが形成されても、コイル104のコイル占積率を低下させることはない。そのため、回転電機の性能を徒に低下させることなく、絶縁機能を向上させることができ、効率の良い回転電機を得ることができる。 When forming a coil 104 by winding conductors such as copper electric wires and aluminum electric wires, which are elastic bodies, around the end face winding portion 106c and the side winding portion 106d covering the surface portion of the tooth portion 105b of the laminated iron core 105. Due to the elasticity of the conductor, it cannot be wound in a straight line, and is bulged and arranged in an arc shape at the end face winding portion 106c and the side winding portion 106d. Therefore, as shown in FIG. 40, a winding swelling gap G3 is generated between the tooth portion 105b and the coil 104 with reference to the surface facing the circumferential direction R. In the third embodiment, as described above. Since the bulging portion 106d as the side winding portion is formed so as to bulge in the circumferential direction R within a range smaller than the winding bulging gap G3, the thickness of the bulging portion 106d in the circumferential direction R Insulation can be ensured by making the coil 104 as large as possible, and there is no need to reduce the number of turns of the coil 104 to be wound. That is, even if the bulging portion 106d is formed, the coil space factor of the coil 104 is not lowered. Therefore, the insulation function can be improved without significantly deteriorating the performance of the rotary electric machine, and an efficient rotary electric machine can be obtained.

これに対して、図41に示す比較技術5の場合には、積層鉄心105のティース部105bの表面部を覆う樹脂絶縁部106の内、特に積層鉄心105の軸方向Xの両端に形成される端面巻装部606cが、軸方向Xに膨出するように形成されているため、コイル104と端面巻装部606cとの間の隙間G101が狭くなる点で異なる。 On the other hand, in the case of the comparative technique 5 shown in FIG. 41, the resin insulating portions 106 covering the surface portion of the teeth portion 105b of the laminated iron core 105 are formed at both ends of the laminated iron core 105 in the axial direction X. Since the end face winding portion 606c is formed so as to bulge in the axial direction X, the difference is that the gap G101 between the coil 104 and the end face winding portion 606c is narrowed.

このように、図41に示す比較技術5の場合、導体による巻回を行うと、端面巻装部606cに設置された樹脂注入口痕606eである突起とコイル104とが接触し、電気的に絶縁する機能が低下する。本願では図40のように端面巻装部106cは平坦部を有しており、コイル104と端面巻装部106cとの間に隙間G10を有しているため、樹脂注入口痕106eとコイル104とが接触しないため、比較技術5で発生しうる絶縁性能の低下は生じない。 As described above, in the case of the comparative technique 5 shown in FIG. 41, when the coil is wound by the conductor, the protrusion, which is the resin injection port mark 606e installed in the end face winding portion 606c, comes into contact with the coil 104 and electrically. The function of insulating is reduced. In the present application, as shown in FIG. 40, the end face winding portion 106c has a flat portion and has a gap G10 between the coil 104 and the end face winding portion 106c, so that the resin injection port mark 106e and the coil 104 Since they do not come into contact with each other, there is no deterioration in insulation performance that may occur in Comparative Technique 5.

次に、図34に示した回転電機の固定子101の製造工程について説明する。
図42は本願の実施の形態3における固定子の製造方法の工程を示すフローチャート、図43A〜図43Cは固定子の組み立て手順を示す説明図、図44A〜図44Eは成形金型を用いて樹脂絶縁部を射出成形する場合の手順を示す説明図、図45は成形金型を用いて絶縁用樹脂を注入する場合の部分拡大断面図、図46は成形金型を用いて絶縁用樹脂を注入する場合の絶縁用樹脂の流動状態を示す説明図である。
Next, the manufacturing process of the stator 101 of the rotary electric machine shown in FIG. 34 will be described.
42 is a flowchart showing the process of the stator manufacturing method according to the third embodiment of the present application, FIGS. 43A to 43C are explanatory views showing an assembly procedure of the stator, and FIGS. 44A to 44E are resins using a molding die. Explanatory drawing showing a procedure in the case of injection molding of an insulating part, FIG. 45 is a partially enlarged cross-sectional view when injecting an insulating resin using a molding die, and FIG. It is explanatory drawing which shows the flow state of the insulating resin in the case of this.

図42のフローチャートに示すように、まず、鋼板をプレス成形して積層することにより積層鉄心105を複数個形成する。次に、成形金型107を軸方向Xの上下方向に移動させて(図44A)、所定に位置に設置する(図44B)。次に、成形金型107内に絶縁用樹脂を射出成形する(図44C)。射出成形が終了した後は、成形金型107を軸方向Xの上下方向に離反させ、樹脂絶縁部106を取り出す(図44D)。次に、不要樹脂部分を除去する(図44E)。この際、樹脂注入口痕106eが残る。 As shown in the flowchart of FIG. 42, first, a plurality of laminated iron cores 105 are formed by press-molding and laminating steel plates. Next, the molding die 107 is moved in the vertical direction in the axial direction X (FIG. 44A) and installed at a predetermined position (FIG. 44B). Next, the insulating resin is injection-molded in the molding die 107 (FIG. 44C). After the injection molding is completed, the molding die 107 is separated in the vertical direction in the axial direction X, and the resin insulating portion 106 is taken out (FIG. 44D). Next, the unnecessary resin portion is removed (FIG. 44E). At this time, the resin injection port mark 106e remains.

次に、積層鉄心105に樹脂絶縁部106を軸方向Xの上下2方向から組み立てられ(図43A)、絶縁分割鉄心103が形成される(図43B、図36)。次に、この絶縁分割鉄心103に導体を巻回してコイル104を形成し分割固定子102を形成する(図43C、図35)。そして、所定数の分割固定子102を周方向Rに沿って円環状に連結配置することで固定子101が構成される。 Next, the resin insulating portion 106 is assembled to the laminated iron core 105 from two directions above and below the axial direction X (FIG. 43A), and the insulating divided iron core 103 is formed (FIGS. 43B and 36). Next, a conductor is wound around the insulating split iron core 103 to form a coil 104 to form a split stator 102 (FIGS. 43C and 35). Then, the stator 101 is configured by connecting and arranging a predetermined number of the dividing stators 102 in an annular shape along the circumferential direction R.

ここで、積層鉄心105ごとに樹脂絶縁部106を射出成形する場合の方法について、さらに詳しく説明する。 Here, a method for injection molding the resin insulating portion 106 for each laminated iron core 105 will be described in more detail.

図44Aおよび図44Bに示すように、成形金型107を密閉することで樹脂絶縁部106を形成するためのキャビティが形成される。成形金型107は、樹脂絶縁部106を形成するための金型内壁107aと、軸方向Xの端面である平坦面に設けられた樹脂注入口107bとを有する。 As shown in FIGS. 44A and 44B, the cavity for forming the resin insulating portion 106 is formed by sealing the molding die 107. The molding die 107 has a mold inner wall 107a for forming the resin insulating portion 106, and a resin injection port 107b provided on a flat surface which is an end surface in the axial direction X.

特に、この実施の形態3に適用される成形金型107は、図44B〜図44E、図45に示すように、コイル占積率を向上させることを目的にして軸方向Xの側面に側面巻装部106dを形成するためのキャビティ、および、コイル104を形成する導体の最小屈曲半径を確保するために軸方向の端面に端面巻装部106cを形成するためのキャビティを有する。成形金型107には組付けられる積層鉄心5の軸方向Xに沿った中央部に相当し、積層鉄心5の軸方向Xに沿って両端面よりも中央側において周方向に向けて肉厚となる膨出部106dを形成するための凹部107dが予め形成されている。また、図46に示すように、樹脂注入口107bは、例えば樹脂絶縁部106の鍔部106bまたは端面巻装部106cを形成する位置などに任意に設けられ、樹脂注入口107bから絶縁用樹脂が注入される。 In particular, the molding die 107 applied to the third embodiment is side-wound on the side surface in the axial direction X for the purpose of improving the coil space factor, as shown in FIGS. 44B to 44E and 45. It has a cavity for forming the mounting portion 106d and a cavity for forming the end face winding portion 106c on the end face in the axial direction in order to secure the minimum bending radius of the conductor forming the coil 104. Corresponding to the central portion of the laminated iron core 5 assembled to the molding die 107 along the axial direction X, the wall thickness is increased in the circumferential direction on the central side of both end faces along the axial direction X of the laminated iron core 5. A recess 107d for forming the bulging portion 106d is formed in advance. Further, as shown in FIG. 46, the resin injection port 107b is arbitrarily provided at a position where, for example, the flange portion 106b or the end face winding portion 106c of the resin insulating portion 106 is formed, and the insulating resin can be removed from the resin injection port 107b. Infused.

図46中の矢印は、一例として上部の樹脂注入口107bから絶縁用樹脂が注入された場合の流れる方向を示す。注入された絶縁用樹脂は、成形金型107の金型内壁107aの空間であるキャビティ内を流れ、充填後に硬化することで、樹脂絶縁部106の上部側が形成される。よって、図46の場合、樹脂注入口107bから絶縁用樹脂が注入されるため、軸方向Xに沿ってキャビティ内を流れ込む、軸方向Xにおける中央部分に相当する箇所が樹脂流動末端部E3になる。なお、当然のことながら樹脂絶縁部106の下部側も、上部側と同様に形成される。 The arrow in FIG. 46 indicates, for example, the flow direction when the insulating resin is injected from the upper resin injection port 107b. The injected insulating resin flows through the cavity which is the space of the inner wall 107a of the molding die 107, and is cured after filling to form the upper side of the resin insulating portion 106. Therefore, in the case of FIG. 46, since the insulating resin is injected from the resin injection port 107b, the portion corresponding to the central portion in the axial direction X that flows into the cavity along the axial direction X becomes the resin flow end portion E3. .. As a matter of course, the lower side of the resin insulating portion 106 is also formed in the same manner as the upper side.

絶縁用樹脂が成形金型107の金型内壁107aのキャビティ内を流れる過程で、流動抵抗による圧力損失を受ける。ここで、図13に示すように、キャビティ内の流路深さをM、流路幅をN、流路長さをL、比例乗数をK、流量をQとし、絶縁用樹脂を注入する始端の圧力をPin、終端の圧力をPoutとすると、圧力損失ΔP(=Pin−Pout)は、前記(式1)で示される。 In the process of the insulating resin flowing through the cavity of the mold inner wall 107a of the molding mold 107, it receives a pressure loss due to the flow resistance. Here, as shown in FIG. 13, the flow path depth in the cavity is M, the flow path width is N, the flow path length is L, the proportional multiplier is K, the flow rate is Q, and the starting end for injecting the insulating resin. The pressure loss ΔP (= Pin-Pout) is represented by the above (Equation 1), where Pin is the pressure of and Pout is the end pressure.

上記(式1)から分かるように、絶縁用樹脂の流路断面におけるキャビティの流路深さMが小さいほど流動抵抗が大きくなって圧力損失ΔPが大きくなる。つまり、絶縁用樹脂がキャビティ内を流れる際、キャビティ内の流路深さMが小さいと、図46に示した樹脂注入口7bから樹脂流動末端部E3に至るまでの圧力損失ΔPが大きくなり、樹脂流動末端部E1で圧力が不足し易くなる。そして、樹脂流動末端部E3で圧力が不足すると絶縁用樹脂の流動が停止し、絶縁用樹脂の充填不良と絶縁機能の低下が生じる。このことは、成形金型107の金型内壁107aの密閉されたキャビティに絶縁用樹脂が注入され、樹脂絶縁部106が形成された後の結果から見ると、樹脂絶縁部106の厚さ(流路深さMに相当)が薄い程、絶縁用樹脂の樹脂流動末端部の充填不良と絶縁機能の低下が生じ易いことを意味する。 As can be seen from the above (Equation 1), the smaller the flow path depth M of the cavity in the flow path cross section of the insulating resin, the larger the flow resistance and the larger the pressure loss ΔP. That is, when the insulating resin flows through the cavity, if the flow path depth M in the cavity is small, the pressure loss ΔP from the resin injection port 7b shown in FIG. 46 to the resin flow end portion E3 becomes large. The pressure tends to be insufficient at the resin flow end portion E1. When the pressure is insufficient at the resin flow end portion E3, the flow of the insulating resin is stopped, resulting in poor filling of the insulating resin and deterioration of the insulating function. This is because the thickness of the resin insulating portion 106 (flow) is seen from the result after the insulating resin is injected into the sealed cavity of the mold inner wall 107a of the molding mold 107 and the resin insulating portion 106 is formed. The thinner the path depth (corresponding to the path depth M), the more likely it is that poor filling of the resin flow end portion of the insulating resin and deterioration of the insulating function occur.

この実施の形態3の場合、成形金型107には、図44A〜図44E、図45(図40参照)に示したように、樹脂絶縁部106の絶縁用樹脂の樹脂流動末端部E3である軸方向Xに沿って端面(樹脂絶縁部116形成後の図40の側面巻装部116dの厚さW101の箇所に相当)よりも中央側(樹脂絶縁部116形成後の図40の側面巻装部116dの厚さW102の箇所に相当)において周方向Rに向けて肉厚となる膨出部形成用の凹部107dが予め形成されている。従って、樹脂注入口107bから樹脂流動末端部E3に至るに従ってキャビティの流路深さMが次第に大きくなるため、圧力損失ΔPの低下が抑制される。その結果、樹脂流動末端部E3における充填不良が防止され、絶縁機能を向上させることができる。 In the case of the third embodiment, as shown in FIGS. 44A to 44E and 45 (see FIG. 40), the molding die 107 has a resin flow end portion E3 of the insulating resin of the resin insulating portion 106. Along the axial direction X, the side surface (corresponding to the portion of the thickness W101 of the side winding portion 116d in FIG. 40 after the resin insulating portion 116 is formed) is closer to the center side (the side winding in FIG. 40 after the resin insulating portion 116 is formed). A recess 107d for forming a bulging portion, which becomes thicker in the circumferential direction R, is formed in advance in the portion 116d (corresponding to the portion of the thickness W102). Therefore, since the flow path depth M of the cavity gradually increases from the resin injection port 107b to the resin flow end portion E3, the decrease in the pressure loss ΔP is suppressed. As a result, poor filling at the resin flow end portion E3 can be prevented, and the insulating function can be improved.

そして、軸方向Xに沿う両端面のように肉厚の厚さW101が薄い側面巻装部106dの近傍に樹脂注入口107bを配置しても、上記に示した圧力損失の(式1)により、端面巻装部106c、バックヨーク部105a上の鍔部106a、突出部105c上の鍔部106bに絶縁用樹脂が流動しやすく、側面巻装部106dが絶縁用樹脂の樹脂流動末端部E3になる。 Then, even if the resin injection port 107b is arranged in the vicinity of the side winding portion 106d having a thin wall thickness W101 such as both end faces along the axial direction X, the pressure loss (Equation 1) shown above causes the pressure loss. , The insulating resin easily flows to the end face winding portion 106c, the flange portion 106a on the back yoke portion 105a, and the flange portion 106b on the protruding portion 105c, and the side winding portion 106d becomes the resin flow end portion E3 of the insulating resin. Become.

これに対して、図47に示す比較技術5の場合には、本願の実施の形態3のような軸方向の上下2方向から樹脂絶縁部を組み立てて形成されているが、2つの樹脂絶縁部は軸方向Xにおいて離反されており、嵌合する構造になっていない。よって、沿面距離を延長して絶縁性能を向上させることができない。 On the other hand, in the case of the comparative technique 5 shown in FIG. 47, the resin insulating portions are assembled from two vertical directions as in the third embodiment of the present application, but the two resin insulating portions are formed. Is separated in the axial direction X and does not have a structure to be fitted. Therefore, the creepage distance cannot be extended to improve the insulation performance.

以上のように、この実施の形態3では、樹脂絶縁部106には、組み立てられる積層鉄心105の中央部に相当する部位おいて、積層鉄心105の軸方向Xに沿って両端面の厚さW101よりも中央側において周方向Rに向けての厚さW102が肉厚となる膨出部106dが形成されているので、成形金型107を用いて絶縁用樹脂を射出成形する際の流動抵抗の増加に起因した圧力損失ΔPを低減することができ、絶縁用樹脂の充填性の向上と絶縁性能を向上することができる。 As described above, in the third embodiment, the resin insulating portion 106 has the thickness W101 of both end surfaces along the axial direction X of the laminated iron core 105 at the portion corresponding to the central portion of the laminated iron core 105 to be assembled. Since the bulging portion 106d having a wall thickness W102 in the circumferential direction R is formed on the central side of the molding die 107, the flow resistance when the insulating resin is injection-molded using the molding die 107 is formed. The pressure loss ΔP due to the increase can be reduced, and the filling property of the insulating resin and the insulating performance can be improved.

しかも、巻装されるコイル104の中央が弾性変形により巻膨らむが、樹脂絶縁部106の膨出部106dは、その両端面の厚さW101よりも中央側において周方向Rに向けての厚さW102が肉厚となるように形成されているため、コイル104と膨出部106dとの間の隙間が小さくなり、巻装されるコイル104の周回数を減らすことがなく、コイル104の占積率の低下が抑えられる。このため、回転電機の性能を低下させることなく、絶縁機能を向上させることができ、小型で高効率、かつ十分な絶縁性能を有する回転電機の絶縁構造体を提供することが可能となる。 Moreover, the center of the coil 104 to be wound swells due to elastic deformation, but the bulging portion 106d of the resin insulating portion 106 has a thickness in the circumferential direction R on the center side of the thickness W101 of both end faces thereof. Since the W102 is formed to be thick, the gap between the coil 104 and the bulging portion 106d becomes small, and the number of turns of the coil 104 to be wound is not reduced, and the coil 104 is occupied. The decrease in the rate is suppressed. Therefore, the insulation function can be improved without deteriorating the performance of the rotary electric machine, and it is possible to provide an insulating structure of the rotary electric machine having a small size, high efficiency, and sufficient insulation performance.

また、流動性が良い高価な絶縁用樹脂を選定する必要がなく、また、絶縁用樹脂の流動性を向上するために成形金型107の局所加熱を行う必要性もないので、材料費および設備費を抑制することで安価な回転電機を提供することができる。 Further, since it is not necessary to select an expensive insulating resin having good fluidity and it is not necessary to locally heat the molding die 107 in order to improve the fluidity of the insulating resin, the material cost and equipment By controlling the cost, it is possible to provide an inexpensive rotary electric machine.

ところで、図44A〜図44E、図45に示したように、成形金型107の軸方向Xの端面に樹脂注入口107bを設けると、樹脂流動末端部E3が側面巻装部106dの軸方向Xに沿った中央部分にできるが、樹脂絶縁部106の形状によっては絶縁用樹脂の流れ方と樹脂流動末端部E3の位置が変化する。 By the way, as shown in FIGS. 44A to 44E and 45, when the resin injection port 107b is provided on the end surface of the molding die 107 in the axial direction X, the resin flow end portion E3 becomes the axial direction X of the side winding portion 106d. Although it is formed in the central portion along the above, the flow of the insulating resin and the position of the resin flow end portion E3 change depending on the shape of the resin insulating portion 106.

そこで、樹脂絶縁部106の膨出部106dは、軸方向Xに沿ってその両端面の厚さW101から中央側において次第に周方向Rに厚さW102の肉厚となるように半紡錘状に形成したものに限らず、例えば図48に示すように、軸方向Xに沿ってその両端面の厚さW101よりも中央側において周方向Rに向けて厚さW102を有する断面が台形状に形成された膨出部106d、または、図49に示すように、軸方向Xに沿ってその両端面の厚さW101よりも中央側において周方向Rに向けて厚さW102を有する断面が突起状に形成された膨出部106dが形成されるように、成形金型107の凹部107dの形状を変更することで、成形金型107を用いて絶縁用樹脂を射出成形する際の流動抵抗の増加を局部的に抑えて絶縁機能の改善を図ることが可能である。 Therefore, the bulging portion 106d of the resin insulating portion 106 is formed in a semi-spindle shape so as to have a wall thickness of the thickness W102 in the circumferential direction R gradually from the thickness W101 of both end surfaces thereof along the axial direction X. For example, as shown in FIG. 48, a cross section having a thickness W102 in the circumferential direction R on the center side of the thickness W101 of both end faces thereof is formed in a trapezoidal shape. As shown in FIG. 49 or the bulging portion 106d, a cross section having a thickness W102 in the circumferential direction R is formed in a protruding shape on the central side of the thickness W101 of both end surfaces thereof along the axial direction X. By changing the shape of the recess 107d of the molding die 107 so that the formed bulging portion 106d is formed, the increase in flow resistance when injection molding the insulating resin using the molding die 107 is locally increased. It is possible to improve the insulation function by suppressing the target.

例えば、比較技術として、コイルを巻装する樹脂絶縁部に軸方向の両端面に突起を有する場合が考えられるが、当該突起を軸方向の端面に配置している点で異なり、本願のように、軸方向の両側面の絶縁性能を向上させる効果が得られない点で異なる。よって、本願のようにコイルの占積率を低下させることなく絶縁性能を向上することができ、同じ性能で小型の回転電機を得られるという効果がある点で異なる。さらに、本願のように、コイルと絶縁部の間の空気層を減らすことで、コイルによる発熱を鉄心に伝達する効率が向上するため、従来構造に対し、同じサイズで高効率、放熱部品を削減した回転電機を得るという効果がある点で異なる。 For example, as a comparative technique, it is conceivable that the resin insulating portion around which the coil is wound has protrusions on both end faces in the axial direction, but the difference is that the protrusions are arranged on the end faces in the axial direction, as in the present application. The difference is that the effect of improving the insulation performance on both sides in the axial direction cannot be obtained. Therefore, the difference is that the insulation performance can be improved without lowering the space factor of the coil as in the present application, and there is an effect that a small rotary electric machine can be obtained with the same performance. Furthermore, as in the present application, by reducing the air layer between the coil and the insulating part, the efficiency of transmitting heat generated by the coil to the iron core is improved, so that the same size and higher efficiency and heat dissipation parts are reduced compared to the conventional structure. It differs in that it has the effect of obtaining a rotating electric machine.

なお、この実施の形態3の回転電機の絶縁構造体は、サーボモータ用、燃料噴射バルブ開閉タイミング制御ユニット、空調用ファンモータ、車載用燃料ポンプユニット、巻上機用などの各種の回転電機の固定子に適用することができる。 The insulating structure of the rotary electric machine according to the third embodiment is of various rotary electric machines for servomotors, fuel injection valve opening / closing timing control units, air conditioning fan motors, in-vehicle fuel pump units, hoisting machines, and the like. It can be applied to stators.

なお、本実施の形態3においては、樹脂絶縁部106を積層鉄心105に対して軸方向Xの上下2方向から組み立てる例を示したが、これに限られることはなく、軸方向Xの上下の複数の箇所から組み立てる場合も考えられ、その場合であっても上記実施の形態3と同様の効果を奏することができる。 In the third embodiment, an example of assembling the resin insulating portion 106 with respect to the laminated iron core 105 from two directions above and below the axial direction X has been shown, but the present invention is not limited to this, and the resin insulating portion 106 is not limited to this, and is above and below the axial direction X. It is possible to assemble from a plurality of places, and even in that case, the same effect as that of the third embodiment can be obtained.

また、本実施の形態3においては、樹脂絶縁部106には、積層鉄心105の軸方向Xの端面に形成された箇所に樹脂注入口痕106eを図示しているが、図のおいては、比較技術との違いを明確にすうために大きく示しているが、当該樹脂注入口痕は小さいため、上記実施の形態1および実施の形態2においてはその図示を省略している。 Further, in the third embodiment, the resin insulating portion 106 is illustrated with a resin injection port mark 106e at a portion formed on the end face of the laminated iron core 105 in the axial direction X, but in the drawing, it is shown. Although it is shown large to clarify the difference from the comparative technique, the resin injection port mark is small, so that the illustration is omitted in the first and second embodiments.

上記のように構成された実施の形態3の回転電機の絶縁構造体および回転電機の絶縁構造体の製造方法によれば、上記各実施の形態と同様の効果を奏するとともに、
複数枚の鋼板が積層されてなる積層鉄心を備えるとともに、前記積層鉄心には少なくともコイルが巻装される箇所の表面部を覆う樹脂絶縁部が軸方向の2方向以上から組み立てられる回転電機の絶縁構造体において、
前記樹脂絶縁部は、前記積層鉄心の軸方向の端面に形成された箇所の最大厚さが、前記積層鉄心の軸方向に沿って形成された箇所の最大厚さよりも厚く、かつ、前記積層鉄心の軸方向の端面に形成された箇所に樹脂注入口痕を有し、
前記樹脂絶縁部は、前記積層鉄心の軸方向の端面の形成された箇所の厚さが均一に形成され、
前記樹脂絶縁部は、前記積層鉄心の軸方向に沿って両端面よりも中央側において周方向に向けて肉厚に形成された膨出部を備えるので、
また、複数枚の鋼板が積層されてなる積層鉄心を備えるとともに、前記積層鉄心には少なくともコイルが巻装される箇所の表面部を覆う樹脂絶縁部が軸方向の2方向以上から組み立てられる回転電機の絶縁構造体の製造方法であって、
前記樹脂絶縁部を軸方向の2方向以上に分割した射出成形用の成形金型を適用し、この成形金型の金型内壁には前記積層鉄心の軸方向に沿って両端面よりも中央側において周方向に向けて肉厚となる膨出部形成用の凹部を予め形成しておき、前記成形金型の樹脂注入口から絶縁用樹脂を注入して軸方向の2方向以上に分割された前記樹脂絶縁部を成形し、前記成形金型から軸方向の2方向以上に分割された前記樹脂絶縁部を取り出した後、前記積層鉄心に軸方向の2方向以上に分割された前記樹脂絶縁部を軸方向の2方向以上から組み立てるので、
巻回されるコイルの軸方向の中央部分が弾性変形により巻膨らむが、膨出部は、その軸方向の両端面よりも中央側において周方向に向けて肉厚となるように形成されているため、コイルのコイル占積率を低下させることなく絶縁性能を向上することができ、同じ性能で小型の回転電機の絶縁構造体、ひいては回転電機を得られることができる。また、コイルと樹脂絶縁部との間の空気層を減らすことで、コイルによる発熱を積層鉄心に伝達する効率が向上するため、従来構造に対し、余分なコストアップまたは性能低下を招来することなく、同じサイズで高効率、放熱部品を削減した回転電機の絶縁構造体、ひいては回転電機を得ることができる。
さらに、成形金型の金型内壁には積層鉄心の軸方向に沿って両端面よりも中央側において周方向に向けて肉厚となる膨出部形成用の凹部を予め形成しておき、成形金型の内部に積層鉄心を配置した後、成形金型の樹脂注入口から絶縁用樹脂を注入するので、
絶縁用樹脂を充填する際の流動抵抗の増加に起因した圧力損失を低減することができる。このため、絶縁用樹脂の充填性が向上するので、流動性が良い高価な絶縁用樹脂を選定する必要がなく、また、絶縁用樹脂の流動性を向上するために成形金型の局所加熱を行う必要性もないので、材料費および設備費を抑制することができ、安価な回転電機の絶縁構造体ひいては回転電機を提供することができる。
According to the method for manufacturing the insulating structure of the rotary electric machine and the insulating structure of the rotary electric machine according to the third embodiment configured as described above, the same effect as that of each of the above-described embodiments can be obtained.
Insulation of a rotary electric machine is provided with a laminated iron core in which a plurality of steel plates are laminated, and a resin insulating portion covering at least the surface portion of a portion where a coil is wound is assembled from two or more axial directions on the laminated iron core. In the structure
In the resin insulating portion, the maximum thickness of the portion formed on the axial end face of the laminated iron core is thicker than the maximum thickness of the portion formed along the axial direction of the laminated iron core, and the laminated iron core is formed. Has a resin injection port mark on the end face in the axial direction of
In the resin insulating portion, the thickness of the portion where the end face in the axial direction of the laminated iron core is formed is uniformly formed.
Since the resin insulating portion includes a bulging portion formed thickly in the circumferential direction on the central side of both end faces along the axial direction of the laminated iron core, the resin insulating portion includes a bulging portion.
Further, a rotary electric machine is provided with a laminated iron core in which a plurality of steel plates are laminated, and a resin insulating portion covering at least a surface portion of a portion where a coil is wound is assembled from two or more axial directions on the laminated iron core. It is a manufacturing method of the insulating structure of
A molding mold for injection molding in which the resin insulating portion is divided into two or more directions in the axial direction is applied, and the inner wall of the mold of the molding mold is on the center side of both end faces along the axial direction of the laminated iron core. In the above, a concave portion for forming a bulging portion that becomes thicker in the circumferential direction was formed in advance, and an insulating resin was injected from the resin injection port of the molding mold to be divided into two or more directions in the axial direction. After molding the resin insulating portion and taking out the resin insulating portion divided into two or more directions in the axial direction from the molding mold, the resin insulating portion divided into two or more axial directions in the laminated iron core. Is assembled from two or more axial directions, so
The central portion of the wound coil in the axial direction swells due to elastic deformation, but the bulging portion is formed so as to become thicker in the circumferential direction on the central side than both end faces in the axial direction. Therefore, the insulation performance can be improved without lowering the coil space factor of the coil, and an insulating structure of a small rotary electric machine, and eventually a rotary electric machine can be obtained with the same performance. Further, by reducing the air layer between the coil and the resin insulating portion, the efficiency of transmitting the heat generated by the coil to the laminated iron core is improved, so that the conventional structure does not cause an extra cost increase or performance deterioration. It is possible to obtain an insulating structure of a rotating electric machine having the same size, high efficiency, and reduced heat dissipation parts, and by extension, a rotating electric machine.
Further, the inner wall of the die of the molding die is formed by preliminarily forming a recess for forming a bulging portion which becomes thicker in the circumferential direction on the central side than both end faces along the axial direction of the laminated iron core. After arranging the laminated iron core inside the mold, the insulating resin is injected from the resin injection port of the molding mold.
It is possible to reduce the pressure loss caused by the increase in the flow resistance when filling the insulating resin. Therefore, since the filling property of the insulating resin is improved, it is not necessary to select an expensive insulating resin having good fluidity, and local heating of the molding die is performed in order to improve the fluidity of the insulating resin. Since there is no need to do so, material costs and equipment costs can be suppressed, and an inexpensive rotating electric machine insulating structure and thus a rotating electric machine can be provided.

なお、本願は、様々な例示的な実施の形態が記載されているが、一つ、または複数の実施の形態に記載された様々な特徴、態様、および機能は特定の実施の形態の適用に限られるものではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。 Although various exemplary embodiments have been described in the present application, the various features, embodiments, and functions described in one or more embodiments may be applied to a particular embodiment. It is not limited and can be applied to embodiments alone or in various combinations.

従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも一つの構成要素を変形する場合、追加する場合、または省略する場合、さらには、少なくとも一つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれものとする。 Therefore, innumerable variations not illustrated are envisioned within the scope of the techniques disclosed in the present application. For example, it includes the case of transforming, adding, or omitting at least one component, and further, the case of extracting at least one component and combining it with the component of another embodiment. ..

1 固定子、2 分割固定子、3 絶縁分割鉄心、4 コイル、5 積層鉄心、5a バックヨーク部、5b ティース部、5c 突出部、6 樹脂絶縁部、6a,6b 鍔部、6c 端面巻装部、6d 側面巻装部、7 成形金型、7a 金型内壁、7b 樹脂注入口、7d 凹部、G1 巻膨れ隙間、11 回転子、12 シャフト、13 絶縁鉄心、14 コイル、15 積層鉄心、15a 挿入穴、15b 鉄心中央部、15c ティース部、15d 鉄心外周部、16 樹脂絶縁部、16c 端面巻装部、16d 側面巻装部、17 成形金型、17a 金型内壁、17b 樹脂注入口、17d 凹部、G2 巻膨れ隙間、101 固定子、102 分割固定子、103 絶縁分割鉄心、104 コイル、105 積層鉄心、105a バックヨーク部、105b ティース部、105c 突出部、106 樹脂絶縁部、106a,106b 鍔部、106c 端面巻装部、106d 側面巻装部、106e 樹脂注入口痕、107 成形金型、107a 金型内壁、107b 樹脂注入口、107d 凹部、G3 巻膨れ隙間、606c 端面巻装部、606e 樹脂注入口痕、606d 側面巻装部、607a 金型内壁、616d 側面巻装部、617a 金型内壁。 1 Stator, 2 Split stator, 3 Insulated split iron core, 4 Coil, 5 Laminated iron core, 5a Back yoke part, 5b Teeth part, 5c Protruding part, 6 Resin insulation part, 6a, 6b Die part, 6c End face winding part , 6d side winding part, 7 molding die, 7a mold inner wall, 7b resin injection port, 7d recess, G1 winding bulge gap, 11 rotor, 12 shaft, 13 insulated iron core, 14 coil, 15 laminated iron core, 15a insertion Hole, 15b Central part of iron core, 15c Teeth part, 15d Outer part of iron core, 16 Resin insulation part, 16c End face winding part, 16d Side winding part, 17 Molding mold, 17a Mold inner wall, 17b Resin injection port, 17d Recess , G2 winding swelling gap, 101 stator, 102 split stator, 103 insulated split iron core, 104 coil, 105 laminated iron core, 105a back yoke part, 105b teeth part, 105c protruding part, 106 resin insulating part, 106a, 106b flange part , 106c end face winding part, 106d side winding part, 106e resin injection port mark, 107 molding mold, 107a mold inner wall, 107b resin injection port, 107d recess, G3 winding bulge gap, 606c end face winding part, 606e resin Injection mark, 606d side winding part, 607a mold inner wall, 616d side winding part, 617a mold inner wall.

本願に開示される回転電機の絶縁構造体は、
複数枚の鋼板が積層されてなる積層鉄心を備えるとともに、前記積層鉄心には少なくともコイルが巻装される箇所の表面部を覆って樹脂絶縁部が一体形成され、前記樹脂絶縁部上に前記コイルが巻装されている回転電機の絶縁構造体において、
前記樹脂絶縁部は、前記積層鉄心の軸方向に沿って両端面よりも中央側において周方向に向けて肉厚に形成された膨出部を備え
前記樹脂絶縁部は、前記積層鉄心の軸方向の端面に形成された箇所の最大厚さが、前記積層鉄心の軸方向に沿って形成された箇所の最大厚さよりも厚く、かつ、前記積層鉄心の軸方向の端面に形成された箇所に樹脂注入口痕を備えるものである。
また、本願に開示される回転電機の絶縁構造体は、
複数枚の鋼板が積層されてなる積層鉄心を備えるとともに、前記積層鉄心には少なくともコイルが巻装される箇所の表面部を覆う樹脂絶縁部が軸方向の2方向以上から組み立てられ、前記樹脂絶縁部上に前記コイルが巻装されている回転電機の絶縁構造体において、
前記樹脂絶縁部は、前記積層鉄心の軸方向の端面に形成された箇所の最大厚さが、前記積層鉄心の軸方向に沿って形成された箇所の最大厚さよりも厚く、かつ、前記積層鉄心の軸方向の端面に形成された箇所に樹脂注入口痕を有し、
前記樹脂絶縁部は、前記積層鉄心の軸方向の端面の形成された箇所の厚さが均一に形成され、
前記樹脂絶縁部は、前記積層鉄心の軸方向に沿って両端面よりも中央側において周方向に向けて肉厚に形成されたものである。
また、本願に開示される回転電機の絶縁構造体の製造方法は、
鋼板が積層されてなる積層鉄心を備えるとともに、前記積層鉄心には少なくともコイルが巻装される箇所の表面部を覆って樹脂絶縁部が一体形成され、前記樹脂絶縁部上に前記コイルが巻装されている回転電機の絶縁構造体を製造方法であって、
前記樹脂絶縁部の射出成形用の成形金型を適用し、この成形金型の金型内壁には前記積層鉄心の軸方向に沿って両端面よりも中央側において周方向に向けて肉厚となる膨出部形成用の凹部を予め形成しておき、前記成形金型の内部に前記積層鉄心を配置した後、前記成形金型の樹脂注入口から絶縁用樹脂を注入して前記樹脂絶縁部を成形するものである。
また、本願に開示される回転電機の絶縁構造体の製造方法は、
複数枚の鋼板が積層されてなる積層鉄心を備えるとともに、前記積層鉄心には少なくともコイルが巻装される箇所の表面部を覆う樹脂絶縁部が軸方向の2方向以上から組み立てられ、前記樹脂絶縁部上に前記コイルが巻装されている回転電機の絶縁構造体の製造方法であって、
前記樹脂絶縁部を軸方向の2方向以上に分割した射出成形用の成形金型を適用し、この成形金型の金型内壁には前記積層鉄心の軸方向に沿って両端面よりも中央側において周方向に向けて肉厚となる膨出部形成用の凹部を予め形成しておき、前記成形金型の樹脂注入口から絶縁用樹脂を注入して軸方向の2方向以上に分割された前記樹脂絶縁部を成形し、前記成形金型から軸方向の2方向以上に分割された前記樹脂絶縁部を取り出した後、前記積層鉄心に軸方向の2方向以上に分割された前記樹脂絶縁部を軸方向の2方向以上から組み立てるものである。
The insulating structure of a rotary electric machine disclosed in the present application is
A laminated iron core formed by laminating a plurality of steel plates is provided, and a resin insulating portion is integrally formed on the laminated iron core so as to cover at least a surface portion of a portion where a coil is wound, and the coil is formed on the resin insulating portion. In the insulating structure of the rotating electric machine that is wound with
The resin insulating portion includes a bulging portion formed thickly in the circumferential direction on the central side of both end faces along the axial direction of the laminated iron core .
In the resin insulating portion, the maximum thickness of the portion formed on the axial end face of the laminated iron core is thicker than the maximum thickness of the portion formed along the axial direction of the laminated iron core, and the laminated iron core is formed. A resin injection port mark is provided at a portion formed on the end face in the axial direction of the above.
Further, the insulating structure of the rotary electric machine disclosed in the present application is:
Provided with a laminated core in which a plurality of steel plates are laminated, the resin insulating portion covering the surface portion places the the laminated core is to be at least the coil is wound is assembled from two or more directions in the axial direction, the resin insulation the coil on the part is in the insulating structure of the rotary electric machine that has been wound,
In the resin insulating portion, the maximum thickness of the portion formed on the axial end face of the laminated iron core is thicker than the maximum thickness of the portion formed along the axial direction of the laminated iron core, and the laminated iron core is formed. Has a resin injection port mark on the end face in the axial direction of
In the resin insulating portion, the thickness of the portion where the end face in the axial direction of the laminated iron core is formed is uniformly formed.
The resin insulating portion is formed to be thicker in the circumferential direction on the central side than both end faces along the axial direction of the laminated iron core.
Further, the method for manufacturing an insulating structure of a rotary electric machine disclosed in the present application is described.
A laminated iron core formed by laminating steel plates is provided, and a resin insulating portion is integrally formed on the laminated iron core so as to cover at least a surface portion where a coil is wound, and the coil is wound on the resin insulating portion. the insulating structure of a rotating electric machine that is a process for the preparation,
A molding die for injection molding of the resin insulating portion is applied, and the inner wall of the molding die has a wall thickness in the circumferential direction on the central side of both end faces along the axial direction of the laminated iron core. A recess for forming a bulging portion is formed in advance, the laminated iron core is arranged inside the molding die, and then an insulating resin is injected from the resin injection port of the molding die to form the resin insulating portion. Is to be molded.
Further, the method for manufacturing an insulating structure of a rotary electric machine disclosed in the present application is described.
Provided with a laminated core in which a plurality of steel plates are laminated, the resin insulating portion covering the surface portion places the the laminated core is to be at least the coil is wound is assembled from two or more directions in the axial direction, the resin insulation wherein a coil manufacturing method of the insulating structure of the rotary electric machine that has been wound onto the part,
A molding mold for injection molding in which the resin insulating portion is divided into two or more directions in the axial direction is applied, and the inner wall of the mold of the molding mold is on the center side of both end faces along the axial direction of the laminated iron core. In the above, a concave portion for forming a bulging portion that becomes thicker in the circumferential direction was formed in advance, and an insulating resin was injected from the resin injection port of the molding mold to be divided into two or more directions in the axial direction. After molding the resin insulating portion and taking out the resin insulating portion divided into two or more directions in the axial direction from the molding mold, the resin insulating portion divided into two or more axial directions in the laminated iron core. Is assembled from two or more axial directions.

Claims (12)

複数枚の鋼板が積層されてなる積層鉄心を備えるとともに、前記積層鉄心には少なくともコイルが巻装される箇所の表面部を覆って樹脂絶縁部が一体形成されている回転電機の絶縁構造体において、
前記樹脂絶縁部は、前記積層鉄心の軸方向に沿って両端面よりも中央側において周方向に向けて肉厚に形成された膨出部を備える回転電機の絶縁構造体。
In an insulating structure of a rotating electric machine, which is provided with a laminated iron core in which a plurality of steel plates are laminated, and a resin insulating portion is integrally formed on the laminated iron core by at least covering the surface portion of a portion where a coil is wound. ,
The resin insulating portion is an insulating structure of a rotating electric machine having a bulging portion formed thickly in the circumferential direction on the central side of both end surfaces along the axial direction of the laminated iron core.
前記樹脂絶縁部は、前記積層鉄心の軸方向の端面に形成された箇所の最大厚さが、前記積層鉄心の軸方向に沿って形成された箇所の最大厚さよりも厚く、かつ、前記積層鉄心の軸方向の端面に形成された箇所に樹脂注入口痕を備える請求項1に記載の回転電機の絶縁構造体。 In the resin insulating portion, the maximum thickness of the portion formed on the axial end face of the laminated iron core is thicker than the maximum thickness of the portion formed along the axial direction of the laminated iron core, and the laminated iron core is formed. The insulating structure of a rotary electric machine according to claim 1, wherein a resin injection port mark is provided at a portion formed on an end face in the axial direction of the above. 前記樹脂絶縁部は、前記積層鉄心の軸方向の端面の形成された箇所の厚さが均一に形成されている請求項2に記載の回転電機の絶縁構造体。 The insulating structure for a rotary electric machine according to claim 2, wherein the resin insulating portion has a uniform thickness at a portion where an end face in the axial direction of the laminated iron core is formed. 前記積層鉄心の前記コイルが巻装される箇所は、軸方向の両端側の周方向の長さよりも、軸方向の中央側において周方向の長さが短く形成された箇所を有する請求項1から請求項3のいずれか1項に記載の回転電機の絶縁構造体。 From claim 1, the portion of the laminated iron core around which the coil is wound has a portion formed in which the circumferential length is shorter on the central side in the axial direction than the circumferential length on both ends in the axial direction. The insulating structure of a rotary electric machine according to any one of claims 3. 複数枚の鋼板が積層されてなる積層鉄心を備えるとともに、前記積層鉄心には少なくともコイルが巻装される箇所の表面部を覆う樹脂絶縁部が軸方向の2方向以上から組み立てられる回転電機の絶縁構造体において、
前記樹脂絶縁部は、前記積層鉄心の軸方向の端面に形成された箇所の最大厚さが、前記積層鉄心の軸方向に沿って形成された箇所の最大厚さよりも厚く、かつ、前記積層鉄心の軸方向の端面に形成された箇所に樹脂注入口痕を有し、
前記樹脂絶縁部は、前記積層鉄心の軸方向の端面の形成された箇所の厚さが均一に形成され、
前記樹脂絶縁部は、前記積層鉄心の軸方向に沿って両端面よりも中央側において周方向に向けて肉厚に形成された膨出部を備える回転電機の絶縁構造体。
Insulation of a rotary electric machine is provided with a laminated iron core in which a plurality of steel plates are laminated, and a resin insulating portion covering at least the surface portion of a portion where a coil is wound is assembled from two or more axial directions on the laminated iron core. In the structure
In the resin insulating portion, the maximum thickness of the portion formed on the axial end face of the laminated iron core is thicker than the maximum thickness of the portion formed along the axial direction of the laminated iron core, and the laminated iron core is formed. Has a resin injection port mark on the end face in the axial direction of
In the resin insulating portion, the thickness of the portion where the end face in the axial direction of the laminated iron core is formed is uniformly formed.
The resin insulating portion is an insulating structure of a rotating electric machine having a bulging portion formed thickly in the circumferential direction on the central side of both end surfaces along the axial direction of the laminated iron core.
前記膨出部は、前記積層鉄心と前記コイルとの間の巻膨れ隙間よりも小さい範囲内で施されている請求項1から請求項5のいずれか1項に記載の回転電機の絶縁構造体。 The insulating structure of a rotary electric machine according to any one of claims 1 to 5, wherein the bulging portion is provided within a range smaller than the winding bulging gap between the laminated iron core and the coil. .. 前記膨出部は、前記積層鉄心の周方向に対面するティース側面部に対応する箇所に形成されている請求項1から請求項6のいずれか1項に記載の回転電機の絶縁構造体。 The insulating structure of a rotary electric machine according to any one of claims 1 to 6, wherein the bulging portion is formed at a portion corresponding to a tooth side surface portion facing the laminated iron core in the circumferential direction. 前記膨出部は、前記軸方向の中央を頂点として前記両端面に向かって厚さが次第に減少する断面が半紡錘状に形成されている請求項1から請求項7のいずれか1項に記載の回転電機の絶縁構造体。 The method according to any one of claims 1 to 7, wherein the bulging portion has a semi-spindle-shaped cross section having a apex at the center in the axial direction and gradually decreasing in thickness toward both end faces. Insulation structure of rotary electric machine. 前記膨出部は、断面が台形状に形成されている請求項1から請求項7のいずれか1項に記載の回転電機の絶縁構造体。 The insulating structure of a rotary electric machine according to any one of claims 1 to 7, wherein the bulging portion has a trapezoidal cross section. 前記膨出部は、断面が突起状に形成されている請求項1から請求項7のいずれか1項に記載の回転電機の絶縁構造体。 The insulating structure of a rotary electric machine according to any one of claims 1 to 7, wherein the bulging portion has a protruding cross section. 鋼板が積層されてなる積層鉄心を備えるとともに、前記積層鉄心には少なくともコイルが巻装される箇所の表面部を覆って樹脂絶縁部が一体形成されている回転電機の絶縁構造体の製造方法であって、
前記樹脂絶縁部の射出成形用の成形金型を適用し、この成形金型の金型内壁には前記積層鉄心の軸方向に沿って両端面よりも中央側において周方向に向けて肉厚となる膨出部形成用の凹部を予め形成しておき、前記成形金型の内部に前記積層鉄心を配置した後、前記成形金型の樹脂注入口から絶縁用樹脂を注入して前記樹脂絶縁部を成形する回転電機の絶縁構造体の製造方法。
A method for manufacturing an insulating structure of a rotating electric machine, which is provided with a laminated iron core formed by laminating steel plates, and a resin insulating portion is integrally formed on the laminated iron core by at least covering the surface portion of a portion where a coil is wound. There,
A molding die for injection molding of the resin insulating portion is applied, and the inner wall of the molding die has a wall thickness in the circumferential direction on the central side of both end faces along the axial direction of the laminated iron core. A recess for forming a bulging portion is formed in advance, the laminated iron core is arranged inside the molding die, and then an insulating resin is injected from the resin injection port of the molding die to form the resin insulating portion. A method of manufacturing an insulating structure of a rotary electric machine for molding.
複数枚の鋼板が積層されてなる積層鉄心を備えるとともに、前記積層鉄心には少なくともコイルが巻装される箇所の表面部を覆う樹脂絶縁部が軸方向の2方向以上から組み立てられる回転電機の絶縁構造体の製造方法であって、
前記樹脂絶縁部を軸方向の2方向以上に分割した射出成形用の成形金型を適用し、この成形金型の金型内壁には前記積層鉄心の軸方向に沿って両端面よりも中央側において周方向に向けて肉厚となる膨出部形成用の凹部を予め形成しておき、前記成形金型の樹脂注入口から絶縁用樹脂を注入して軸方向の2方向以上に分割された前記樹脂絶縁部を成形し、前記成形金型から軸方向の2方向以上に分割された前記樹脂絶縁部を取り出した後、前記積層鉄心に軸方向の2方向以上に分割された前記樹脂絶縁部を軸方向の2方向以上から組み立てる回転電機の絶縁構造体の製造方法。
Insulation of a rotary electric machine is provided with a laminated iron core in which a plurality of steel plates are laminated, and a resin insulating portion covering at least a surface portion where a coil is wound is assembled from two or more axial directions on the laminated iron core. It is a method of manufacturing a structure.
A molding mold for injection molding in which the resin insulating portion is divided into two or more directions in the axial direction is applied, and the inner wall of the mold of the molding mold is on the center side of both end faces along the axial direction of the laminated iron core. In the above, a concave portion for forming a bulging portion that becomes thicker in the circumferential direction was formed in advance, and an insulating resin was injected from the resin injection port of the molding mold to be divided into two or more directions in the axial direction. After molding the resin insulating portion and taking out the resin insulating portion divided into two or more directions in the axial direction from the molding mold, the resin insulating portion divided into two or more axial directions in the laminated iron core. A method for manufacturing an insulating structure of a rotary electric machine, which is assembled from two or more axial directions.
JP2020553215A 2018-10-23 2019-10-16 Insulating structure for rotating electric machine and method for manufacturing insulating structure for rotating electric machine Active JP7109573B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018198851 2018-10-23
JP2018198851 2018-10-23
PCT/JP2019/040595 WO2020085158A1 (en) 2018-10-23 2019-10-16 Insulating structure for rotary electric machine and method for producing insulating structure for rotary electric machine

Publications (2)

Publication Number Publication Date
JPWO2020085158A1 true JPWO2020085158A1 (en) 2021-02-15
JP7109573B2 JP7109573B2 (en) 2022-07-29

Family

ID=70331942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020553215A Active JP7109573B2 (en) 2018-10-23 2019-10-16 Insulating structure for rotating electric machine and method for manufacturing insulating structure for rotating electric machine

Country Status (3)

Country Link
JP (1) JP7109573B2 (en)
CN (1) CN112840528A (en)
WO (1) WO2020085158A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001268835A (en) * 2000-03-23 2001-09-28 Toshiba Kyaria Kk Coolant compressor
JP2013115974A (en) * 2011-11-30 2013-06-10 Aisin Seiki Co Ltd Stator of rotary electric machine
JP2014218063A (en) * 2013-05-10 2014-11-20 ファナック株式会社 Stator for motor for injecting resin by injection molding
JP2017169397A (en) * 2016-03-17 2017-09-21 三菱電機株式会社 Insulating laminate structure of rotary electric machine and manufacturing method thereof
CN113826308A (en) * 2019-04-25 2021-12-21 三菱电机株式会社 Stator, motor, blower, air conditioner, and method for manufacturing stator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3791492B2 (en) * 2002-12-25 2006-06-28 株式会社日立製作所 Rotating electric machine, electric vehicle, and resin insert molding method
JP2004304988A (en) * 2003-04-01 2004-10-28 Nissan Motor Co Ltd Stator structure of motor
CN203312935U (en) * 2013-06-25 2013-11-27 日本电产株式会社 Armature and motor comprising same
DE102013222400A1 (en) * 2013-11-05 2015-05-21 Robert Bosch Gmbh Tooth masking mask for an electric machine and stator or rotor of an electric machine
JP2016019377A (en) * 2014-07-09 2016-02-01 トヨタ自動車株式会社 Stator for motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001268835A (en) * 2000-03-23 2001-09-28 Toshiba Kyaria Kk Coolant compressor
JP2013115974A (en) * 2011-11-30 2013-06-10 Aisin Seiki Co Ltd Stator of rotary electric machine
JP2014218063A (en) * 2013-05-10 2014-11-20 ファナック株式会社 Stator for motor for injecting resin by injection molding
JP2017169397A (en) * 2016-03-17 2017-09-21 三菱電機株式会社 Insulating laminate structure of rotary electric machine and manufacturing method thereof
CN113826308A (en) * 2019-04-25 2021-12-21 三菱电机株式会社 Stator, motor, blower, air conditioner, and method for manufacturing stator

Also Published As

Publication number Publication date
JP7109573B2 (en) 2022-07-29
CN112840528A (en) 2021-05-25
WO2020085158A1 (en) 2020-04-30

Similar Documents

Publication Publication Date Title
JP7344807B2 (en) Coil bobbin, stator core of distributed winding radial gap type rotating electrical machine, and distributed winding radial gap type rotating electrical machine
CN102918749B (en) Stator structure and manufacturing method for stators
JP5785863B2 (en) Electric motor stator and permanent magnet rotating electric machine
KR100374103B1 (en) Mold core for motor
US9054570B2 (en) Stator assembly for motor having hall sensor part fixed to end of tooth of stator
CN103795194A (en) Method of manufacturing stator of electric rotating machine
CN104662779A (en) Electric machine
JP2016116417A (en) Coil winding component, manufacturing method of the same, stator, and rotary electric machine
JP4291789B2 (en) Stepping motor
WO2018025407A1 (en) Consequent pole-type rotor, electric motor, and air conditioner
EP3267561B1 (en) Axial gap type rotating electric machine and stator
US20210028662A1 (en) Electric Motor Rotor Having Non-Uniform Laminations
US9787150B2 (en) Rotor of brushless motor
JPWO2020085158A1 (en) Manufacturing method of insulating structure of rotary electric machine and insulating structure of rotary electric machine
JP2010028914A (en) Resin molded coil, resin molded stators, and manufacturing method for the stators
WO2013150594A1 (en) Rotary electric machine, bobbin of rotary electric machine, and manufacturing method of bobbin
US11501907B2 (en) Reactor
CN111066227B (en) Stator of rotating electric machine and method for manufacturing stator
JP2016127681A (en) Stator for rotary electric machine
WO2021205708A1 (en) Stator of rotating electrical machine
WO2020161999A1 (en) Stator of rotary electric machine and rotary electric machine using same
CN110140280B (en) Stator of rotating electric machine and method for manufacturing stator of rotating electric machine
JPH07111747A (en) Stator for motor
JP4261177B2 (en) Electric motor stator insulation and stator
WO2023181780A1 (en) Rotating electric machine

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200903

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220719

R151 Written notification of patent or utility model registration

Ref document number: 7109573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151