JPWO2020046768A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020046768A5
JPWO2020046768A5 JP2021510794A JP2021510794A JPWO2020046768A5 JP WO2020046768 A5 JPWO2020046768 A5 JP WO2020046768A5 JP 2021510794 A JP2021510794 A JP 2021510794A JP 2021510794 A JP2021510794 A JP 2021510794A JP WO2020046768 A5 JPWO2020046768 A5 JP WO2020046768A5
Authority
JP
Japan
Prior art keywords
metal
substrate
compound
organic framework
liquid stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021510794A
Other languages
Japanese (ja)
Other versions
JP2021536451A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2019/048051 external-priority patent/WO2020046768A1/en
Publication of JP2021536451A publication Critical patent/JP2021536451A/en
Publication of JPWO2020046768A5 publication Critical patent/JPWO2020046768A5/ja
Pending legal-status Critical Current

Links

Description

例えば、支持構造上にMOFを配置することにより、処理される所与の液体をMOFに効率的に接触させて、除去される化学種のMOFによる取込みを可能にする能力が得られる。MOFによる、ポリプロピレンビーズなどの不活性ビーズのコーティングは、MOFと、ビーズが展開している任意の液体流との間での、高度な表面積接触を可能にする。したがって、ポリプロピレンビーズの表面にMOFを配置することにより、液体流がMOF構造を通して濾過されるときにMOF粒子が液体流中の化合物と結合する能力が得られる。さらに、ポリプロピレンビーズなどのMOFコーティング付き不活性構造の使用は、他のMOF粒子から離れる対流なしに、MOFと流動する液体流との液体接触を可能にする。
本発明の実施形態において、例えば以下の項目が提供される。
(項目1)
液相オキシアニオンおよび液相カチオンの両方と錯体化するための化合物であって、前記化合物は、式R -SO -S-R -SHを有する化合物を含み、式中、R は、ジルコニウムベースの金属有機構造体を含み、R はアルキルを含む、化合物。
(項目2)
前記ジルコニウムベースの金属有機構造体が、有機リンカーに結合されたペンダントベンジル基を含む、項目1に記載の化合物。
(項目3)
液体流からのオキシアニオンおよびカチオンの濃度を低減させるための方法であって、前記方法が、
オキシアニオンおよびカチオンを含む液体流を、式R -SO -S-R -SH(式中、R は、有機リンカーに結合されたペンダント基を有する、ジルコニウムベースの金属有機構造体を含み、R はアルキルを含む)を有する化合物と接触させるステップ、
前記オキシアニオンと、前記ジルコニウムベースの金属有機構造体とを錯体化し、それによって、前記液体流中の前記オキシアニオンの濃度を低減させるステップ、ならびに
前記カチオンと前記化合物とを錯体化し、それによって、前記液体流中の前記カチオンの濃度を低減させるステップ
を含む、方法。
(項目4)
前記ペンダント基がペンダントベンジル基を含み、前記オキシアニオンと前記ジルコニウムベースの金属有機構造体とを錯体化する前記ステップが、前記オキシアニオンと、前記ジルコニウムベースの金属有機構造体のノードとを錯体化することを含み、前記カチオンと前記化合物とを錯体化する前記ステップが、前記カチオンと、前記化合物のチオ-スルホニル部分のメルカプト-硫黄および前記化合物の末端メルカプタンとを錯体化して、環状幾何形状を形成することを含む、項目3に記載の方法。
(項目5)
金属有機構造体を基材に結合するための方法であって、前記方法は、
金属酸化物を基材の表面に結合させるステップ、
前記基材と、流体からの少なくとも1つの種およびセチル-トリメチルアンモニウムブロミドを除去することが可能な金属有機構造体とを接触させ、それによって、前記金属有機構造体を前記基材に結合して、金属有機構造体-基材を生成するステップ
を含む、方法。
(項目6)
結合させる前記ステップが、
原子層堆積を使用して前記金属酸化物を前記基材の前記表面に結合させることを含み、前記金属酸化物が、酸化アルミニウム、酸化チタン、酸化亜鉛、およびこれらの組合せからなる群から選択される、項目5に記載の方法。
(項目7)
前記金属有機構造体がNU-1000を含む、項目5に記載の方法。
(項目8)
前記基材が不活性ポリプロピレンビーズを含む、項目5に記載の方法。
(項目9)
前記基材が巨視的ファブリックを含む、項目5に記載の方法。
(項目10)
前記基材が分子状ファブリックを含む、項目5に記載の方法。
(項目11)
少なくとも1つの化合物を液体流から除去するために、基材に結合された複数の金属有機構造体を利用するための方法であって、前記方法は、
複数の金属酸化物構造体を含む基材を、液体流から除去される1つの液体種を含む前記液体流に接触するように位置決めするステップであって、前記複数の金属酸化物構造体が、セチル-トリメチルアンモニウムブロミドまたはベータ-シクロデキストリンを介して前記基材に結合される、ステップ
前記液体流と、前記複数の金属酸化物構造体を含む前記基材とを接触させるステップ、
前記1つの液体種の少なくとも一部を、前記複数の金属酸化物構造体に結合させ、それによって前記液体から前記1つの液体種の前記一部を除去するステップ
を含む、方法。
For example, placing the MOF on a support structure provides the ability to efficiently contact a given liquid to be processed with the MOF to allow uptake by the MOF of species to be removed. Coating inert beads, such as polypropylene beads, with MOFs allows a high degree of surface area contact between the MOFs and any liquid stream in which the beads are developing. Thus, placing MOFs on the surface of polypropylene beads provides the ability of MOF particles to bind compounds in a liquid stream as the liquid stream is filtered through the MOF structure. Additionally, the use of MOF-coated inert structures, such as polypropylene beads, allows liquid contact between the MOF and the flowing liquid stream without convection away from other MOF particles.
In embodiments of the present invention, for example, the following items are provided.
(Item 1)
Compounds for complexing both liquid phase oxyanions and liquid phase cations, said compounds comprising compounds having the formula R 1 —SO 2 —S—R 2 —SH, wherein R 1 is , comprising a zirconium-based metal-organic framework, wherein R 2 comprises an alkyl.
(Item 2)
The compound of item 1, wherein said zirconium-based metal-organic framework comprises pendant benzyl groups attached to an organic linker.
(Item 3)
A method for reducing the concentration of oxyanions and cations from a liquid stream, said method comprising:
A liquid stream containing oxyanions and cations is prepared according to the formula R 1 —SO 2 —S—R 2 —SH, where R 1 is a zirconium-based metal-organic framework having pendant groups attached to an organic linker. wherein R 2 comprises alkyl;
complexing the oxyanion with the zirconium-based metal-organic framework, thereby reducing the concentration of the oxyanion in the liquid stream;
complexing said cations with said compound, thereby reducing the concentration of said cations in said liquid stream;
A method, including
(Item 4)
wherein said pendant group comprises a pendant benzyl group, and said step of complexing said oxyanion with said zirconium-based metal-organic framework complexes said oxyanion with a node of said zirconium-based metal-organic framework; wherein said step of complexing said cation with said compound complexes said cation with a mercapto-sulfur of the thio-sulfonyl moiety of said compound and a terminal mercaptan of said compound to form a cyclic geometry 4. The method of item 3, comprising forming.
(Item 5)
A method for bonding a metal-organic framework to a substrate, the method comprising:
bonding the metal oxide to the surface of the substrate;
contacting the substrate with a metal-organic framework capable of removing at least one species and cetyl-trimethylammonium bromide from a fluid, thereby bonding the metal-organic framework to the substrate; , producing a metal-organic framework-substrate
A method, including
(Item 6)
the step of combining
bonding the metal oxide to the surface of the substrate using atomic layer deposition, wherein the metal oxide is selected from the group consisting of aluminum oxide, titanium oxide, zinc oxide, and combinations thereof. 6. The method of item 5.
(Item 7)
6. The method of item 5, wherein the metal-organic framework comprises NU-1000.
(Item 8)
6. The method of item 5, wherein the substrate comprises inert polypropylene beads.
(Item 9)
6. The method of item 5, wherein the substrate comprises a macroscopic fabric.
(Item 10)
6. The method of item 5, wherein the substrate comprises a molecular fabric.
(Item 11)
A method for utilizing a plurality of metal-organic frameworks bonded to a substrate to remove at least one compound from a liquid stream, said method comprising:
positioning a substrate comprising a plurality of metal oxide structures in contact with the liquid stream comprising one liquid species to be removed from the liquid stream, the plurality of metal oxide structures comprising: attached to said substrate via cetyl-trimethylammonium bromide or beta-cyclodextrin;
contacting the liquid stream with the substrate comprising the plurality of metal oxide structures;
binding at least a portion of said one liquid species to said plurality of metal oxide structures, thereby removing said portion of said one liquid species from said liquid;
A method, including

Claims (16)

合物であって、前記化合物は、式R-SO-S-R-SHを有する化合物を含み、式中、Rは、ジルコニウムベースの金属有機構造体を含み、Rはアルキルを含む、化合物。 A compound , said compound comprising a compound having the formula R 1 —SO 2 —S—R 2 —SH, wherein R 1 comprises a zirconium-based metal-organic framework and R 2 is A compound containing an alkyl. 前記ジルコニウムベースの金属有機構造体が、有機リンカーに結合されたペンダントベンジル基を含む、請求項1に記載の化合物。 2. The compound of claim 1, wherein said zirconium-based metal-organic framework comprises pendant benzyl groups attached to an organic linker. 液体流からのオキシアニオンおよびカチオンの濃度を低減させるための方法であって、前記方法が、
オキシアニオンおよびカチオンを含む液体流を、式R-SO-S-R-SH(式中、Rは、有機リンカーに結合されたペンダント基を有する、ジルコニウムベースの金属有機構造体を含み、Rはアルキルを含む)を有する化合物と接触させるステップ、
前記オキシアニオンと、前記ジルコニウムベースの金属有機構造体とを錯体化し、それによって、前記液体流中の前記オキシアニオンの濃度を低減させるステップ、ならびに
前記カチオンと前記化合物とを錯体化し、それによって、前記液体流中の前記カチオンの濃度を低減させるステップ
を含む、方法。
A method for reducing the concentration of oxyanions and cations from a liquid stream, said method comprising:
A liquid stream containing oxyanions and cations is prepared according to the formula R 1 —SO 2 —S—R 2 —SH, where R 1 is a zirconium-based metal-organic framework having pendant groups attached to an organic linker. wherein R 2 comprises alkyl;
complexing the oxyanion with the zirconium-based metal-organic framework, thereby reducing the concentration of the oxyanion in the liquid stream; and complexing the cation with the compound, thereby A method comprising reducing the concentration of said cations in said liquid stream.
前記ペンダント基がペンダントベンジル基を含み、前記オキシアニオンと前記ジルコニウムベースの金属有機構造体とを錯体化する前記ステップが、前記オキシアニオンと、前記ジルコニウムベースの金属有機構造体のノードとを錯体化することを含み、前記カチオンと前記化合物とを錯体化する前記ステップが、前記カチオンと、前記化合物のチオ-スルホニル部分のメルカプト-硫黄および前記化合物の末端メルカプタンとを錯体化して、環状幾何形状を形成することを含む、請求項3に記載の方法。 wherein said pendant group comprises a pendant benzyl group, and said step of complexing said oxyanion with said zirconium-based metal-organic framework complexes said oxyanion with a node of said zirconium-based metal-organic framework; wherein said step of complexing said cation with said compound complexes said cation with a mercapto-sulfur of the thio-sulfonyl moiety of said compound and a terminal mercaptan of said compound to form a cyclic geometry 4. The method of claim 3, comprising forming. 金属有機構造体を基材に結合するための方法であって、前記方法は、
金属酸化物を基材の表面に結合させるステップ、
前記基材と、流体からの少なくとも1つの種およびセチル-トリメチルアンモニウムブロミドを除去することが可能な金属有機構造体とを接触させ、それによって、前記金属有機構造体を前記基材に結合して、金属有機構造体-基材を生成するステップ
を含む、方法。
A method for bonding a metal-organic framework to a substrate, the method comprising:
bonding the metal oxide to the surface of the substrate;
contacting the substrate with a metal-organic framework capable of removing at least one species and cetyl-trimethylammonium bromide from a fluid, thereby bonding the metal-organic framework to the substrate; , a method comprising producing a metal-organic framework-substrate.
結合させる前記ステップが、
原子層堆積を使用して前記金属酸化物を前記基材の前記表面に結合させることを含み、前記金属酸化物が、酸化アルミニウム、酸化チタン、酸化亜鉛、およびこれらの組合せからなる群から選択される、請求項5に記載の方法。
the step of combining
bonding the metal oxide to the surface of the substrate using atomic layer deposition, wherein the metal oxide is selected from the group consisting of aluminum oxide, titanium oxide, zinc oxide, and combinations thereof. 6. The method of claim 5, wherein
前記金属有機構造体がNU-1000を含む、請求項5に記載の方法。 6. The method of claim 5, wherein the metal-organic framework comprises NU-1000. 前記基材が不活性ポリプロピレンビーズを含む、請求項5に記載の方法。 6. The method of claim 5, wherein the substrate comprises inert polypropylene beads. 前記基材が巨視的ファブリックを含む、請求項5に記載の方法。 6. The method of claim 5, wherein said substrate comprises a macroscopic fabric. 前記基材が分子状ファブリックを含む、請求項5に記載の方法。 6. The method of claim 5, wherein said substrate comprises a molecular fabric. 少なくとも1つの化合物を液体流から除去するために、基材に結合された複数の金属有機構造体を利用するための方法であって、前記方法は、
複数の金属酸化物構造体を含む基材を、液体流から除去される1つの液体種を含む前記液体流に接触するように位置決めするステップであって、前記複数の金属酸化物構造体が、セチル-トリメチルアンモニウムブロミドまたはベータ-シクロデキストリンを介して前記基材に結合される、ステップ
前記液体流と、前記複数の金属酸化物構造体を含む前記基材とを接触させるステップ、
前記1つの液体種の少なくとも一部を、前記複数の金属酸化物構造体に結合させ、それによって前記液体から前記1つの液体種の前記一部を除去するステップ
を含む、方法。
A method for utilizing a plurality of metal-organic frameworks bonded to a substrate to remove at least one compound from a liquid stream, said method comprising:
positioning a substrate comprising a plurality of metal oxide structures in contact with the liquid stream comprising one liquid species to be removed from the liquid stream, the plurality of metal oxide structures comprising: contacting the liquid stream with the substrate comprising the plurality of metal oxide structures, bound to the substrate via cetyl-trimethylammonium bromide or beta-cyclodextrin;
binding at least a portion of said one liquid species to said plurality of metal oxide structures, thereby removing said portion of said one liquid species from said liquid.
前記金属有機構造体がNU-1000を含む、請求項1に記載の化合物。The compound of claim 1, wherein said metal-organic framework comprises NU-1000. R. 2 がエチルまたはプロピルを含む、請求項1に記載の化合物。2. The compound of claim 1, wherein contains ethyl or propyl. 請求項1または2に記載の化合物を含む、液相オキシアニオンおよび液相カチオンの両方と錯体化するための組成物。 3. A composition for complexing both liquid phase oxyanions and liquid phase cations comprising a compound according to claim 1 or 2. 前記金属有機構造体がNU-1000を含む、請求項14に記載の組成物。 15. The composition of claim 14, wherein said metal-organic framework comprises NU-1000. R. 2 がエチルまたはプロピルを含む、請求項14に記載の組成物。15. The composition of claim 14, wherein < comprises ethyl or propyl.

JP2021510794A 2018-08-27 2019-08-25 Metal-organic frameworks for removing multiple liquid phase compounds and methods for using and making them Pending JP2021536451A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201862723121P 2018-08-27 2018-08-27
US62/723,121 2018-08-27
US201862751646P 2018-10-28 2018-10-28
US62/751,646 2018-10-28
PCT/US2019/048051 WO2020046768A1 (en) 2018-08-27 2019-08-25 Metal-organic frameworks for the removal of multiple liquid phase compounds and methods for using and making same

Publications (2)

Publication Number Publication Date
JP2021536451A JP2021536451A (en) 2021-12-27
JPWO2020046768A5 true JPWO2020046768A5 (en) 2022-08-12

Family

ID=69643152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021510794A Pending JP2021536451A (en) 2018-08-27 2019-08-25 Metal-organic frameworks for removing multiple liquid phase compounds and methods for using and making them

Country Status (6)

Country Link
US (3) US11168006B2 (en)
EP (1) EP3843877A4 (en)
JP (1) JP2021536451A (en)
KR (1) KR20210044879A (en)
CN (2) CN117282416A (en)
WO (1) WO2020046768A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3843877A4 (en) * 2018-08-27 2022-08-24 Electric Power Research Institute, Inc. Metal-organic frameworks for the removal of multiple liquid phase compounds and methods for using and making same
KR20220053666A (en) * 2019-09-04 2022-04-29 일렉트릭 파워 리서치 인스티튜트, 인크. Metal-Organic Framework for Removal of Iodine Oxy-Anions
US20220274040A1 (en) * 2019-11-08 2022-09-01 Virginia Commonwealth University Intellectual Property Foundation Removal of vocs and fine particulate matter by metal organic frameworks coated electret media (e-mofilter)
US11958033B2 (en) 2020-03-31 2024-04-16 Numat Technologies, Inc. Modified metal-organic framework (MOF) compositions, process of making and process of use thereof
JP2023519685A (en) 2020-03-31 2023-05-12 ヌマット テクノロジーズ,インコーポレイテッド Activated amino-containing metal-organic framework (MOF) compositions, methods of making and using the same
CN111514859B (en) * 2020-04-28 2022-11-08 合肥工业大学 Composite adsorbent for efficiently removing mixed pollutants in wastewater and preparation method thereof
US20220111372A1 (en) * 2020-10-13 2022-04-14 Phillips 66 Company Metal organic framework
CN114106815A (en) * 2021-12-06 2022-03-01 廊坊师范学院 Preparation method of rare earth MOFs protein fiber composite fluorescent sensing material
CN114029088A (en) * 2021-12-09 2022-02-11 南京环保产业创新中心有限公司 Photo-assisted electrochemical catalytic oxidation electrode and preparation method and application thereof
CN115888842A (en) * 2023-02-14 2023-04-04 北京理工大学唐山研究院 Iron-modified NU-1000 catalytic material and preparation method and application thereof
CN116059983B (en) * 2023-03-07 2023-08-22 济宁市圣奥精细化工有限公司 Medicament for treating textile printing and dyeing wastewater

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2051888A1 (en) 1970-10-22 1972-04-27 Th. Goldschmidt Ag, 4300 Essen Polymeric thioesters of sulphonic acid - by reacting dithiols with disulphochlorides
US5073575A (en) 1988-08-26 1991-12-17 The Regents Of The University Of California Cadmium ion-chelating synthetic polymers and process thereof
JPH08844B2 (en) 1991-03-30 1996-01-10 工業技術院長 Styrene-based three-dimensional copolymer and nitrate ion adsorbent
US6893564B2 (en) 2002-05-30 2005-05-17 Basf Aktiengesellschaft Shaped bodies containing metal-organic frameworks
US7708890B2 (en) 2006-12-11 2010-05-04 Diversified Technologies Services, Inc. Method of rendering a radioactive and aqueous heat transfer liquid in a nuclear reactor to a reduced radwaste quantitative state and returning the remaining waste water volumes to an environmental release point for liquid effluents
DE102008005218A1 (en) * 2007-11-04 2009-05-07 BLüCHER GMBH Sorption filter material and its use
US9139456B2 (en) 2008-04-16 2015-09-22 The Curators Of The University Of Missouri Chelating compounds and immobilized tethered chelators
US8975340B2 (en) 2010-12-15 2015-03-10 Electric Power Research Institute, Inc. Synthesis of sequestration resins for water treatment in light water reactors
US9214248B2 (en) 2010-12-15 2015-12-15 Electric Power Research Institute, Inc. Capture and removal of radioactive species from an aqueous solution
EP2763782A4 (en) * 2011-10-06 2015-08-05 Basf Corp Methods of applying a sorbent coating on a substrate, a support, and/or a substrate coated with a support
WO2014130809A1 (en) 2013-02-22 2014-08-28 The Curators Of The University Of Missouri Immobilized ligands for the removal of metal ions and methods thereof
US9597658B2 (en) * 2013-04-01 2017-03-21 Savannah River Nuclear Solutions, Llc Metal-organic framework templated synthesis of porous inorganic materials as novel sorbents
GB201309458D0 (en) 2013-05-27 2013-07-10 Queens University Of The Belfast Process for the Preparation of a Metal-Organic Compound
US9562005B2 (en) 2013-07-23 2017-02-07 Northwestern University Metallated metal-organic frameworks
GB201316246D0 (en) 2013-09-12 2013-10-30 Johnson Matthey Plc Selenium removal
US10094020B2 (en) * 2014-04-30 2018-10-09 Imec Vzw Method of producing a thin metal-organic framework film using vapor phase precursors
US20160152493A1 (en) 2014-11-28 2016-06-02 David Szykowny Wastewater treatment system and method
CN107107028B (en) 2014-12-04 2021-06-25 纽麦特科技公司 Porous polymers for reduction and purification of electronic gases and removal of mercury from hydrocarbon streams
JP2018502704A (en) 2014-12-12 2018-02-01 エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company Coating method using organosilica material and use thereof
US10723635B2 (en) * 2015-04-11 2020-07-28 Northwestern University Metal-organic frameworks for adsorption of liquid phase compounds
US10308527B2 (en) 2015-04-11 2019-06-04 Northwestern University Metal-organic frameworks for adsorption of liquid phase compounds
CN104892656A (en) * 2015-06-16 2015-09-09 广东工业大学 Metal-organic framework material and synthetic method thereof
CN105175295B (en) * 2015-09-24 2017-09-26 南昌航空大学 A kind of preparation of mercapto-functionalized MOFs materials and its application of Adsorption Heavy Metals in Waters ion
WO2017184991A1 (en) * 2016-04-22 2017-10-26 The Regents Of The University Of California Post-synthetically modified metal-organic frameworks for selective binding of heavy metal ions in water
CN106268652B (en) * 2016-08-29 2019-08-30 张少强 A kind of preparation method of the heavy metal chelating agent based on MOFs
JP2020508297A (en) 2017-02-21 2020-03-19 ノヴム スペロ リミテッドNovum Spero Ltd. New polyiminoketoaldehyde
EP3843877A4 (en) * 2018-08-27 2022-08-24 Electric Power Research Institute, Inc. Metal-organic frameworks for the removal of multiple liquid phase compounds and methods for using and making same

Similar Documents

Publication Publication Date Title
JPWO2020046768A5 (en)
Liu et al. Homochiral metal–organic frameworks for enantioseparation
Lee et al. Amine-functionalized zeolitic imidazolate framework-8 (ZIF-8) nanocrystals for adsorption of radioactive iodine
Ranjan et al. Microporous metal organic framework membrane on porous support using the seeded growth method
Lin et al. Chiral induction in the ionothermal synthesis of a 3-D coordination polymer
Fryxell et al. Actinide sequestration using self-assembled monolayers on mesoporous supports
JP2984683B2 (en) Method of removing desired ions from desired ion solution and concentrating
CN105051269B (en) Metal organic frame and its preparation and use
US20070181502A1 (en) Adsorbent with multiple layers
JP6255411B2 (en) Support membrane functionalized with hexa and octacyanometallate, process for its preparation, and separation process using it
Liu et al. Multi variant surface mounted metal–organic frameworks
Yin et al. Functionalizing a metal–organic framework by a photoassisted multicomponent postsynthetic modification approach showing highly effective Hg (II) removal
KR20160124080A (en) Acid, solvent, and thermal resistant metal-organic frameworks
JP2004513051A (en) Method for producing patterned single-layer or multilayer composite of zeolite or similar molecular sieve and composite produced thereby
Hu et al. Highly efficient adsorption of Au (III) from water by a novel metal–organic framework constructed with sulfur-containing ligands and Zn (II)
JP2008514419A5 (en)
JP2006321714A (en) Electron acceptor composition on polymer template and catalytic manufacturing method of hydrogen peroxide
Ma et al. Water-Stable Metal–Organic Framework for Effective and Selective Cr2O72–Capture through Single-Crystal to Single-Crystal Anion Exchange
TWI434844B (en) Bisamineazaallylic ligands and their use in atomic layer deposition methods
JP2021041314A (en) Adsorption material, production method of adsorption material, and specific substance capturing system
FR3025799A1 (en) PROCESS FOR THE PREPARATION OF A SOLID NANOCOMPOSITE MATERIAL BASED ON HEXA- AND OCTACYANOMETALLATES OF ALKALI METALS
US7553547B2 (en) Backfilled, self-assembled monolayers and methods of making same
JP2017525800A5 (en)
Bonaccorsi et al. Surface silanation of alumina-silica zeolites for adsorption heat pumping
Lin et al. Structural Design of Mn-Metal–Organic Frameworks toward Highly Efficient Solvent-Free Cycloaddition of CO2