JPWO2020056275A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020056275A5
JPWO2020056275A5 JP2021514050A JP2021514050A JPWO2020056275A5 JP WO2020056275 A5 JPWO2020056275 A5 JP WO2020056275A5 JP 2021514050 A JP2021514050 A JP 2021514050A JP 2021514050 A JP2021514050 A JP 2021514050A JP WO2020056275 A5 JPWO2020056275 A5 JP WO2020056275A5
Authority
JP
Japan
Prior art keywords
acid
flow battery
redox flow
membrane
aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021514050A
Other languages
Japanese (ja)
Other versions
JP2022501766A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2019/051036 external-priority patent/WO2020056275A1/en
Publication of JP2022501766A publication Critical patent/JP2022501766A/en
Publication of JPWO2020056275A5 publication Critical patent/JPWO2020056275A5/ja
Pending legal-status Critical Current

Links

Description

Figure 2020056275000004
Figure 2020056275000004

Figure 2020056275000005
Figure 2020056275000005

Figure 2020056275000006
Figure 2020056275000006

[0119]特定の用語を使用して開示された主題の幾つかの実施形態を説明したが、かかる記載は例示目的のみのためであり、主題の精神又は範囲から逸脱することなく、変更及び変形を行うことができることを理解すべきである。
以下に、出願時の特許請求の範囲の記載を示す。
[請求項1]
レドックスフロー電池膜を形成する方法であって、
ポリリン酸、芳香族又はヘテロ芳香族テトラアミノ化合物、及び芳香族又はヘテロ芳香族カルボン酸化合物を含む重合組成物であって、前記芳香族又はヘテロ芳香族カルボン酸化合物は、芳香族又はヘテロ芳香族ポリカルボン酸又はそのエステル、無水物、又は酸塩化物を含み、及び/又は芳香族又はヘテロ芳香族ジアミノカルボン酸を含む重合組成物を形成すること;
前記芳香族又はヘテロ芳香族テトラアミノ化合物を前記芳香族又はヘテロ芳香族カルボン酸化合物と重合して、前記ポリリン酸中に溶解したポリベンズイミダゾールを含むポリマー溶液を形成すること;
前記ポリマー溶液を成形して、前記ポリマー溶液を含む膜前駆体を形成すること;
前記膜前駆体のポリリン酸の少なくとも一部を加水分解してリン酸及び水を形成し、それにより、前記膜前駆体が、前記ポリベンズイミダゾールを含むゲル膜を形成すること、ここで、当該ゲル膜が、ポリベンズイミダゾールを含み、構造を失うことなく約60重量%以上の液体含有物を含ませることができる自己支持膜であり;及び
前記ゲル膜に、レドックスフロー電池支持電解質を吸収させること;
を含む、上記方法。
[請求項2]
前記重合組成物が、前記重合組成物の約10重量%以下の濃度の前記芳香族又はヘテロ芳香族テトラアミノ化合物及び前記芳香族又はヘテロ芳香族カルボン酸化合物を含む、請求項1に記載の方法。
[請求項3]
前記芳香族又はヘテロ芳香族テトラアミノ化合物が、2,3,5,6-テトラアミノピリジン;3,3’,4,4’-テトラアミノジフェニルスルホン;3,3’,4,4’-テトラアミノジフェニルエーテル;3,3’,4,4’-テトラアミノビフェニル;1,2,4,5-テトラアミノベンゼン;3,3’,4,4’-テトラアミノベンゾフェノン;3,3’,4,4’-テトラアミノジフェニルメタン;及び3,3’,4,4’-テトラアミノジフェニルジメチルメタン、又はそれらの塩、或いはそれらの任意の組合せを含む、請求項1又は2に記載の方法。
[請求項4]
前記芳香族又はヘテロ芳香族カルボン酸化合物が、ピリジン-2,5-ジカルボン酸;ピリジン-3,5-ジカルボン酸;ピリジン-2,6-ジカルボン酸;ピリジン-2,4-ジカルボン酸;4-フェニル-2,5-ピリジンジカルボン酸;3,5-ピラゾールジカルボン酸;2,6-ピリミジンジカルボン酸;2,5-ピラジンジカルボン酸;2,4,6-ピリジントリカルボン酸;ベンズイミダゾール-5,6-ジカルボン酸;5-ヒドロキシイソフタル酸;4-ヒドロキシイソフタル酸;2-ヒドロキシテレフタル酸;5-アミノイソフタル酸;5-N,N-ジメチルアミノイソフタル酸;5-N,N-ジエチルアミノイソフタル酸;2,5-ジヒドロキシテレフタル酸;2,6-ジヒドロキシイソフタル酸;4,6-ジヒドロキシイソフタル酸;2,3-ジヒドロキシフタル酸;2,4-ジヒドロキシフタル酸;3,4-ジヒドロキシフタル酸;1,8-ジヒドロキシナフタレン-3,6-ジカルボン酸;ジフェニルスルホン-4,4’-ジカルボン酸;イソフタル酸;テレフタル酸;フタル酸;3-フルオロフタル酸;5-フルオロイソフタル酸;2-フルオロテレフタル酸;テトラフルオロフタル酸;テトラフルオロイソフタル酸;テトラフルオロテレフタル酸;3-スルホフタル酸;5-スルホイソフタル酸;2-スルホテレフタル酸;テトラスルホフタル酸;テトラスルホイソフタル酸;テトラスルホテレフタル酸;1,4-ナフタレンジカルボン酸;1,5-ナフタレンジカルボン酸;2,6-ナフタレンジカルボン酸;2,7-ナフタレンジカルボン酸;ジフェン酸;ジフェニルエーテル 4,4’-ジカルボン酸;ベンゾフェノン-4,4’-ジカルボン酸;ビフェニル-4,4’-ジカルボン酸;4-トリフルオロメチルフタル酸;2,2-ビス(4-カルボ
キシフェニル)ヘキサフルオロプロパン;4,4’-スチルベンジカルボン酸;及び4-カルボキシ桂皮酸、又はそれらの任意の組み合わせを含む、請求項1~3のいずれかに記載の方法。
[請求項5]
前記膜前駆体が20μm~約4,000μmの厚さを有する、請求項1~4のいずれかに記載の方法。
[請求項6]
前記加水分解を、約0℃~約150℃の温度及び約20%~100%の相対湿度において行う、請求項1~5のいずれかに記載の方法。
[請求項7]
前記ゲル膜を架橋することを更に含む、請求項1~6のいずれかに記載の方法。
[請求項8]
レドックスフロー電池膜であって、
構造を失うことなく約60重量%以上の液体含有物を含ませることができる自己支持膜であるポリベンズイミダゾールゲル膜;及び
前記ポリベンズイミダゾールゲル膜内に吸収されたレドックスフロー電池支持電解質;を含み;
前記レドックスフロー電池膜は、約100mS/cm以上の2.6M硫酸溶液中における面内イオン伝導率を示す、上記レドックスフロー電池膜。
[請求項9]
前記ゲル膜の前記ポリベンズイミダゾールが、次の繰り返し単位:

Figure 2020056275000007
Figure 2020056275000008
Figure 2020056275000009
(式中、n及びmは、それぞれ独立して、1以上、約10以上、又は約100以上である)
の1以上又はそれらの任意の組み合わせを含む、請求項8に記載のレドックスフロー電池膜。
[請求項10]
前記支持電解質が、塩酸、硝酸、フルオロスルホン酸、又は硫酸、或いはそれらの混合物のような鉱酸;酢酸、ギ酸、p-トルエンスルホン酸、又はトリフルオロメタンスルホン酸、或いはそれらの混合物のような強有機酸;或いは1以上の鉱酸及び/又は1以上の有機酸の組合せを含むか;或いは前記支持電解質が、塩化ナトリウム、塩化カリウム、水酸化ナトリウム、水酸化カリウム、硫化ナトリウム、硫化カリウム、又はそれらの任意の組合せを含むか、或いは前記支持電解質が、テトラアルキルアンモニウムカチオンを含む、請求項8又は9に記載のレドックスフロー電池膜。
[請求項11]
前記レドックスフロー電池膜が架橋されている、請求項8~10のいずれかに記載のレドックスフロー電池膜。
[請求項12]
ポリベンズイミダゾールゲル膜、及び前記ポリベンズイミダゾールゲル膜内に吸収されているレドックスフロー電池支持電解質を含むレドックスフロー電池であって、前記ポリベンズイミダゾールゲル膜は、構造を失うことなく約60重量%以上の液体含有物を含ませることができる自己支持膜であり、前記レドックスフロー電池は、約100mA/cm以上の電流密度で作動させることができる、上記レドックスフロー電池。
[請求項13]
前記レドックスフロー電池がバナジウムフロー電池である、請求項12に記載のレドックスフロー電池。
[請求項14]
前記レドックスフロー電池が、242mA/cmの電流密度において、約90%以上のクーロン効率及び/又は約75%以上のエネルギー効率及び/又は約80%以上の電圧効率を有する、請求項12又は13に記載のレドックスフロー電池。
[請求項15]
前記レドックスフロー電池が、483mA/cmの電流密度において、約90%以上のクーロン効率及び/又は約65%以上のエネルギー効率及び/又は約65%以上の電圧効率を有する、請求項12~14のいずれかに記載のレドックスフロー電池。 [0119] Although specific language has been used to describe certain embodiments of the disclosed subject matter, such description is for illustrative purposes only and modifications and variations can be made without departing from the spirit or scope of the subject matter. It should be understood that the
The description of the scope of claims as filed is shown below.
[Claim 1]
A method of forming a redox flow battery membrane comprising:
A polymeric composition comprising polyphosphoric acid, an aromatic or heteroaromatic tetraamino compound, and an aromatic or heteroaromatic carboxylic acid compound, wherein the aromatic or heteroaromatic carboxylic acid compound is an aromatic or heteroaromatic forming a polymeric composition comprising a polycarboxylic acid or its ester, anhydride, or acid chloride and/or comprising an aromatic or heteroaromatic diaminocarboxylic acid;
polymerizing the aromatic or heteroaromatic tetraamino compound with the aromatic or heteroaromatic carboxylic acid compound to form a polymer solution comprising polybenzimidazole dissolved in the polyphosphoric acid;
shaping the polymer solution to form a membrane precursor comprising the polymer solution;
hydrolyzing at least a portion of the polyphosphoric acid of said film precursor to form phosphoric acid and water, whereby said film precursor forms a gel film comprising said polybenzimidazole, wherein said The gel membrane comprises polybenzimidazole and is a self-supporting membrane capable of containing about 60% by weight or more of liquid content without loss of structure; and allowing the gel membrane to imbibe a redox flow battery supporting electrolyte. thing;
The above method, including
[Claim 2]
2. The method of claim 1, wherein said polymeric composition comprises said aromatic or heteroaromatic tetraamino compound and said aromatic or heteroaromatic carboxylic acid compound at a concentration of no greater than about 10% by weight of said polymeric composition. .
[Claim 3]
The aromatic or heteroaromatic tetraamino compound is 2,3,5,6-tetraaminopyridine; 3,3′,4,4′-tetraaminodiphenylsulfone; 3,3′,4,4′-tetra aminodiphenyl ether; 3,3',4,4'-tetraaminobiphenyl;1,2,4,5-tetraaminobenzene;3,3',4,4'-tetraaminobenzophenone;3,3',4,4'-tetraaminodiphenylmethane; and 3,3',4,4'-tetraaminodiphenyldimethylmethane, or salts thereof, or any combination thereof.
[Claim 4]
The aromatic or heteroaromatic carboxylic acid compound is pyridine-2,5-dicarboxylic acid; pyridine-3,5-dicarboxylic acid; pyridine-2,6-dicarboxylic acid; pyridine-2,4-dicarboxylic acid; Phenyl-2,5-pyridinedicarboxylic acid; 3,5-pyrazoledicarboxylic acid; 2,6-pyrimidinedicarboxylic acid; 2,5-pyrazinedicarboxylic acid; 2,4,6-pyridinetricarboxylic acid; benzimidazole-5,6 5-hydroxyisophthalic acid; 4-hydroxyisophthalic acid; 2-hydroxyterephthalic acid; 5-aminoisophthalic acid; 5-N,N-dimethylaminoisophthalic acid; 2,6-dihydroxyisophthalic acid; 4,6-dihydroxyisophthalic acid; 2,3-dihydroxyphthalic acid; 2,4-dihydroxyphthalic acid; 3,4-dihydroxyphthalic acid; -dihydroxynaphthalene-3,6-dicarboxylic acid; diphenylsulfone-4,4'-dicarboxylic acid; isophthalic acid; terephthalic acid; phthalic acid; 3-fluorophthalic acid; fluorophthalic acid; tetrafluoroisophthalic acid; tetrafluoroterephthalic acid; 3-sulfophthalic acid; 5-sulfoisophthalic acid; 2-sulfoterephthalic acid; tetrasulfophthalic acid; 2,6-naphthalenedicarboxylic acid; 2,7-naphthalenedicarboxylic acid; diphenic acid; diphenyl ether 4,4'-dicarboxylic acid; benzophenone-4,4'-dicarboxylic acid; 4-trifluoromethylphthalic acid; 2,2-bis(4-carboxyphenyl)hexafluoropropane; 4,4'-stilbenedicarboxylic acid; and 4-carboxycinnamic acid, or The method of any one of claims 1-3, including any combination thereof.
[Claim 5]
The method of any of claims 1-4, wherein the film precursor has a thickness of from 20 µm to about 4,000 µm.
[Claim 6]
The method of any of claims 1-5, wherein said hydrolysis is carried out at a temperature of about 0°C to about 150°C and a relative humidity of about 20% to 100%.
[Claim 7]
The method of any of claims 1-6, further comprising cross-linking the gel film.
[Claim 8]
A redox flow battery membrane comprising:
a polybenzimidazole gel membrane, which is a self-supporting membrane capable of containing about 60% or more by weight liquid inclusions without loss of structure; and a redox flow battery supporting electrolyte absorbed within said polybenzimidazole gel membrane; include;
The redox flow battery membrane, wherein the redox flow battery membrane exhibits an in-plane ionic conductivity in a 2.6 M sulfuric acid solution of about 100 mS/cm 2 or more.
[Claim 9]
The polybenzimidazole of the gel film has the following repeating units:
Figure 2020056275000007
Figure 2020056275000008
Figure 2020056275000009
(wherein n and m are each independently 1 or more, about 10 or more, or about 100 or more)
or any combination thereof.
[Claim 10]
the supporting electrolyte is a mineral acid such as hydrochloric acid, nitric acid, fluorosulfonic acid, or sulfuric acid, or mixtures thereof; or comprises a combination of one or more mineral acids and/or one or more organic acids; or the supporting electrolyte is sodium chloride, potassium chloride, sodium hydroxide, potassium hydroxide, sodium sulfide, potassium sulfide, or 10. The redox flow battery membrane of claim 8 or 9, comprising any combination thereof, or wherein the supporting electrolyte comprises tetraalkylammonium cations.
[Claim 11]
The redox flow battery membrane of any of claims 8-10, wherein the redox flow battery membrane is crosslinked.
[Claim 12]
A redox flow battery comprising a polybenzimidazole gel membrane and a redox flow battery supporting electrolyte absorbed within said polybenzimidazole gel membrane, said polybenzimidazole gel membrane comprising about 60% by weight without loss of structure. a self-supporting membrane capable of containing liquid inclusions as defined above, and wherein said redox flow battery can be operated at a current density of about 100 mA/cm 2 or greater.
[Claim 13]
13. The redox flow battery of claim 12, wherein said redox flow battery is a vanadium flow battery.
[Claim 14]
14. The redox flow battery of claim 12 or 13, wherein the redox flow battery has a coulombic efficiency of about 90% or more and/or an energy efficiency of about 75% or more and/or a voltage efficiency of about 80% or more at a current density of 242 mA/ cm2 . The redox flow battery described in .
[Claim 15]
Claims 12-14, wherein the redox flow battery has a coulombic efficiency of about 90% or more and/or an energy efficiency of about 65% or more and/or a voltage efficiency of about 65% or more at a current density of 483 mA/ cm2 . Redox flow battery according to any one of.

Claims (15)

レドックスフロー電池膜を形成する方法であって、
ポリリン酸、芳香族又はヘテロ芳香族テトラアミノ化合物、及び芳香族又はヘテロ芳香族カルボン酸化合物を含む重合組成物であって、前記芳香族又はヘテロ芳香族カルボン酸化合物は、芳香族又はヘテロ芳香族ポリカルボン酸又はそのエステル、無水物、又は酸塩化物を含み、及び/又は芳香族又はヘテロ芳香族ジアミノカルボン酸を含む重合組成物を形成すること;
前記芳香族又はヘテロ芳香族テトラアミノ化合物を前記芳香族又はヘテロ芳香族カルボン酸化合物と重合して、前記ポリリン酸中に溶解したポリベンズイミダゾールを含むポリマー溶液を形成すること;
前記ポリマー溶液を成形して、前記ポリマー溶液を含む膜前駆体を形成すること;
前記膜前駆体のポリリン酸の少なくとも一部を加水分解してリン酸及び水を形成し、それにより、前記膜前駆体が、前記ポリベンズイミダゾールを含むゲル膜を形成すること、ここで、当該ゲル膜が、ポリベンズイミダゾールを含み、構造を失うことなく約60重量%以上の液体含有物を含ませることができる自己支持膜であり;
前記ゲル膜をすすいでリン酸及び残存するポリリン酸を除去すること;及び
前記すすがれたゲル膜に、レドックスフロー電池支持電解質を吸収させること;
を含む、上記方法。
A method of forming a redox flow battery membrane comprising:
A polymeric composition comprising polyphosphoric acid, an aromatic or heteroaromatic tetraamino compound, and an aromatic or heteroaromatic carboxylic acid compound, wherein the aromatic or heteroaromatic carboxylic acid compound is an aromatic or heteroaromatic forming a polymeric composition comprising a polycarboxylic acid or its ester, anhydride, or acid chloride and/or comprising an aromatic or heteroaromatic diaminocarboxylic acid;
polymerizing the aromatic or heteroaromatic tetraamino compound with the aromatic or heteroaromatic carboxylic acid compound to form a polymer solution comprising polybenzimidazole dissolved in the polyphosphoric acid;
shaping the polymer solution to form a membrane precursor comprising the polymer solution;
hydrolyzing at least a portion of the polyphosphoric acid of said film precursor to form phosphoric acid and water, whereby said film precursor forms a gel film comprising said polybenzimidazole, wherein said the gel membrane comprises polybenzimidazole and is a self- supporting membrane capable of containing about 60% or more by weight liquid content without loss of structure;
rinsing the gel membrane to remove phosphoric acid and residual polyphosphoric acid; and allowing the rinsed gel membrane to absorb a redox flow battery supporting electrolyte;
The above method, including
前記重合組成物が、前記重合組成物の約10重量%以下の濃度の前記芳香族又はヘテロ芳香族テトラアミノ化合物及び前記芳香族又はヘテロ芳香族カルボン酸化合物を含む、請求項1に記載の方法。 2. The method of claim 1, wherein said polymeric composition comprises said aromatic or heteroaromatic tetraamino compound and said aromatic or heteroaromatic carboxylic acid compound at a concentration of about 10% or less by weight of said polymeric composition. . 前記芳香族又はヘテロ芳香族テトラアミノ化合物が、2,3,5,6-テトラアミノピリジン;3,3’,4,4’-テトラアミノジフェニルスルホン;3,3’,4,4’-テトラアミノジフェニルエーテル;3,3’,4,4’-テトラアミノビフェニル;1,2,4,5-テトラアミノベンゼン;3,3’,4,4’-テトラアミノベンゾフェノン;3,3’,4,4’-テトラアミノジフェニルメタン;及び3,3’,4,4’-テトラアミノジフェニルジメチルメタン、又はそれらの塩、或いはそれらの任意の組合せを含む、請求項1又は2に記載の方法。 The aromatic or heteroaromatic tetraamino compound is 2,3,5,6-tetraaminopyridine; 3,3′,4,4′-tetraaminodiphenylsulfone; 3,3′,4,4′-tetra aminodiphenyl ether; 3,3',4,4'-tetraaminobiphenyl; 1,2,4,5-tetraaminobenzene; 3,3',4,4'-tetraaminobenzophenone; 3,3',4, 4'-tetraaminodiphenylmethane; and 3,3',4,4'-tetraaminodiphenyldimethylmethane, or salts thereof, or any combination thereof. 前記芳香族又はヘテロ芳香族カルボン酸化合物が、ピリジン-2,5-ジカルボン酸;ピリジン-3,5-ジカルボン酸;ピリジン-2,6-ジカルボン酸;ピリジン-2,4-ジカルボン酸;4-フェニル-2,5-ピリジンジカルボン酸;3,5-ピラゾールジカルボン酸;2,6-ピリミジンジカルボン酸;2,5-ピラジンジカルボン酸;2,4,6-ピリジントリカルボン酸;ベンズイミダゾール-5,6-ジカルボン酸;5-ヒドロキシイソフタル酸;4-ヒドロキシイソフタル酸;2-ヒドロキシテレフタル酸;5-アミノイソフタル酸;5-N,N-ジメチルアミノイソフタル酸;5-N,N-ジエチルアミノイソフタル酸;2,5-ジヒドロキシテレフタル酸;2,6-ジヒドロキシイソフタル酸;4,6-ジヒドロキシイソフタル酸;2,3-ジヒドロキシフタル酸;2,4-ジヒドロキシフタル酸;3,4-ジヒドロキシフタル酸;1,8-ジヒドロキシナフタレン-3,6-ジカルボン酸;ジフェニルスルホン-4,4’-ジカルボン酸;イソフタル酸;テレフタル酸;フタル酸;3-フルオロフタル酸;5-フルオロイソフタル酸;2-フルオロテレフタル酸;テトラフルオロフタル酸;テトラフルオロイソフタル酸;テトラフルオロテレフタル酸;3-スルホフタル酸;5-スルホイソフタル酸;2-スルホテレフタル酸;テトラスルホフタル酸;テトラスルホイソフタル酸;テトラスルホテレフタル酸;1,4-ナフタレンジカルボン酸;1,5-ナフタレンジカルボン酸;2,6-ナフタレンジカルボン酸;2,7-ナフタレンジカルボン酸;ジフェン酸;ジフェニルエーテル 4,4’-ジカルボン酸;ベンゾフェノン-4,4’-ジカルボン酸;ビフェニル-4,4’-ジカルボン酸;4-トリフルオロメチルフタル酸;2,2-ビス(4-カルボ
キシフェニル)ヘキサフルオロプロパン;4,4’-スチルベンジカルボン酸;及び4-カルボキシ桂皮酸、又はそれらの任意の組み合わせを含む、請求項1~3のいずれかに記載の方法。
The aromatic or heteroaromatic carboxylic acid compound is pyridine-2,5-dicarboxylic acid; pyridine-3,5-dicarboxylic acid; pyridine-2,6-dicarboxylic acid; pyridine-2,4-dicarboxylic acid; Phenyl-2,5-pyridinedicarboxylic acid; 3,5-pyrazoledicarboxylic acid; 2,6-pyrimidinedicarboxylic acid; 2,5-pyrazinedicarboxylic acid; 2,4,6-pyridinetricarboxylic acid; benzimidazole-5,6 5-hydroxyisophthalic acid; 4-hydroxyisophthalic acid; 2-hydroxyterephthalic acid; 5-aminoisophthalic acid; 5-N,N-dimethylaminoisophthalic acid; 2,6-dihydroxyisophthalic acid; 4,6-dihydroxyisophthalic acid; 2,3-dihydroxyphthalic acid; 2,4-dihydroxyphthalic acid; 3,4-dihydroxyphthalic acid; -dihydroxynaphthalene-3,6-dicarboxylic acid; diphenylsulfone-4,4'-dicarboxylic acid; isophthalic acid; terephthalic acid; phthalic acid; 3-fluorophthalic acid; fluorophthalic acid; tetrafluoroisophthalic acid; tetrafluoroterephthalic acid; 3-sulfophthalic acid; 5-sulfoisophthalic acid; 2-sulfoterephthalic acid; tetrasulfophthalic acid; 2,6-naphthalenedicarboxylic acid; 2,7-naphthalenedicarboxylic acid; diphenic acid; diphenyl ether 4,4'-dicarboxylic acid; benzophenone-4,4'-dicarboxylic acid; 4-trifluoromethylphthalic acid; 2,2-bis(4-carboxyphenyl)hexafluoropropane; 4,4'-stilbenedicarboxylic acid; and 4-carboxycinnamic acid, or The method of any one of claims 1-3, including any combination thereof.
前記膜前駆体が20μm~約4,000μmの厚さを有する、請求項1~4のいずれかに記載の方法。 The method of any of claims 1-4, wherein the film precursor has a thickness of from 20 µm to about 4,000 µm. 前記加水分解を、約0℃~約150℃の温度及び約20%~100%の相対湿度において行う、請求項1~5のいずれかに記載の方法。 The method of any of claims 1-5, wherein said hydrolysis is performed at a temperature of about 0°C to about 150°C and a relative humidity of about 20% to 100%. 前記ゲル膜を架橋することを更に含む、請求項1~6のいずれかに記載の方法。 The method of any of claims 1-6, further comprising cross-linking the gel film. レドックスフロー電池膜であって、
構造を失うことなく約60重量%以上の液体含有物を含ませることができる自己支持膜であるポリベンズイミダゾールゲル膜;及び
前記ポリベンズイミダゾールゲル膜内に吸収されたレドックスフロー電池支持電解質;を含み;
前記レドックスフロー電池膜は、約100mS/cm以上の2.6M硫酸溶液中における面内イオン伝導率を示す、上記レドックスフロー電池膜。
A redox flow battery membrane comprising:
a polybenzimidazole gel membrane, which is a self-supporting membrane capable of containing about 60% or more by weight liquid inclusions without loss of structure; and a redox flow battery supporting electrolyte absorbed within said polybenzimidazole gel membrane; include;
The redox flow battery membrane, wherein the redox flow battery membrane exhibits an in-plane ionic conductivity in a 2.6 M sulfuric acid solution of about 100 mS/cm 2 or more.
前記ゲル膜の前記ポリベンズイミダゾールが、次の繰り返し単位:
Figure 2020056275000001
Figure 2020056275000002
Figure 2020056275000003
(式中、n及びmは、それぞれ独立して、1以上、約10以上、又は約100以上である)
の1以上又はそれらの任意の組み合わせを含む、請求項8に記載のレドックスフロー電池膜。
The polybenzimidazole of the gel film has the following repeating units:
Figure 2020056275000001
Figure 2020056275000002
Figure 2020056275000003
(wherein n and m are each independently 1 or more, about 10 or more, or about 100 or more)
or any combination thereof.
前記支持電解質が、塩酸、硝酸、フルオロスルホン酸、又は硫酸、或いはそれらの混合物のような鉱酸;酢酸、ギ酸、p-トルエンスルホン酸、又はトリフルオロメタンスルホン酸、或いはそれらの混合物のような強有機酸;或いは1以上の鉱酸及び/又は1以上の有機酸の組合せを含むか;或いは前記支持電解質が、塩化ナトリウム、塩化カリウム、水酸化ナトリウム、水酸化カリウム、硫化ナトリウム、硫化カリウム、又はそれらの任意の組合せを含むか、或いは前記支持電解質が、テトラアルキルアンモニウムカチオンを含む、請求項8又は9に記載のレドックスフロー電池膜。 the supporting electrolyte is a mineral acid such as hydrochloric acid, nitric acid, fluorosulfonic acid, or sulfuric acid, or mixtures thereof; or comprises a combination of one or more mineral acids and/or one or more organic acids; or the supporting electrolyte is sodium chloride, potassium chloride, sodium hydroxide, potassium hydroxide, sodium sulfide, potassium sulfide, or 10. The redox flow battery membrane of claim 8 or 9, comprising any combination thereof, or wherein the supporting electrolyte comprises tetraalkylammonium cations. 前記レドックスフロー電池膜が架橋されている、請求項8~10のいずれかに記載のレドックスフロー電池膜。 The redox flow battery membrane of any of claims 8-10, wherein the redox flow battery membrane is crosslinked. ポリベンズイミダゾールゲル膜、及び前記ポリベンズイミダゾールゲル膜内に吸収されているレドックスフロー電池支持電解質を含むレドックスフロー電池であって、前記ポリベンズイミダゾールゲル膜は、構造を失うことなく約60重量%以上の液体含有物を含ませることができる自己支持膜であり、前記レドックスフロー電池は、約100mA/cm以上の電流密度で作動させることができる、上記レドックスフロー電池。 A redox flow battery comprising a polybenzimidazole gel membrane and a redox flow battery supporting electrolyte absorbed within said polybenzimidazole gel membrane, said polybenzimidazole gel membrane comprising about 60% by weight without loss of structure. a self-supporting membrane capable of containing liquid inclusions as defined above, and wherein said redox flow battery can be operated at a current density of about 100 mA/cm 2 or greater. 前記レドックスフロー電池がバナジウムフロー電池である、請求項12に記載のレドックスフロー電池。 13. The redox flow battery of claim 12, wherein said redox flow battery is a vanadium flow battery. 前記レドックスフロー電池が、242mA/cmの電流密度において、約90%以上のクーロン効率及び/又は約75%以上のエネルギー効率及び/又は約80%以上の電圧効率を有する、請求項12又は13に記載のレドックスフロー電池。 14. The redox flow battery of claim 12 or 13, wherein the redox flow battery has a coulombic efficiency of about 90% or more and/or an energy efficiency of about 75% or more and/or a voltage efficiency of about 80% or more at a current density of 242 mA/ cm2 . The redox flow battery described in . 前記レドックスフロー電池が、483mA/cmの電流密度において、約90%以上のクーロン効率及び/又は約65%以上のエネルギー効率及び/又は約65%以上の電圧効率を有する、請求項12~14のいずれかに記載のレドックスフロー電池。 Claims 12-14, wherein the redox flow battery has a coulombic efficiency of about 90% or more and/or an energy efficiency of about 65% or more and/or a voltage efficiency of about 65% or more at a current density of 483 mA/ cm2 . Redox flow battery according to any one of.
JP2021514050A 2018-09-14 2019-09-13 Polybenzimidazole (PBI) membrane for redox flow batteries Pending JP2022501766A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862731156P 2018-09-14 2018-09-14
US62/731,156 2018-09-14
PCT/US2019/051036 WO2020056275A1 (en) 2018-09-14 2019-09-13 Polybenzimidazole (pbi) membranes for redox flow batteries

Publications (2)

Publication Number Publication Date
JP2022501766A JP2022501766A (en) 2022-01-06
JPWO2020056275A5 true JPWO2020056275A5 (en) 2022-09-12

Family

ID=69773129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021514050A Pending JP2022501766A (en) 2018-09-14 2019-09-13 Polybenzimidazole (PBI) membrane for redox flow batteries

Country Status (6)

Country Link
US (2) US11302948B2 (en)
EP (1) EP3850697A4 (en)
JP (1) JP2022501766A (en)
KR (1) KR20210057115A (en)
CN (1) CN112955498B (en)
WO (1) WO2020056275A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3850698A4 (en) 2018-09-14 2022-07-27 University of South Carolina Low permeability polybenzimidazole (pbi) membranes for redox flow batteries
EP3850035A1 (en) 2018-09-14 2021-07-21 University of South Carolina New method for producing pbi films without organic solvents
WO2020056275A1 (en) 2018-09-14 2020-03-19 University Of South Carolina Polybenzimidazole (pbi) membranes for redox flow batteries
US11777124B2 (en) 2020-03-06 2023-10-03 University Of South Carolina Proton-conducting PBI membrane processing with enhanced performance and durability
CN114573847B (en) * 2020-11-30 2023-01-10 中国科学院大连化学物理研究所 Ultra-high mechanical strength ultrathin membrane for flow battery and preparation and application thereof
KR102543046B1 (en) * 2020-12-09 2023-06-15 한국과학기술연구원 Method for preparing hydroxide conductive PBI membrane
CN115490859A (en) * 2021-06-18 2022-12-20 中国石油化工股份有限公司 Polybenzimidazole and preparation method and application thereof
KR20230052066A (en) 2021-10-12 2023-04-19 한국과학기술연구원 PBI-based membrane doped with a sulfur-containing acid solution having improved performance, preparation method thereof and use thereof
CN115863721A (en) * 2022-12-01 2023-03-28 复化能源科技(上海)有限公司 Stabilizer for all-vanadium redox flow battery electrolyte
WO2024123068A1 (en) * 2022-12-07 2024-06-13 스탠다드에너지(주) Post-treatment method for secondary battery polybenzimidazole-based separator, and post-treated polybenzimidazole-based separator

Family Cites Families (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4522974A (en) 1982-07-26 1985-06-11 Celanese Corporation Melt processable polyester capable of forming an anisotropic melt comprising a relatively low concentration of 6-oxy-2-naphthoyl moiety-4-benzoyl moiety, 1,4-dioxyphenylene moiety, isophthaloyl moiety and terephthaloyl moiety
US4473682A (en) 1982-07-26 1984-09-25 Celanese Corporation Melt processable polyester capable of forming an anisotropic melt comprising a relatively low concentration of 6-oxy-2-naphthoyl moiety, 4-oxybenzoyl moiety, 4,4'-dioxybiphenyl moiety, and terephthaloyl moiety
US4786567A (en) 1986-02-11 1988-11-22 Unisearch Limited All-vanadium redox battery
US4746694A (en) 1987-07-06 1988-05-24 Hoechst Celanese Corporation Melt processable polyester capable of forming an anisotropic melt comprising a relatively low concentration of 6-oxy-2-naphthoyl moiety, 4-oxybenzoyl moiety, 2,6-dioxynaphthalene moiety, and terephthaloyl moiety
US4898917A (en) 1987-09-11 1990-02-06 Hoechst Celanese Corporation N-substituted polybenzimidazole polymer
US5114612A (en) 1990-04-04 1992-05-19 The United States Of America As Represented By The Department Of Energy Liquid crystal polyester thermosets
US5198551A (en) 1990-04-10 1993-03-30 The United States Of America As Represented By The United States Department Of Energy Polyamide thermosets
US5658649A (en) 1992-03-13 1997-08-19 The Regents Of The University Of California Office Of Technology Transfer Corrosion resistant coating
US5382665A (en) 1993-03-17 1995-01-17 The United States Of America As Represented By The United States Department Of Energy Synthesis of oxazolines and oxazines
US5575949A (en) 1994-06-02 1996-11-19 The Regents Of The University Of California, Office Of Technology Transfer Thermoset molecular composites
US5475133A (en) 1994-11-28 1995-12-12 The Regents Of The University Of California Bis-propargyl thermosets
US5583169A (en) 1995-03-10 1996-12-10 The Regents Of The University Of California Office Of Technology Transfer Stabilization of polyaniline solutions through additives
US5840376A (en) 1996-02-28 1998-11-24 The Regents Of The University Of California High magnetic field processing of liquid crystalline polymers
US6458968B2 (en) 2000-06-09 2002-10-01 Rensselaer Polytechnic Institute Dithiocarboxylic ester synthetic process
US6765076B2 (en) 2001-03-20 2004-07-20 Rensselaer Polytechnic Institute Transition metal superoxides
DE10235358A1 (en) * 2002-08-02 2004-02-12 Celanese Ventures Gmbh Proton conducting polymer membrane, useful for the production of fuel cells, is prepared by mixing an aromatic tetra-amino compound with an aromatic carboxylic acid in vinyl containing phosphoric acid
US6987163B2 (en) 2002-08-07 2006-01-17 Research Foundation Of The State University Of New York Modified polybenzimidazole (PBI) membranes for enhanced polymer electrochemical cells
AU2003265493A1 (en) 2002-08-19 2004-03-03 Rensselaer Polytechnic Institute Liquid crystal polymers
DE10242708A1 (en) 2002-09-13 2004-05-19 Celanese Ventures Gmbh Proton-conducting membranes and their use
DE10246372A1 (en) 2002-10-04 2004-04-15 Celanese Ventures Gmbh Catalyst-coated polymer electrolyte membrane for use, e.g. in fuel cells, obtained by processing a mixture of polyphosphoric acid and polyazole to form a self-supporting membrane which is then coated with catalyst
DE10246461A1 (en) 2002-10-04 2004-04-15 Celanese Ventures Gmbh Polymer electrolyte membrane containing a polyazole blend for use, e.g. in fuel cells, obtained by processing a mixture of polyphosphoric acid, polyazole and non-polyazole polymer to form a self-supporting membrane
DE10246459A1 (en) 2002-10-04 2004-04-15 Celanese Ventures Gmbh Polymer electrolyte membrane for use, e.g. in fuel cells, obtained by heating a mixture of phosphonated aromatic polyazole monomers in polyphosphoric acid and then processing to form a self-supporting membrane
DE10246373A1 (en) 2002-10-04 2004-04-15 Celanese Ventures Gmbh Polymer electrolyte membrane for use, e.g. in fuel cells, manufactured by heating a mixture of sulfonated aromatic polyazole monomers in polyphosphoric acid and then processing to form a self-supporting membrane
DE10258580A1 (en) 2002-12-16 2004-06-24 Celanese Ventures Gmbh High molecular weight polyazoles, e.g. useful for making shaped products, fibers, films, coatings and electrode membranes, produced by polymerizing a selected particle size fraction
WO2004108770A1 (en) 2003-05-30 2004-12-16 Rensselaer Polytechnic Institute Low odor chain transfer agents for controlled radical polymerization
US7820314B2 (en) 2003-07-27 2010-10-26 Basf Fuel Cell Research Gmbh Proton-conducting membrane and use thereof
DE10336363A1 (en) 2003-08-08 2005-03-03 Celanese Ventures Gmbh Process for the preparation of crystalline pyrophosphates, and use of these compounds as catalysts or as an additive for the membranes, in particular for membranes for fuel cells
US20080038624A1 (en) 2003-09-04 2008-02-14 Jorg Belack Proton-conducting polymer membrane coated with a catalyst layer, said polymer membrane comprising phosphonic acid polymers, membrane/electrode unit and use thereof in fuel cells
US7115334B2 (en) 2003-12-08 2006-10-03 Samsung Sdi Co., Ltd. Gel electrolyte and fuel cell employing the same
US7537853B2 (en) 2004-01-20 2009-05-26 Samsung Sdi Co., Ltd. Gel electrolyte, electrode for fuel cell, and fuel cell
US20050186480A1 (en) 2004-01-23 2005-08-25 Yuichi Aihara Gel electrolyte, electrode for fuel cell, fuel cell, and method of producing the gel electrolyte
US7838138B2 (en) 2005-09-19 2010-11-23 3M Innovative Properties Company Fuel cell electrolyte membrane with basic polymer
US20070218334A1 (en) 2006-03-16 2007-09-20 Bonorand Lukas M Methods for making sulfonated non-aromatic polymer electrolyte membranes
KR100754374B1 (en) 2006-02-07 2007-08-31 삼성에스디아이 주식회사 Electrolyte membrane using polybenzoxazines and manufacturing method thereof
US20070227900A1 (en) 2006-04-04 2007-10-04 H2 Pump Llc Performance enhancement via water management in electrochemical cells
KR100902411B1 (en) 2006-12-22 2009-06-11 한국과학기술연구원 Partially sulfonated PBI, method for preparing the same, MEA for fuel cell using the PBI and method for preparing the same
KR101366808B1 (en) 2007-10-11 2014-02-25 삼성전자주식회사 Polybenzimidazole-base complex, crosslinked material of polybenzoxazines formed thereof, and fuel cell using the same
KR20100116677A (en) * 2008-02-27 2010-11-01 솔베이(소시에떼아노님) Polymer composition, polymer membrane comprising the polymer composition, process for preparing it and fuel cell comprising the membrane
FR2928492B1 (en) 2008-03-06 2011-10-21 Ceram Hyd MATERIAL FOR AN ELECTROCHEMICAL DEVICE.
CN101338038B (en) 2008-08-07 2011-02-16 东北大学 Method for enhancing fracture tensile strength of PBI/HP3O4 cast by sol-gel method
CN102044648B (en) 2009-10-16 2013-04-10 大连融科储能技术发展有限公司 Poly(arylene ether benzimidazole) ion exchange membrane and preparation thereof and all-vanadium redox flow battery
US20110189484A1 (en) 2010-02-04 2011-08-04 Hopkins Jr John B Porous polybenzimidazole resin and method of making same
TWI584434B (en) 2010-04-20 2017-05-21 瑞鼎科技股份有限公司 Die structure and die connecting method
WO2011137239A1 (en) * 2010-04-28 2011-11-03 Flexel, Llc A thin flexible electrochemical energy cell
CN101814611B (en) 2010-05-24 2012-01-25 上海交通大学 Method for preparing phosphate-doped polybenzimidazole membrane electrode for fuel cell
KR20130129328A (en) * 2010-05-31 2013-11-28 바스프 에스이 Mechanically stabilized polyazoles
WO2011151775A1 (en) * 2010-05-31 2011-12-08 Basf Se Mechanically stabilized polyazoles
US8653203B2 (en) * 2010-08-04 2014-02-18 Chang Gung University Method for preparing carboxylic polybenzimidazole
KR101232277B1 (en) * 2010-11-04 2013-02-12 한국과학기술연구원 Method for in-situ preparing polybenzimidazole based electrolyte membrane and polybenzimidazole based electrolyte membrane prepared thereby
KR20120061156A (en) 2010-11-04 2012-06-13 한국과학기술연구원 Polybenzimidazole Based Polymer Having Conductivity of Hydroxyl Ion and Method for Preparing the Same, Electrolyte Membrane and Fuel Cell Using the Same
US8609249B2 (en) 2011-02-09 2013-12-17 Phillips Scientific Inc. Thin wall expandable polymer tubes having improved axial and radial strength, and a method of manufacturing thereof
US8541517B2 (en) 2011-03-10 2013-09-24 Battelle Energy Alliance, Llc Polymer compositions, polymer films and methods and precursors for forming same
US8796372B2 (en) 2011-04-29 2014-08-05 Rensselaer Polytechnic Institute Self-healing electrical insulation
US8865796B2 (en) 2011-08-09 2014-10-21 University Of South Carolina Nanoparticles with multiple attached polymer assemblies and use thereof in polymer composites
US9130219B1 (en) * 2011-10-11 2015-09-08 University Of South Carolina Method of making redox materials for solid oxide redox flow battery
US9187643B2 (en) 2011-11-21 2015-11-17 University Of South Carolina Silicone based nanocomposites including inorganic nanoparticles and their methods of manufacture and use
AU2012361558B2 (en) * 2011-12-28 2016-03-17 Asahi Kasei Kabushiki Kaisha Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
EP2804889B1 (en) 2012-01-17 2019-03-13 Basf Se Proton-conducting membrane, method for their production and their use in electrochemical cells
US20130183603A1 (en) * 2012-01-17 2013-07-18 Basf Se Proton-conducting membrane, method for their production and their use in electrochemical cells
CN102881853B (en) * 2012-09-17 2015-03-25 中国科学院金属研究所 Blending membrane for all-vanadium redox flow battery and preparation method for blending membrane
WO2014084138A1 (en) 2012-11-27 2014-06-05 東レ株式会社 Polymer electrolyte composition, and polymer electrolyte membrane, membrane electrode complex and solid polymer-type fuel cell each produced using same
CN103881127A (en) 2012-12-19 2014-06-25 中国科学院大连化学物理研究所 Preparation method of porous polybenzimidazole/phosphoric acid composite membrane
WO2014111792A1 (en) 2013-01-16 2014-07-24 Basf Se Proton-conducting membrane, method for their production and their use in electrochemical cells
WO2014111793A1 (en) 2013-01-16 2014-07-24 Basf Se Proton-conducting membrane, method for their production and their use in electrochemical cells
US9773953B2 (en) 2013-04-01 2017-09-26 Rensselaer Polytechnic Institute Organic phosphor-functionalized nanoparticles and compositions comprising the same
US9598541B2 (en) 2013-06-04 2017-03-21 Pbi Performance Products, Inc. Method of making polybenzimidazole
US9806365B2 (en) 2013-09-09 2017-10-31 University Of South Carolina Methods of purifying a hydrogen gas stream containing hydrogen sulfide impurities
US9359453B2 (en) 2013-09-12 2016-06-07 University Of South Carolina Phosphonate and phosphonic acid RAFT agents and monomers, along with methods of their manufacture and use
US9504256B2 (en) 2013-09-18 2016-11-29 University Of South Carolina Fabrication of magnetic nanoparticles
CA2933168C (en) 2013-12-09 2022-03-15 Council Of Scientific & Industrial Research A process for the preparation of pbi based membrane electrode assembly (mea) with improved fuel cell performance and stability
US9249250B2 (en) 2014-01-15 2016-02-02 University Of South Carolina Butadiene-derived polymers grafted nanoparticles and their methods of manufacture and use
KR101993238B1 (en) 2014-03-28 2019-06-26 코오롱인더스트리 주식회사 Polymer electrolyte membrane, membrane-electrode assembly comprising the same and fuel cell comprising the same
US9732169B2 (en) 2014-07-22 2017-08-15 University Of South Carolina Raft agents and their use in the development of polyvinylpyrrolidone grafted nanoparticles
US10112143B2 (en) 2014-10-09 2018-10-30 The Trustees Of Columbia University In The City Of New York Grafted polymer nanocomposite materials, systems, and methods
JP2016207608A (en) 2015-04-28 2016-12-08 東洋紡株式会社 Ion exchange membrane for polybenzimidazole-based redox battery, method for producing the same, composite body, and redox battery
US10011674B2 (en) 2015-12-11 2018-07-03 University Of South Carolina Initiator for surface-based polymerization and use thereof
KR101655292B1 (en) 2016-04-15 2016-09-07 스탠다드에너지(주) Redox flow battery
WO2018096540A1 (en) 2016-11-23 2018-05-31 Hys Energy Ltd Hydrogen production in the process of electrochemical treatment of sulfur-containing acid gases (hydrogen sulfide or sulfur dioxide) supplied in solution with amine-based or other organic absorbents
CN106750441B (en) 2016-12-07 2019-06-21 中科院大连化学物理研究所张家港产业技术研究院有限公司 A kind of poly- triazole ionic liquid of cross-linking type/polybenzimidazoles high temperature proton exchange film and preparation method thereof
CN106784947A (en) 2017-01-11 2017-05-31 同济大学 A kind of sulfonate polybenzimidazole cross linking membrane and preparation method thereof
CN106750442A (en) 2017-01-12 2017-05-31 黄河科技学院 A kind of cross-linking type polybenzimidazoles with high conductivity/polyethylene triazole high temperature proton exchange film and preparation method thereof
EP3774029A4 (en) 2018-04-12 2022-01-05 Board of Supervisors of Louisiana State University and Agricultural and Mechanical College Electrochemical reactor for upgrading methane and small alkanes to longer alkanes and alkenes
CN110791774B (en) 2018-08-02 2021-04-13 国家能源投资集团有限责任公司 Method for producing hydrogen by electrolyzing water vapor
WO2020056275A1 (en) 2018-09-14 2020-03-19 University Of South Carolina Polybenzimidazole (pbi) membranes for redox flow batteries
EP3850035A1 (en) 2018-09-14 2021-07-21 University of South Carolina New method for producing pbi films without organic solvents
EP3850698A4 (en) 2018-09-14 2022-07-27 University of South Carolina Low permeability polybenzimidazole (pbi) membranes for redox flow batteries

Similar Documents

Publication Publication Date Title
JP2012046754A5 (en)
CN112955498B (en) Polybenzimidazole (PBI) membrane for redox flow battery
JP2005536570A5 (en)
JP5572203B2 (en) Proton conducting membrane and use thereof
KR102443268B1 (en) Novel method for preparing PBI films without organic solvents
JP5226751B2 (en) Proton conducting membrane and use thereof
JP4663618B2 (en) High molecular weight polyazole
JP7410584B2 (en) Low permeability polybenzimidazole (PBI) membrane for redox flow batteries
JP2011089123A (en) Proton-conducting polymer membrane containing polyazole blend, and application thereof in fuel cell
JP2005537380A (en) POLYAZOLE-BASED POLYMER FILM AND USE THEREOF
JP2011080075A (en) Proton-conducting polymer membrane comprising sulfonic acid group-containing polyazole, and use thereof in fuel cell
JP5491625B2 (en) Method for producing polymer polyazole
JP2006509867A5 (en)
JPWO2020056275A5 (en)
KR100819676B1 (en) Branched multiblock polybenzimidazole-benzamide copolymer and method for preparing the same, electrolyte membrane and paste/gel prepared therefrom
KR20100116677A (en) Polymer composition, polymer membrane comprising the polymer composition, process for preparing it and fuel cell comprising the membrane
JPWO2020056268A5 (en)
JP2005534785A5 (en)