JPWO2020069227A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020069227A5
JPWO2020069227A5 JP2021517462A JP2021517462A JPWO2020069227A5 JP WO2020069227 A5 JPWO2020069227 A5 JP WO2020069227A5 JP 2021517462 A JP2021517462 A JP 2021517462A JP 2021517462 A JP2021517462 A JP 2021517462A JP WO2020069227 A5 JPWO2020069227 A5 JP WO2020069227A5
Authority
JP
Japan
Prior art keywords
magnetic
enzyme
macroporous
powder
scaffold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021517462A
Other languages
Japanese (ja)
Other versions
JP2022500067A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2019/053307 external-priority patent/WO2020069227A1/en
Publication of JP2022500067A publication Critical patent/JP2022500067A/en
Publication of JPWO2020069227A5 publication Critical patent/JPWO2020069227A5/ja
Pending legal-status Critical Current

Links

Claims (35)

熱可塑性ポリマー及び磁性ミクロ粒子を含む磁性マクロポーラス粉末であって、磁性ナノ粒子の自己アセンブリしたメソポーラス凝集体を固定化するための形状化磁性マクロポーラス足場の付加生産(AM)のために操作可能である、磁性マクロポーラス粉末。 A magnetic macroporous powder comprising a thermoplastic polymer and magnetic microparticles, operable for additive manufacturing (AM) of shaped magnetic macroporous scaffolds for immobilizing self-assembled mesoporous aggregates of magnetic nanoparticles. is a magnetic macroporous powder. 前記磁性粒子が、約50~100μm、約10~50μm、約5~10μm、約10μm、約5μm、5μm未満又は100μm超のサイズを有する、請求項1に記載の磁性マクロポーラス粉末。 2. The magnetic macroporous powder of claim 1, wherein the magnetic particles have a size of about 50-100 μm , about 10-50 μm, about 5-10 μm, about 10 μm, about 5 μm, less than 5 μm, or greater than 100 μm . 約150μm、約75μm又は約15μmの平均サイズを有する、請求項1に記載の磁性マクロポーラス粉末。 2. The magnetic macroporous powder of claim 1, having an average size of about 150[mu] m, about 75[mu]m or about 15[mu ]m. 前記磁性粒子が、0~10重量%、10~50重量%又は50~90重量%の濃度を有する、請求項1に記載の磁性マクロポーラス粉末。 Magnetic macroporous powder according to claim 1, wherein the magnetic particles have a concentration of 0-10 wt% , 10-50 wt% or 50-90 wt% . 前記熱可塑性ポリマーが、ポリビニルアルコール(PVA)、アクリル(PMMA)、アクリロニトリルブタジエンスチレン(ABS)、ナイロン6及びナイロン12を含むポリアミド、ポリ乳酸(PLA)、ポリベンゾイミダゾール(PBI)、ポリカーボネート(PC)、ポリエーテルスルホン(PES)、ポリオキシメチレン(POM)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルイミド(PEI)、ポリエチレン(PE)、ポリフェニレンオキシド(PEO)、ポリフェニレンスルフィド(PPS)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリ塩化ビニル(PVC)、ポリテトラフルオロエチレン(PTFE)、コポリエステル、及びそれらの化学的機能化誘導体からなる群から選択されるポリマーを含む、請求項1に記載の磁性マクロポーラス粉末。 Said thermoplastic polymer is polyvinyl alcohol (PVA), acrylic (PMMA), acrylonitrile butadiene styrene (ABS), polyamide including nylon 6 and nylon 12, polylactic acid (PLA), polybenzimidazole (PBI), polycarbonate (PC) , polyethersulfone (PES), polyoxymethylene (POM), polyetheretherketone (PEEK), polyetherimide (PEI), polyethylene (PE), polyphenylene oxide (PEO), polyphenylene sulfide (PPS), polypropylene (PP ), polystyrene (PS), polyvinyl chloride (PVC), polytetrafluoroethylene (PTFE), copolyesters, and chemically functionalized derivatives thereof. Magnetic macroporous powder. 前記磁性ミクロ粒子が、マグネタイト(Fe)、ヘマタイト(α-Fe)、磁赤鉄鉱(γ-Fe)、スピネルフェライト、天然磁石、コバルト、ニッケル、希土類、及び磁性複合体からなる群から選択される磁性材料を含む、請求項1に記載の磁性マクロポーラス粉末。 The magnetic microparticles include magnetite (Fe 3 O 4 ), hematite (α-Fe 2 O 3 ), maghemite (γ-Fe 2 O 3 ), spinel ferrite, natural magnets, cobalt, nickel, rare earths, and magnetic 2. The magnetic macroporous powder of claim 1, comprising a magnetic material selected from the group consisting of composites. 前記希土類が、ネオジム、ガドリニウム、シスプロシウム、サマリウム-コバルト、又はネオジム-鉄-ホウ素である、請求項6に記載の磁性マクロポーラス粉末。 7. The magnetic macroporous powder of claim 6, wherein said rare earth is neodymium, gadolinium, cisprosium, samarium-cobalt, or neodymium-iron-boron. 前記磁性複合体が、セラミック、フェライト、又はアルニコ磁石を含む、請求項6に記載の磁性マクロポーラス粉末。 7. The magnetic macroporous powder of claim 6, wherein said magnetic composite comprises ceramic, ferrite, or alnico magnets. 前記熱可塑性ポリマー及び前記磁性ミクロ粒子が、化学的にブレンドされている、熱的にブレンドされている又は物理的にブレンドされている、請求項1~8のいずれか一項に記載の磁性マクロポーラス粉末。 A magnetic macro according to any preceding claim , wherein said thermoplastic polymer and said magnetic microparticles are chemically blended, thermally blended or physically blended. porous powder. 0.5~200μmのサイズを有するマクロ細孔を含む、請求項1~9のいずれか一項に記載の磁性マクロポーラス粉末。 Magnetic macroporous powder according to any one of claims 1 to 9 , comprising macropores with a size of 0.5 to 200 µm. セルロース繊維、セルロースナノファイバー、ガラス繊維、又は炭素繊維をさらに含む、請求項1~10のいずれか一項に記載の磁性マクロポーラス粉末。 Magnetic macroporous powder according to any one of claims 1 to 10 , further comprising cellulose fibres, cellulose nanofibres, glass fibres, or carbon fibres. 磁性ナノ粒子の自己アセンブリしたメソポーラス凝集体及び前記メソ細孔内に又はそれらの表面上に磁気的に固定化された酵素をさらに含む、請求項1~11のいずれか一項に記載の磁性マクロポーラス粉末。 A magnetic macro according to any one of claims 1 to 11 , further comprising self-assembled mesoporous aggregates of magnetic nanoparticles and an enzyme magnetically immobilized within said mesopores or on their surface. porous powder. 請求項1~12のいずれか一項に記載の磁性マクロポーラス粉末を含み、前記粉末は、三次元(3D)プリンティングにより前記形状に形成された、形状化磁性マクロポーラス足場。 A shaped magnetic macroporous scaffold comprising a magnetic macroporous powder according to any one of claims 1 to 12 , said powder being formed into said shape by three-dimensional (3D) printing. 前記形状が、円柱、球体、ビーズ、ストリップ、カプセル、立方体、スクエアロッド、ピラミッド、ダイヤモンド、格子、又は不規則形状である、請求項13に記載の形状化磁性マクロポーラス足場。 14. The shaped magnetic macroporous scaffold of claim 13 , wherein said shape is cylinder, sphere, bead, strip, capsule, cube, square rod, pyramid, diamond, lattice, or irregular shape. 磁性ナノ粒子の自己アセンブリしたメソポーラス凝集体をさらに含む、請求項13又は14に記載の形状化磁性マクロポーラス足場。 15. The shaped magnetic macroporous scaffold of claim 13 or 14 , further comprising self-assembled mesoporous aggregates of magnetic nanoparticles. 磁性ナノ粒子の前記自己アセンブリしたメソポーラス凝集体が、前記磁性ナノ粒子の前記メソ細孔内に又は表面上に磁気的に固定化された1つ以上の酵素をさらに含む、請求項15に記載の形状化磁性マクロポーラス足場。 16. The method of claim 15 , wherein the self-assembled mesoporous aggregates of magnetic nanoparticles further comprise one or more enzymes magnetically immobilized within or on the surface of the mesopores of the magnetic nanoparticles. Shaped magnetic macroporous scaffolds. 前記1つ以上の酵素が、ヒドロラーゼ、ヒドロキシラーゼ、過酸化水素生成酵素(HPP)、ニトララーゼ、ヒドラターゼ、脱水素酵素、トランスアミナーゼ、ケトレダクターゼ(KREDS)エネレダクターゼ(EREDS)、イミンレダクターゼ(IREDS)、カタラーゼ、ジスムターゼ、オキシダーゼ、ジオキシゲナーゼ、リポキシダーゼ、オキシドレダクターゼ、ペルオキシダーゼ、ラッカーゼ、シンテターゼ、トランスフェラーゼ、オキシニトリラーゼ、イソメラーゼ、グルドシダーゼ、キナーゼ、リアーゼ、スクラーゼ、インベルターゼ、エピメラーゼ、及びリパーゼからなる群から選択される、請求項16に記載の形状化磁性マクロポーラス足場。 the one or more enzymes are hydrolase, hydroxylase, hydrogen peroxide generating enzyme (HPP), nitralase, hydratase, dehydrogenase, transaminase, ketoreductase (KREDS) enereductase (EREDS), imine reductase (IREDS), catalase , dismutase, oxidase, dioxygenase, lipoxidase, oxidoreductase, peroxidase, laccase, synthetase, transferase, oxynitrilase, isomerase, glucosidase, kinase, lyase, sucrase, invertase, epimerase, and lipase. 17. Shaped magnetic macroporous scaffold according to item 16 . 磁性ナノ粒子の前記自己アセンブリしたメソポーラス凝集体が、ミクロソームを含み、第1の酵素活性を有する拡散性補助因子を要求する第1の酵素は、前記ミクロソーム内に含有され、補助因子再生活性を含む第2の酵素は、前記メソ細孔内に磁気的に包括され、前記補助因子は、前記第1の酵素活性において利用され;前記第1及び第2の酵素は、拡散性基質を拡散性生成物に変換することにより機能し;前記磁性ナノ粒子は、前記磁性マクロポーラス足場と磁気的に会合している、請求項15に記載の形状化磁性マクロポーラス足場。 said self-assembled mesoporous aggregates of magnetic nanoparticles comprising microsomes, wherein a first enzyme requiring a diffusible cofactor having a first enzymatic activity is contained within said microsomes and comprises a cofactor regeneration activity a second enzyme is magnetically entrapped within said mesopores and said cofactor is utilized in said first enzymatic activity; said first and second enzymes diffusively generate a diffusible substrate; 16. The shaped magnetic macroporous scaffold of claim 15 , wherein said magnetic nanoparticles are magnetically associated with said magnetic macroporous scaffold. 磁性ナノ粒子の前記自己アセンブリしたメソポーラス凝集体が、第1の酵素活性を有する拡散性補助因子を要求する第1の酵素;補助因子再生活性を含む第2の酵素を含み、前記補助因子は、前記第1の酵素活性において利用され;前記第1及び第2の酵素は、磁性ナノ粒子の前記凝集体により形成された前記メソ細孔内に磁気的に包括され、前記第1及び第2の酵素は、拡散性基質を拡散性生成物に変換することにより機能する、請求項15に記載の形状化磁性マクロポーラス足場。 said self-assembled mesoporous aggregates of magnetic nanoparticles comprising a first enzyme requiring a diffusible cofactor having a first enzymatic activity; a second enzyme comprising a cofactor regeneration activity, said cofactor comprising: utilized in said first enzymatic activity; said first and second enzymes are magnetically entrapped within said mesopores formed by said aggregates of magnetic nanoparticles; 16. The shaped magnetic macroporous scaffold of claim 15 , wherein the enzyme functions by converting a diffusible substrate to a diffusible product. 前記第1の酵素が、酸化酵素である、請求項19に記載の形状化磁性マクロポーラス足場。 20. The shaped magnetic macroporous scaffold of claim 19 , wherein said first enzyme is an oxidase. 前記酸化酵素が、フラビン含有オキシゲナーゼであり;前記組成物が、前記第1の酵素と同時局在する補助因子レダクターゼ活性を有する第3の酵素をさらに含む、請求項20に記載の形状化磁性マクロポーラス足場。 21. The shaped magnetic macro of claim 20 , wherein said oxidase is a flavin-containing oxygenase; and wherein said composition further comprises a third enzyme having co-factor reductase activity co-localized with said first enzyme. Porous scaffolding. 前記酸化酵素が、P450モノオキシゲナーゼであり;前記組成物が、前記第1の酵素と同時局在する補助因子レダクターゼ活性を有する第3の酵素をさらに含む、請求項20に記載の形状化磁性マクロポーラス足場。 21. The shaped magnetic macro of claim 20 , wherein said oxidizing enzyme is a P450 monooxygenase; and wherein said composition further comprises a third enzyme having co-factor reductase activity co-localized with said first enzyme. Porous scaffolding. 前記P450モノオキシゲナーゼ及び前記第3の酵素が、単一タンパク質内に含まれる、請求項20に記載の形状化磁性マクロポーラス足場。 21. The shaped magnetic macroporous scaffold of claim 20 , wherein said P450 monooxygenase and said third enzyme are contained within a single protein. 前記単一タンパク質が、二機能性シトクロムP450/NADPH--P450レダクターゼを含む、請求項23に記載の形状化磁性マクロポーラス足場。 24. The shaped magnetic macroporous scaffold of claim 23 , wherein said single protein comprises a bifunctional cytochrome P450/NADPH--P450 reductase. 前記単一タンパク質が、BM3活性を有し、配列番号1との少なくとも90%の配列同一性を有する、請求項23に記載の形状化磁性マクロポーラス足場。 24. The shaped magnetic macroporous scaffold of claim 23 , wherein said single protein has BM3 activity and has at least 90% sequence identity with SEQ ID NO:1. 前記足場が、特定の生体触媒プロセスに適した形状に形成される、請求項13~25のいずれか一項に記載の形状化磁性マクロポーラス足場。 The shaped magnetic macroporous scaffold according to any one of claims 13-25 , wherein said scaffold is formed into a shape suitable for a particular biocatalytic process. 請求項13~26のいずれか一項に記載の磁性マクロポーラス粉末を含む形状化磁性マクロポーラス足場を形成する方法であって、三次元(3D)プリンタを用いて前記形状化磁性マクロポーラス足場を付加生産(AM)し、前記形状を3Dモデルから得るステップを含む方法。 A method of forming a shaped magnetic macroporous scaffold comprising the magnetic macroporous powder of any one of claims 13-26 , wherein the shaped magnetic macroporous scaffold is formed using a three-dimensional (3D) printer. A method comprising additive manufacturing (AM) and obtaining said shape from a 3D model. 前記3Dモデルが、電子ファイルである、請求項27に記載の方法。 28. The method of claim 27 , wherein said 3D model is an electronic file. 前記電子ファイルが、コンピュータ支援設計(CAD)又はステレオリソグラフィー(STL)ファイルである、請求項28に記載の方法。 29. The method of claim 28 , wherein the electronic file is a Computer Aided Design (CAD) or Stereolithography (STL) file. 前記AMが、熱融解フィラメント製法(FFF)又は選択的レーザ焼結(SLS)である、請求項27~29のいずれか一項に記載の方法。 The method of any one of claims 27-29 , wherein the AM is Fused Filament Fabrication (FFF) or Selective Laser Sintering (SLS). 前記マクロ細孔が、塩、糖、又は小型可溶性ポリマーからなる群から選択される可溶性薬剤を用い、前記可溶性薬剤を溶剤により除去して形成される、請求項27~30のいずれか一項に記載の方法。 31. The method according to any one of claims 27 to 30 , wherein said macropores are formed by using a soluble drug selected from the group consisting of salts, sugars or small soluble polymers and removing said soluble drug with a solvent. described method. 酵素反応を触媒するための装置を形成する方法であって、形状化磁性マクロポーラス足場を、磁性ナノ粒子の自己アセンブリしたメソポーラス凝集体及び酵素と組み合わせ、前記酵素は、前記メソ細孔内に磁気的に固定化されるステップを含む方法。 A method of forming a device for catalyzing an enzymatic reaction comprising combining a shaped magnetic macroporous scaffold with self-assembled mesoporous aggregates of magnetic nanoparticles and an enzyme, wherein the enzyme binds magnetic method comprising the step of physically immobilizing. 複数の基質間の反応を触媒する方法であって、請求項12に記載の磁性マクロポーラス粉末を、前記酵素が前記基質間の前記反応を触媒する条件下で前記基質に露出させるステップを含む方法。 13. A method of catalyzing a reaction between a plurality of substrates, comprising exposing the magnetic macroporous powder of claim 12 to said substrate under conditions for said enzyme to catalyze said reaction between said substrates. . 複数の基質間の反応を触媒する方法であって、請求項16又は17に記載の形状化磁性マクロポーラス足場を、前記酵素が前記基質間の前記反応を触媒する条件下で前記基質に露出させるステップを含む方法。 18. A method of catalyzing a reaction between a plurality of substrates, wherein the shaped magnetic macroporous scaffold of claim 16 or 17 is exposed to said substrate under conditions in which said enzyme catalyzes said reaction between said substrates. A method that includes steps. 前記反応が、医薬製品、食品製品、風味料、香料、甘味料、農薬、抗菌剤、毒素、洗剤、燃料製品又は生化学製品の生産において用いられる、請求項33又は34に記載の方法。 35. A method according to claim 33 or 34 , wherein said reaction is used in the production of pharmaceutical products , food products, flavors, fragrances, sweeteners, pesticides, antimicrobials, toxins, detergents, fuel products or biochemicals .
JP2021517462A 2018-09-27 2019-09-26 Printable magnetic powder for bio-nanocatalyst immobilization and 3D printed objects Pending JP2022500067A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862737910P 2018-09-27 2018-09-27
US62/737,910 2018-09-27
PCT/US2019/053307 WO2020069227A1 (en) 2018-09-27 2019-09-26 Printable magnetic powders and 3d printed objects for bionanocatalyst immobilization

Publications (2)

Publication Number Publication Date
JP2022500067A JP2022500067A (en) 2022-01-04
JPWO2020069227A5 true JPWO2020069227A5 (en) 2022-09-27

Family

ID=69949999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021517462A Pending JP2022500067A (en) 2018-09-27 2019-09-26 Printable magnetic powder for bio-nanocatalyst immobilization and 3D printed objects

Country Status (6)

Country Link
US (1) US20210189374A1 (en)
EP (1) EP3856900A4 (en)
JP (1) JP2022500067A (en)
CN (1) CN113166749A (en)
CA (1) CA3114353A1 (en)
WO (1) WO2020069227A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10881102B2 (en) 2015-05-18 2021-01-05 Zymtronix, Llc Magnetically immobilized microbiocidal enzymes
JP2018519838A (en) 2015-07-15 2018-07-26 ザイムトロニクス エルエルシーZymtronix, Llc Automated bionanocatalyst production
CA3031802A1 (en) 2016-08-13 2018-02-22 Zymtronix Catalytic Systems, Inc. Magnetically immobilized biocidal enzymes and biocidal chemicals
CN112852790B (en) * 2018-07-12 2022-04-29 浙江工业大学 Plant nitrilase chimeric enzyme mutant, coding gene and application thereof
US20210050149A1 (en) * 2019-08-12 2021-02-18 Eos Of North America, Inc. Method of manufacturing a permanent magnet
EP4243953A1 (en) * 2020-11-12 2023-09-20 Mott Corporation Static mixer assemblies and related methods of fabrication and use
WO2022119982A2 (en) * 2020-12-02 2022-06-09 Zymtronix Catalytic Systems, Inc. Modular glycan production with immobilized bionanocatalysts
CN113249286B (en) * 2021-05-25 2023-12-08 洛阳华荣生物技术有限公司 Method for constructing L-sarcosine producing strain
FR3124112A1 (en) * 2021-06-17 2022-12-23 Fabulous ADDITIVE MANUFACTURING METHOD, POLYMER POWDER COMPOSITION COMPRISING A DETECTION ADDITIVE, AND OBJECT OBTAINED BY SAID METHOD
CN116673017B (en) * 2023-04-25 2024-02-13 中南大学 Hierarchical porous piezoelectric ceramic catalyst and preparation method and application thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4343901A (en) * 1980-10-22 1982-08-10 Uop Inc. Magnetic support matrix for enzyme immobilization
US8077142B2 (en) * 2006-09-27 2011-12-13 Tred Displays Corporation Reflective, bi-stable magneto optical display architectures
US20140046023A1 (en) * 2009-07-28 2014-02-13 Instraction Gmbh Specific sorbent for binding proteins and peptides, and separation method using the same
CN104837556B (en) * 2012-10-05 2018-04-03 康奈尔大学 The mesoporous set that the enzyme being embedded in macropore support is formed
JP6193493B2 (en) * 2014-06-20 2017-09-06 株式会社フジミインコーポレーテッド Powder material used for powder additive manufacturing and powder additive manufacturing method using the same
JP2018519838A (en) * 2015-07-15 2018-07-26 ザイムトロニクス エルエルシーZymtronix, Llc Automated bionanocatalyst production
CN109068659A (en) * 2016-04-16 2018-12-21 齐姆特罗尼克斯催化系统股份有限公司 For fixing the magnetism macroporous polymer hybrid bracket of biological nano catalyst
US10135306B2 (en) * 2016-07-14 2018-11-20 National Cheng Kung University Reluctance motor and flux barrier structure thereof
EP3548175A4 (en) * 2016-12-03 2020-08-05 Zymtronix Catalytic Systems, Inc. Magnetically immobilized metabolic enzymes and cofactor systems

Similar Documents

Publication Publication Date Title
Bilal et al. Magnetic nanoparticles as versatile carriers for enzymes immobilization: A review
JPWO2020069227A5 (en)
Yiu et al. Enzyme–magnetic nanoparticle hybrids: new effective catalysts for the production of high value chemicals
Ariga et al. Nanoarchitectonics for carbon-material-based sensors
Carvalho et al. Simple physical adsorption technique to immobilize Yarrowia lipolytica lipase purified by different methods on magnetic nanoparticles: Adsorption isotherms and thermodynamic approach
Ansari et al. DBT degradation enhancement by decorating Rhodococcus erythropolis IGST8 with magnetic Fe3O4 nanoparticles
CN113166749A (en) Printable magnetic powder for immobilizing biological nano catalyst and 3D printed object
Cui et al. Hybrid magnetic cross-linked enzyme aggregates of phenylalanine ammonia lyase from Rhodotorula glutinis
Wan et al. Selective enrichment of proteins for MALDI-TOF MS analysis based on molecular imprinting
Seenuvasan et al. Magnetic nanoparticles: a versatile carrier for enzymes in bio‐processing sectors
Du et al. 3D Self‐Supporting Porous Magnetic Assemblies for Water Remediation and Beyond
Ghadi et al. Fabrication and characterization of core-shell magnetic chitosan nanoparticles as a novel carrier for immobilization of Burkholderia cepacia lipase
Cui et al. Immobilization of cross-linked phenylalanine ammonia lyase aggregates in microporous silica gel
Wei et al. Highly selective entrapment of his-tagged enzymes on superparamagnetic zirconium-based MOFs with robust renewability to enhance pH and thermal stability
Robatjazi et al. Immobilization of magnetic modified Flavobacterium ATCC 27551 using magnetic field and evaluation of the enzyme stability of immobilized bacteria
Dev et al. New generation hybrid nanobiocatalysts: The catalysis redefined
Bandyopadhyay et al. Studies on immobilized Saccharomyces cerevisiae. III. Physiology of growth and metabolism on various supports
Li et al. Immobilization of lipase from Thermomyces lanuginosus in magnetic macroporous ZIF-8 improves lipase reusability in biodiesel preparation
Yang et al. Preparation of magnetic polystyrene microspheres with a narrow size distribution
Zhu et al. Immobilization of Streptomyces thermotolerans 11432 on polyurethane foam to improve production of acetylisovaleryltylosin
Chen et al. Self‐assembling of Shewanella@ rGO@ Pd bionanohybrid for synergistic bio‐abiotic removal of Cr (VI)
Čvančarová et al. Enzyme-based nanomaterials in bioremediation
Salter et al. New materials and technology for cell immobilization
Plothe et al. Poly (2‐ethyloxazoline) as matrix for highly active electrospun enzymes in organic solvents
Li et al. Synthesis and characterization of magnetic carriers based on immobilized enzyme