JPWO2020044601A1 - Battery electric propulsion ship power supply system, offshore power supply equipment and battery electric propulsion ship - Google Patents

Battery electric propulsion ship power supply system, offshore power supply equipment and battery electric propulsion ship Download PDF

Info

Publication number
JPWO2020044601A1
JPWO2020044601A1 JP2020540026A JP2020540026A JPWO2020044601A1 JP WO2020044601 A1 JPWO2020044601 A1 JP WO2020044601A1 JP 2020540026 A JP2020540026 A JP 2020540026A JP 2020540026 A JP2020540026 A JP 2020540026A JP WO2020044601 A1 JPWO2020044601 A1 JP WO2020044601A1
Authority
JP
Japan
Prior art keywords
power supply
battery
electric propulsion
offshore
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020540026A
Other languages
Japanese (ja)
Other versions
JP7177159B2 (en
Inventor
大野 達也
達也 大野
達也 小野寺
達也 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Publication of JPWO2020044601A1 publication Critical patent/JPWO2020044601A1/en
Application granted granted Critical
Publication of JP7177159B2 publication Critical patent/JP7177159B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B49/00Arrangements of nautical instruments or navigational aids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/17Use of propulsion power plant or units on vessels the vessels being motor-driven by electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J99/00Subject matter not provided for in other groups of this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

電池電気推進船を岸壁に係留せずに電池電気推進船の充電池を充電することができる電池電気推進船給電システムを提供する。電池電気推進船給電システムは、少なくとも1つの電池電気推進船と、電池電気推進船の蓄電池を充電可能な少なくとも1つの洋上発電設備と、を備える。Provided is a battery electric propulsion ship power supply system capable of charging a rechargeable battery of a battery electric propulsion ship without mooring the battery electric propulsion ship to a quay. The battery-electric propulsion vessel power supply system includes at least one battery-electric propulsion vessel and at least one offshore power generation facility capable of charging the storage battery of the battery-electric propulsion vessel.

Description

本発明は、電池電気推進船給電システムに関する。また、本発明は、その電池電気推進船給電システムに好適に用いられる洋上給電設備および電池電気推進船に関する。 The present invention relates to a battery electric propulsion ship power supply system. The present invention also relates to an offshore power supply facility and a battery electric propulsion vessel that are suitably used for the battery electric propulsion vessel power supply system.

従来から、電池電気推進船が知られている(例えば、特許文献1参照)。電池電気推進船は、船舶内で推進電力を発電せずに蓄電池に蓄電した電力によって推進する船舶である。このような電池電気推進船は、内燃機関を用いた機械推進式の船舶のように燃焼ガスを排出することがないため、環境への影響が少ない。 Conventionally, a battery-powered propulsion ship has been known (see, for example, Patent Document 1). A battery-powered propulsion vessel is a vessel that is propelled by the electric power stored in a storage battery without generating propulsive electric power in the vessel. Such a battery-powered propulsion ship does not emit combustion gas unlike a mechanical propulsion type ship using an internal combustion engine, and therefore has little impact on the environment.

特開2013−14222号公報Japanese Unexamined Patent Publication No. 2013-14222

従来、電池電気推進船へ給電する際は、電池電気推進船が岸壁に係留され、陸上の給電装置によって電池電気推進船の充電池が充電されていた。 Conventionally, when power is supplied to a battery-electric propulsion ship, the battery-electric propulsion ship is moored at the quay, and the rechargeable battery of the battery-electric propulsion ship is charged by a power supply device on land.

そこで、本発明は、電池電気推進船を岸壁に係留せずに電池電気推進船の充電池を充電することができる電池電気推進船給電システムを提供することを目的とする。また、本発明は、その電池電気推進船給電システムに好適に用いられる洋上給電設備および電池電気推進船を提供することも目的とする。 Therefore, an object of the present invention is to provide a battery-electric propulsion ship power supply system capable of charging a rechargeable battery of a battery-electric propulsion ship without mooring the battery-electric propulsion ship to a quay. Another object of the present invention is to provide an offshore power supply facility and a battery electric propulsion ship that are suitably used for the battery electric propulsion ship power supply system.

前記課題を解決するために、本発明の電池電気推進船給電システムは、少なくとも1つの電池電気推進船と、前記電池電気推進船の蓄電池を充電可能な少なくとも1つの洋上給電設備と、を備える、ことを特徴とする。 In order to solve the above problems, the battery electric propulsion ship power supply system of the present invention includes at least one battery electric propulsion ship and at least one offshore power supply facility capable of charging the storage battery of the battery electric propulsion ship. It is characterized by that.

上記の構成によれば、電池電気推進船を岸壁に係留することなく、洋上で電池電気推進船の充電池を充電することができる。 According to the above configuration, the rechargeable battery of the battery electric propulsion vessel can be charged at sea without mooring the battery electric propulsion vessel to the quay.

前記洋上給電設備は、液化ガスを用いて発電する洋上発電船であってもよい。この構成によれば、状況に応じて洋上給電設備の位置を変更することができる。 The offshore power supply facility may be an offshore power generation ship that generates electricity using liquefied gas. According to this configuration, the position of the offshore power supply equipment can be changed according to the situation.

前記洋上発電船へは、陸上の液化ガス供給装置から液化ガスが供給されてもよい。この構成によれば、陸上の液化ガス供給装置には一般的に液化ガス貯留用の大容量のタンクが複数装備されるので、洋上発電船へ液化ガスを必要なときに安定的に供給することができる。 Liquefied gas may be supplied to the offshore power generation ship from a liquefied gas supply device on land. According to this configuration, the liquefied gas supply device on land is generally equipped with a plurality of large-capacity tanks for storing liquefied gas, so that the liquefied gas can be stably supplied to the offshore power generation ship when necessary. Can be done.

前記少なくとも1つの電池電気推進船は、複数の電池電気推進船を含み、上記の電池電気推進船給電システムは、前記複数の電池電気推進船および前記洋上発電船と通信可能な管理装置を備え、前記管理装置は、前記複数の電池電気推進船から受信する運航データに基づいて、前記複数の電池電気推進船への給電に最適な前記洋上発電船の待機位置を決定し、決定した待機位置を前記洋上発電船に送信してもよい。この構成によれば、複数の電池電気推進船への給電に最適な待機位置に洋上発電船を移動することができる。これにより、各電池電気推進船が充電のために航行する距離を少なくすることができる。 The at least one battery electric propulsion vessel includes a plurality of battery electric propulsion vessels, and the battery electric propulsion vessel power supply system includes the plurality of battery electric propulsion vessels and a management device capable of communicating with the offshore power generation vessel. The management device determines the optimum standby position of the offshore power generation vessel for supplying power to the plurality of battery electric propulsion vessels based on the operation data received from the plurality of battery electric propulsion vessels, and determines the determined standby position. It may be transmitted to the offshore power generation vessel. According to this configuration, the offshore power generation vessel can be moved to the optimum standby position for supplying power to a plurality of battery-powered propulsion vessels. As a result, the distance traveled by each battery-electric propulsion vessel for charging can be reduced.

前記少なくとも1つの電池電気推進船は、複数の電池電気推進船を含み、前記少なくとも1つの洋上発電設備は、複数の洋上発電設備を含み、上記の電池電気推進船給電システムは、前記複数の電池電気推進船と通信可能な管理装置を備え、前記管理装置は、前記複数の電池電気推進船のそれぞれに対し、前記複数の電池電気推進船から受信する運航データに基づいて、充電タイミングおよび充電を受けるべき洋上発電設備の特定を含む充電スケジュールを決定し、決定した充電スケジュールを対応する電池電気推進船へ送信してもよい。この構成によれば、各電池電気推進船が充電スケジュールに従って充電を受けることができ、各電池電気推進船が効率的にオペレーションを実施することができる。 The at least one battery electric propulsion ship includes a plurality of battery electric propulsion ships, the at least one offshore power generation facility includes a plurality of offshore power generation facilities, and the battery electric propulsion ship power supply system includes the plurality of batteries. A management device capable of communicating with the electric propulsion ship is provided, and the management device charges each of the plurality of battery electric propulsion ships with charging timing and charging based on operation data received from the plurality of battery electric propulsion ships. A charging schedule, including the identification of offshore power generation equipment to be received, may be determined and the determined charging schedule may be transmitted to the corresponding battery-powered propulsion vessel. According to this configuration, each battery electric propulsion vessel can be charged according to the charging schedule, and each battery electric propulsion vessel can efficiently carry out the operation.

前記少なくとも1つの電池電気推進船は、複数の電池電気推進船を含み、上記の電池電気推進船給電システムは、前記複数の電池電気推進船と通信可能な管理装置を備え、前記管理装置は、前記複数の電池電気推進船から受信する運航データに基づいて、前記複数の電池電気推進船に対する配船計画を行って前記複数の電池電気推進船のそれぞれに対するオペレーションを含む航行スケジュールを決定し、決定した航行スケジュールを対応する電池電気推進船へ送信してもよい。この構成によれば、配船計画を自動化することができる。 The at least one battery electric propulsion vessel includes a plurality of battery electric propulsion vessels, and the battery electric propulsion vessel power supply system includes a management device capable of communicating with the plurality of battery electric propulsion vessels. Based on the operation data received from the plurality of battery-electric propulsion vessels, a ship allocation plan is made for the plurality of battery-electric propulsion vessels, and a navigation schedule including operations for each of the plurality of battery-electric propulsion vessels is determined and determined. The sailing schedule may be transmitted to the corresponding battery-powered propulsion vessel. According to this configuration, the ship allocation plan can be automated.

前記管理装置は、前記洋上発電船の待機位置、前記複数の電池電気推進船のそれぞれの充電スケジュール、および/または前記複数の電池電気推進船のそれぞれの航行スケジュールを、前記複数の電池電気推進船の運航データならびに、蓄電池、プロペラ駆動モータおよびプロペラの作動状態データに対する機械学習結果に基づいて決定してもよい。この構成によれば、各電池電気推進船の充電時間が最小になるように、および/または各電池電気推進船の運用効率が最大になるように、および/または各電池電気推進船の蓄電池の寿命が最大になるようにすることができる。 The management device sets the standby position of the offshore power generation vessel, the charging schedule of each of the plurality of battery electric propulsion vessels, and / or the navigation schedule of each of the plurality of battery electric propulsion vessels, and the plurality of battery electric propulsion vessels. It may be determined based on the operation data of the above and the machine learning result for the operation state data of the storage battery, the propeller drive motor and the propeller. According to this configuration, the charging time of each battery electric propulsion vessel is minimized and / or the operational efficiency of each battery electric propulsion vessel is maximized, and / or the storage battery of each battery electric propulsion vessel is used. Life can be maximized.

上記の電池電気推進船給電システムは、前記少なくとも1つの電池電気推進船の蓄電池を充電可能な少なくとも1つの陸上給電設備を備えてもよい。この構成によれば、電池電気推進船は、洋上においてだけでなく陸上においても充電することができる。 The battery electric propulsion ship power supply system may include at least one land power supply facility capable of charging the storage battery of the at least one battery electric propulsion ship. According to this configuration, the battery-powered propulsion vessel can be charged not only at sea but also on land.

上記の電池電気推進船給電システムは、前記少なくとも1つの陸上給電設備および前記洋上給電設備と通信可能な管理装置を備え、前記管理装置は、前記陸上給電設備における所定時間ごとの電力価格データを取得し、前記少なくとも1つの電池電気推進船から受信する運航データ及び前記電力価格データに基づいて、前記少なくとも1つの電池電気推進船が前記洋上給電設備および前記陸上給電設備のうちのいずれの給電設備で給電を受けることを優先するべきかを決定してもよい。具体的には、前記管理装置は、前記陸上給電設備における電力価格が前記洋上給電設備における給電価格よりも低い場合には、前記洋上給電設備および前記陸上給電設備のうちの前記陸上給電設備で給電を受けることを優先するような給電指令を生成し、生成した給電指令を前記少なくとも1つの電池電気推進船に送信し、前記陸上給電設備における電力価格が前記洋上給電設備の給電価格よりも高い場合には、前記洋上給電設備および前記陸上給電設備のうちの前記洋上給電設備で給電を受けることを優先するような給電指令を生成し、生成した給電指令を前記少なくとも1つの電池電気推進船に送信してもよい。この構成によれば、電池電気推進船は、陸上給電設備(商用系統)の電力価格が洋上発電船の給電価格(洋上発電船の発電単価から算出される電力価格)よりも低い場合は、陸上給電設備から給電をうけ、陸上給電設備の電力価格が洋上発電船の給電価格よりも高い場合には、洋上発電船から給電をうけることができるので、運用コストを改善することができる。 The battery-electric propulsion ship power supply system includes at least one land power supply facility and a management device capable of communicating with the offshore power supply facility, and the management device acquires power price data for each predetermined time in the land power supply facility. Then, based on the operation data and the electric power price data received from the at least one battery electric propulsion vessel, the at least one battery electric propulsion vessel is used in any of the offshore power supply equipment and the land power supply equipment. You may decide whether to prioritize receiving power. Specifically, when the power price in the land power supply facility is lower than the power supply price in the offshore power supply facility, the management device supplies power with the land power supply facility among the offshore power supply facility and the land power supply facility. When a power supply command that gives priority to receiving is generated, the generated power supply command is transmitted to the at least one battery electric propulsion vessel, and the power price in the land power supply facility is higher than the power supply price in the offshore power supply facility. Generates a power supply command that gives priority to receiving power from the offshore power supply facility and the land power supply facility, and transmits the generated power supply command to the at least one battery electric propulsion vessel. You may. According to this configuration, the battery-electric propulsion ship is on land when the power price of the land power supply facility (commercial system) is lower than the power supply price of the offshore power generation ship (power price calculated from the power generation unit price of the offshore power generation ship). When power is received from the power supply facility and the power price of the land power supply facility is higher than the power supply price of the offshore power generation ship, the power can be received from the offshore power generation ship, so that the operating cost can be improved.

前記洋上給電設備は、余剰電力を前記陸上給電設備に給電可能に構成された洋上発電船であって、前記管理装置は、前記陸上給電設備における電力価格が前記洋上給電設備における給電価格よりも高い場合には、前記少なくとも1つの電池電気推進船から受信する運航データに基づいて、前記少なくとも1つの電池電気推進船への給電に最適な前記洋上発電船の待機位置を決定し、決定した待機位置を前記洋上発電船に送信し、前記管理装置は、前記洋上発電船が前記少なくとも1つの電池電気推進船への給電後、余剰電力を有する場合には、当該余剰電力を前記陸上給電設備に売電するような売電指令を前記洋上発電船に送信してもよい。この構成によれば、陸上給電設備の電力価格が洋上発電船の給電価格よりも高い場合には、洋上発電船が各電池電気推進船への給電に最適な位置に移動するので、各電池電気推進船が充電のために航行する距離を少なくすることができる。さらに、洋上発電船は、各電池電気推進船への給電後、余剰電力を陸上給電設備に売電することができるので、運用コストを改善することができる。 The offshore power supply facility is an offshore power generation ship configured to be able to supply surplus power to the land power supply facility, and in the management device, the power price in the land power supply facility is higher than the power supply price in the offshore power supply facility. In the case, based on the operation data received from the at least one battery electric propulsion ship, the optimum standby position of the offshore power generation ship for supplying power to the at least one battery electric propulsion ship is determined, and the determined standby position is determined. Is transmitted to the offshore power generation ship, and the management device sells the surplus power to the land power supply facility when the offshore power generation ship has surplus power after supplying power to the at least one battery electric propulsion ship. An electric power sale command may be transmitted to the offshore power generation ship. According to this configuration, when the power price of the onshore power supply facility is higher than the power supply price of the offshore power generation vessel, the offshore power generation vessel moves to the optimum position for supplying power to each battery electric propulsion vessel. The distance that the propulsion vessel travels for charging can be reduced. Further, since the offshore power generation ship can sell the surplus power to the land power supply facility after supplying power to each battery electric propulsion ship, the operating cost can be improved.

前記少なくとも1つの電池電気推進船は、複数の電池電気推進船を含み、前記複数の電池電気推進船は、余剰電力を前記陸上給電設備に給電可能に構成され、前記管理装置は、前記陸上給電設備における電力価格が前記洋上給電設備における給電価格よりも高い場合には、前記複数の電池電気推進船のうちの余剰電力を有する電池電気推進船に対し、当該余剰電力を前記陸上給電設備に売電するような売電指令を送信してもよい。この構成によれば、陸上給電設備における電力価格が前記洋上給電設備における給電価格よりも高い場合には、余剰電力を有する電池電気推進船は、余剰電力を陸上給電設備に売電することができる。運用コストを改善することができる。 The at least one battery electric propulsion vessel includes a plurality of battery electric propulsion vessels, the plurality of battery electric propulsion vessels are configured to be able to supply surplus electric power to the land power supply facility, and the management device is configured to supply the land power supply. When the power price in the facility is higher than the power supply price in the offshore power supply facility, the surplus power is sold to the land power supply facility to the battery electric propulsion ship having surplus power among the plurality of battery electric propulsion ships. You may send a power sale command to make electricity. According to this configuration, when the power price in the land power supply facility is higher than the power supply price in the offshore power supply facility, the battery electric propulsion vessel having surplus power can sell the surplus power to the land power supply facility. .. Operating costs can be improved.

前記少なくとも1つの電池電気推進船は、複数の電池電気推進船を含み、前記少なくとも1つの洋上給電設備は、複数の洋上給電設備を含み、上記の電池電気推進船給電システムは、前記複数の電池電気推進船と通信可能な管理装置を備え、前記管理装置は、前記陸上給電設備における所定時間ごとの電力価格データを取得し、前記複数の電池電気推進船のそれぞれに対し、前記複数の電池電気推進船から受信する運航データおよび前記電力価格データに基づいて、充電タイミングおよび充電を受けるべき洋上給電設備又は前記陸上給電設備の特定を含む充電スケジュールを決定し、決定した充電スケジュールを対応する電池電気推進船へ送信してもよい。この構成によれば、各電池電気推進船が、運航データ及び電力価格データに基づいて決定された充電スケジュールに従って、洋上発電設備又は陸上給電設備のいずれかの設備において最適なタイミングで充電することができ、各電池電気推進船が経済的且つ効率的にオペレーションを実施することができる。 The at least one battery electric propulsion ship includes a plurality of battery electric propulsion ships, the at least one offshore power supply facility includes a plurality of offshore power supply facilities, and the battery electric propulsion ship power supply system includes the plurality of batteries. A management device capable of communicating with an electric propulsion ship is provided, and the management device acquires power price data for each predetermined time in the land power supply facility, and for each of the plurality of battery electric propulsion ships, the plurality of battery electricity. Based on the operation data received from the propulsion ship and the electric power price data, the charging schedule including the identification of the offshore power supply equipment or the land power supply equipment to be charged is determined, and the determined charging schedule corresponds to the battery electricity. It may be sent to the propulsion ship. According to this configuration, each battery-powered propulsion vessel can be charged at the optimum timing in either the offshore power generation facility or the land power supply facility according to the charging schedule determined based on the operation data and the power price data. This allows each battery-powered propulsion vessel to operate economically and efficiently.

前記少なくとも1つの電池電気推進船は、複数の電池電気推進船を含み、上記の電池電気推進船給電システムは、前記複数の電池電気推進船と通信可能な管理装置を備え、前記管理装置は、前記陸上給電設備における所定時間ごとの電力価格データを取得し、前記複数の電池電気推進船から受信する運航データおよび前記電力価格データに基づいて、前記複数の電池電気推進船に対する配船計画を行って前記複数の電池電気推進船のそれぞれに対するオペレーションを含む航行スケジュールを決定し、決定した航行スケジュールを対応する電池電気推進船へ送信してもよい。この構成によれば、配船計画を自動化することができるとともに、電池電気推進船は、運航データ及び電力価格データに基づいて決定された航行スケジュールに従って、航行することにより、運用コストを改善することができる。 The at least one battery electric propulsion vessel includes a plurality of battery electric propulsion vessels, and the battery electric propulsion vessel power supply system includes a management device capable of communicating with the plurality of battery electric propulsion vessels. The electric power price data for each predetermined time in the land power supply facility is acquired, and the ship allocation plan for the plurality of battery electric propulsion vessels is performed based on the operation data received from the plurality of battery electric propulsion vessels and the electric power price data. The navigation schedule including the operation for each of the plurality of battery-electric propulsion vessels may be determined, and the determined navigation schedule may be transmitted to the corresponding battery-electric propulsion vessel. According to this configuration, the ship allocation plan can be automated, and the battery-powered propulsion vessel can improve the operating cost by navigating according to the navigation schedule determined based on the operation data and the electric power price data. Can be done.

前記少なくとも1つの洋上給電設備は、前記陸上給電設備から給電を受けることが可能な構成を備えてもよい。具体的には、前記洋上給電設備は、発電機を備えた洋上発電船であって、上記の電池電気推進船給電システムは、前記少なくとも1つの陸上給電設備および前記洋上発電船と通信可能な管理装置を備え、前記管理装置は、前記洋上発電船の発電電力が不足している場合には、前記陸上給電設備における所定時間ごとの電力価格データを取得し、前記電力価格データに基づいて、前記洋上発電船で発電をするか、あるいは、前記陸上給電設備から給電を受けるかのいずれかを決定してもよい。この構成によれば、電力価格に応じて、洋上発電船で発電される電力を電池電気推進船に供給するか、陸上給電設備から給電される電力を電池電気推進船に供給するかが決定されるので、運用コストを改善することができる。 The at least one offshore power supply facility may have a configuration capable of receiving power from the land power supply facility. Specifically, the offshore power supply facility is an offshore power generation ship equipped with a generator, and the battery-electric propulsion ship power supply system is managed so as to be able to communicate with the at least one onshore power supply facility and the offshore power generation ship. When the power generated by the offshore power generator is insufficient, the management device acquires power price data for each predetermined time in the land power supply facility, and the management device obtains power price data for each predetermined time based on the power price data. It may be decided whether to generate electricity on an offshore power generator or to receive power from the onshore power supply facility. According to this configuration, it is decided whether to supply the power generated by the offshore power generation ship to the battery electric propulsion ship or the power supplied from the land power supply facility to the battery electric propulsion ship according to the power price. Therefore, the operating cost can be improved.

また、本発明の洋上発電設備は、電池電気推進船の蓄電池を充電する洋上発電設備であって、発電機と、前記発電機で生成された電力を蓄電する蓄電池と、前記蓄電池に接続された給電装置と、を備える、ことを特徴とする。このような洋上発電設備であれば、上記の電池電気推進船給電システムに好適に用いることができる。 Further, the offshore power generation facility of the present invention is an offshore power generation facility for charging a storage battery of a battery-electric propulsion ship, and is connected to a generator, a storage battery for storing electric power generated by the generator, and the storage battery. It is characterized by including a power feeding device. Such an offshore power generation facility can be suitably used for the above-mentioned battery electric propulsion ship power supply system.

例えば、上記の洋上発電設備は、液化ガスを貯留するタンクと、前記液化ガスまたはその気化ガスを燃焼させる、前記発電機と連結された内燃機関と、をさらに備えてもよい。 For example, the offshore power generation facility may further include a tank for storing the liquefied gas and an internal combustion engine connected to the generator for burning the liquefied gas or the vaporized gas thereof.

また、本発明の電池電気推進船は、当該電池電気推進船の運航データを送信する通信装置を備える、ことを特徴とする。このような電池電気推進船であれば、上記の電池電気推進船給電システムに好適に用いることができる。 Further, the battery-electric propulsion ship of the present invention is characterized by including a communication device for transmitting operation data of the battery-electric propulsion ship. Such a battery-electric propulsion vessel can be suitably used for the above-mentioned battery-electric propulsion vessel power supply system.

本発明によれば、電池電気推進船を岸壁に係留せずに電池電気推進船の充電池を充電することができる。 According to the present invention, the rechargeable battery of the battery electric propulsion vessel can be charged without mooring the battery electric propulsion vessel to the quay.

本発明の第1実施形態に係る電池電気推進船給電システムの概略構成図である。It is a schematic block diagram of the battery electric propulsion ship power supply system which concerns on 1st Embodiment of this invention. 陸上給電設備における電力需給状況の一例を示すグラフである。It is a graph which shows an example of the power supply and demand situation in a land power supply facility. 本発明の第2実施形態に係る電池電気推進船給電システムの概略構成図である。It is a schematic block diagram of the battery electric propulsion ship power supply system which concerns on 2nd Embodiment of this invention. 充電スケジュールに従って給電設備が特定される様子を示す図である。It is a figure which shows the mode that the power supply equipment is specified according to the charge schedule. 電池電気推進船の航行スケジュールの一例を示すグラフである。It is a graph which shows an example of the navigation schedule of a battery-electric propulsion vessel. 航行スケジュールに従った航路の一例を示す図である。It is a figure which shows an example of the route according to the navigation schedule.

(第1実施形態)
図1に、本発明の第1実施形態に係る電池電気推進船給電システム1を示す。この給電システム1は、複数の電池電気推進船2と、複数の洋上発電船3(本発明の、洋上給電設備に相当)と、管理装置5を含む。ただし、電池電気推進船2の数が1つであってもよいし、洋上発電船3の数が1つであってもよい。
(First Embodiment)
FIG. 1 shows a battery electric propulsion ship power supply system 1 according to the first embodiment of the present invention. The power supply system 1 includes a plurality of battery-electric propulsion vessels 2, a plurality of offshore power generation vessels 3 (corresponding to the offshore power supply equipment of the present invention), and a management device 5. However, the number of battery-electric propulsion vessels 2 may be one, or the number of offshore power generation vessels 3 may be one.

図1では、給電システム1が2つの港12,13を含む1つの湾11に対して構築されているが、給電システム1は、複数の湾に跨って構築されてもよい。 In FIG. 1, the power supply system 1 is constructed for one bay 11 including two ports 12 and 13, but the power supply system 1 may be constructed across a plurality of bays.

本実施形態では、各電池電気推進船2が国内海域を航行する内航船である。国内海域は、日本国内海域であってもよいし、外国国内海域であってもよい。あるいは、複数の国が隣接する場合は、国内海域は、それらの国の国内海域であってもよい。さらには、各電池電気推進船2は、国際航海に従事する外航船であってもよい。 In the present embodiment, each battery-electric propulsion vessel 2 is a coastal vessel that navigates the domestic sea area. The domestic sea area may be a domestic sea area in Japan or a foreign domestic sea area. Alternatively, if multiple countries are adjacent, the domestic waters may be the domestic waters of those countries. Furthermore, each battery-electric propulsion vessel 2 may be an ocean-going vessel engaged in international voyages.

例えば、電池電気推進船2は、タグボート、フェリー、各種の物流船(コンテナ船、油送船、一般貨物船、ケミカル船)などである。例えば、タグボートは、大型船を牽引するオペレーションを実施し、コンテナ船は、港間でコンテナを輸送するオペレーションを実施する。各電池電気推進船2に対するオペレーションは、日々変更される。 For example, the battery-electric propulsion ship 2 is a tugboat, a ferry, various distribution ships (container ship, oil tanker, general cargo ship, chemical ship) and the like. For example, a tugboat carries out an operation to tow a large ship, and a container ship carries out an operation to transport a container between ports. The operation for each battery electric propulsion vessel 2 is changed daily.

具体的に、図示は省略するが、各電池電気推進船2は、プロペラを駆動するプロペラ駆動モータと、プロペラ駆動モータへ電力を供給する蓄電池を含む。蓄電池は、洋上発電船3の後述する給電装置に接続されることによって充電される。 Specifically, although not shown, each battery electric propulsion vessel 2 includes a propeller drive motor for driving a propeller and a storage battery for supplying electric power to the propeller drive motor. The storage battery is charged by being connected to a power supply device described later of the offshore power generation vessel 3.

各洋上発電船3は、液化ガスを用いて発電する、電池電気推進船2の蓄電池を充電可能な船である。液化ガスは、例えば、LNG(Liquefied Natural Gas)、液化水素、などである。本実施形態では、各洋上発電船3が各電池電気推進船2へ給電して当該電池電気推進船2の蓄電池を充電する。ただし、電池電気推進船2の蓄電池の充電は必ずしも電池電気推進船2上で行われる必要はない。例えば、電池電気推進船2が航行している間に、交換用の蓄電池が洋上発電船3上で充電され、電池電気推進船2が洋上発電船3に係留されたときに、電池電気推進船2の蓄電池が充電済みの蓄電池と交換されてもよい。 Each offshore power generation vessel 3 is a vessel capable of charging the storage battery of the battery electric propulsion vessel 2 that generates electricity using liquefied gas. The liquefied gas is, for example, LNG (Liquefied Natural Gas), liquefied hydrogen, or the like. In the present embodiment, each offshore power generation vessel 3 supplies power to each battery electric propulsion vessel 2 to charge the storage battery of the battery electric propulsion vessel 2. However, the storage battery of the battery electric propulsion vessel 2 does not necessarily have to be charged on the battery electric propulsion vessel 2. For example, when the battery electric propulsion vessel 2 is navigating, the replacement storage battery is charged on the offshore power generation vessel 3, and the battery electric propulsion vessel 2 is moored on the offshore power generation vessel 3, the battery electric propulsion vessel 2 is moored. The storage battery of 2 may be replaced with a charged storage battery.

具体的に、図示は省略するが、各洋上発電船3は、液化ガスを貯留するタンクと、液化ガスまたはその気化ガスを燃焼させる内燃機関と、内燃機関と連結された発電機と、発電機で生成された電力を蓄電する蓄電池と、蓄電池に接続された給電装置を含む。 Specifically, although not shown, each offshore power generator 3 includes a tank for storing liquefied gas, an internal combustion engine for burning the liquefied gas or its vaporized gas, a generator connected to the internal combustion engine, and a generator. Includes a storage battery that stores the power generated in, and a power supply device connected to the storage battery.

各洋上発電船3の内燃機関は、レシプロエンジンであってもよいし、ガスタービンエンジンであってもよい。あるいは、内燃機関に代えて、ガス焚きボイラおよび蒸気タービンが採用されてもよい。また、液化ガスが液化水素である場合は、各洋上発電船3は、水素と酸素を反応させて発電する燃料電池を含んでもよい。 The internal combustion engine of each offshore power generation vessel 3 may be a reciprocating engine or a gas turbine engine. Alternatively, a gas-fired boiler and a steam turbine may be adopted instead of the internal combustion engine. When the liquefied gas is liquefied hydrogen, each offshore power generation vessel 3 may include a fuel cell that generates electricity by reacting hydrogen with oxygen.

本実施形態では、給電システム1が、さらに、陸上に設置された複数の液化ガス供給装置4を含む。各液化ガス供給装置4は、いずれかの洋上発電船3へ液化ガスを供給する。例えば、各液化ガス供給装置4は、液化ガスを貯留する複数の大容量のタンクを含む。 In this embodiment, the power supply system 1 further includes a plurality of liquefied gas supply devices 4 installed on land. Each liquefied gas supply device 4 supplies liquefied gas to any of the offshore power generation vessels 3. For example, each liquefied gas supply device 4 includes a plurality of large-capacity tanks for storing liquefied gas.

図1では、2つの液化ガス供給装置4が港12,13にそれぞれ設けられており、1つの液化ガス供給装置4が港ではない岸壁に設けられている。そして、それらの液化ガス供給装置4の近傍で、洋上発電船3が岸壁に係留されている。 In FIG. 1, two liquefied gas supply devices 4 are provided at ports 12 and 13, respectively, and one liquefied gas supply device 4 is provided at a quay that is not a port. Then, an offshore power generation vessel 3 is moored at the quay in the vicinity of the liquefied gas supply device 4.

一方、岸壁から離れた位置に配置された洋上発電船3も存在する(図1では、最も下方に位置する洋上発電船3)。この洋上発電船3は、アンカーによってその位置に係留されてもよいし、アンカーを用いずにスラスターによってその位置に保持されてもよい。この洋上発電船3への液化ガスの供給は、当該洋上発電船3が別の洋上発電船3と入れ替えられることで行われる。 On the other hand, there is also an offshore power generation vessel 3 located at a position away from the quay (in FIG. 1, the offshore power generation vessel 3 located at the lowest position). The offshore power generation vessel 3 may be moored at that position by an anchor, or may be held at that position by a thruster without using an anchor. The supply of liquefied gas to the offshore power generation vessel 3 is performed by replacing the offshore power generation vessel 3 with another offshore power generation vessel 3.

管理装置5は、本実施形態では陸上に設置されているが、例えば、浮体式の洋上基地に設置されてもよい。あるいは、管理装置5は、いずれかの洋上発電船3に搭載されてもよい。その他、管理装置5は、複数の電池電気推進船2又は洋上発電船3の各々に搭載されてもよい。さらに、個々の船に搭載された各管理装置5が互いの情報を共有するような情報共有システムを構築するとともに、各管理装置5を搭載した船が、共有した情報に基づいて自律的に管理するような構成を備えてもよい。 Although the management device 5 is installed on land in the present embodiment, it may be installed, for example, in a floating offshore base. Alternatively, the management device 5 may be mounted on any of the offshore power generation vessels 3. In addition, the management device 5 may be mounted on each of the plurality of battery-powered propulsion vessels 2 or the offshore power generation vessel 3. Further, an information sharing system is constructed in which each management device 5 mounted on each ship shares information with each other, and the ship equipped with each management device 5 autonomously manages based on the shared information. It may be provided with such a configuration.

管理装置5は、電池電気推進船2および洋上発電船3と通信可能なものである。図示は省略するが、各電池電気推進船2は、上述した構成に加え、通信装置および処理装置を含む。同様に、各洋上発電船3および管理装置5も、通信装置および処理装置を含む。例えば、処理装置は、ROMやRAMなどのメモリと、HDDなどのストレージと、CPUを有するコンピュータであり、ROMまたはHDDに記憶されたプログラムがCPUにより実行される。 The management device 5 is capable of communicating with the battery-powered propulsion vessel 2 and the offshore power generation vessel 3. Although not shown, each battery-powered propulsion vessel 2 includes a communication device and a processing device in addition to the above-described configuration. Similarly, each offshore power generation vessel 3 and management device 5 also includes a communication device and a processing device. For example, the processing device is a computer having a memory such as a ROM or a RAM, a storage such as an HDD, and a CPU, and a program stored in the ROM or the HDD is executed by the CPU.

各電池電気推進船2の操船者は、日々、当該電池電気推進船2のオペレーション情報を処理装置に入力する。オペレーション情報には、出港する港および時間、入港する港および時間、オペレーション内容などが含まれる。 The operator of each battery-electric propulsion vessel 2 inputs the operation information of the battery-electric propulsion vessel 2 into the processing device on a daily basis. The operation information includes the port and time of departure, the port and time of arrival, and the content of the operation.

各電池電気推進船2の通信装置は、処理装置に入力されたオペレーション情報を運航データとして管理装置5へ送信する。また、各電池電気推進船2の通信装置は、当該電池電気推進船2の蓄電池の容量および電池残量も運航データとして管理装置5へ送信する。さらに、運航データには、各電池電気推進船2の推進電力負荷、推進以外の船内電力負荷、船速などが含まれてもよい。 The communication device of each battery electric propulsion vessel 2 transmits the operation information input to the processing device to the management device 5 as operation data. Further, the communication device of each battery electric propulsion ship 2 also transmits the capacity of the storage battery of the battery electric propulsion ship 2 and the remaining battery level to the management device 5 as operation data. Further, the operation data may include the propulsion power load of each battery-electric propulsion ship 2, the inboard power load other than propulsion, the ship speed, and the like.

さらに、各電池電気推進船2の通信装置は、当該電池電気推進船2の運航データと共に、蓄電池、プロペラ駆動モータおよびプロペラの作動状態データを管理装置5へ送信してもよい。 Further, the communication device of each battery electric propulsion ship 2 may transmit the operation state data of the storage battery, the propeller drive motor, and the propeller to the management device 5 together with the operation data of the battery electric propulsion ship 2.

各電池電気推進船2から送信される運航データは、管理装置5の通信装置により受信される。管理装置5の処理装置は、各電池電気推進船2の運航データに基づいて、全ての電池電気推進船2への給電に最適な各洋上発電船3の待機位置を決定する。管理装置5の通信装置は、処理装置が決定した各洋上発電船3の待機位置を、各洋上発電船3へ送信する。 The operation data transmitted from each battery-electric propulsion vessel 2 is received by the communication device of the management device 5. The processing device of the management device 5 determines the optimum standby position of each offshore power generation vessel 3 for supplying power to all the battery electric propulsion vessels 2 based on the operation data of each battery electric propulsion vessel 2. The communication device of the management device 5 transmits the standby position of each offshore power generation vessel 3 determined by the processing device to each offshore power generation vessel 3.

管理装置5から送信される待機位置は、各洋上発電船3の通信装置により受信され、処理装置によりモニタなどに出力される。各洋上発電船3の操船者は、その待機位置へ当該洋上発電船3を移動する。 The standby position transmitted from the management device 5 is received by the communication device of each offshore power generation vessel 3 and output to a monitor or the like by the processing device. The operator of each offshore power generation vessel 3 moves the offshore power generation vessel 3 to the standby position.

また、管理装置5の処理装置は、全ての電池電気推進船2の運航データに基づいて、各電池電気推進船2に対する充電スケジュールを決定する。充電スケジュールは、充電タイミングおよび充電を受けるべき洋上発電船3の特定を含むものである。管理装置5の通信装置は、処理装置が決定した各電池電気推進船2の充電スケジュールを、対応する電池電気推進船2へ送信する。 Further, the processing device of the management device 5 determines the charging schedule for each battery electric propulsion vessel 2 based on the operation data of all the battery electric propulsion vessels 2. The charging schedule includes the timing of charging and the identification of the offshore power vessel 3 to be charged. The communication device of the management device 5 transmits the charging schedule of each battery electric propulsion vessel 2 determined by the processing device to the corresponding battery electric propulsion vessel 2.

管理装置5から送信される充電スケジュールは、各電池電気推進船2の通信装置により受信され、処理装置によりモニタなどに出力される。各電池電気推進船2の操船者は、その充電スケジュールに従って、オペレーションの間に、特定された洋上発電船3から充電を受けるように電池電気推進船2を操船する。 The charging schedule transmitted from the management device 5 is received by the communication device of each battery electric propulsion vessel 2 and output to a monitor or the like by the processing device. The operator of each battery-powered propulsion vessel 2 operates the battery-powered propulsion vessel 2 so as to receive charging from the specified offshore power generation vessel 3 during the operation according to the charging schedule.

また、管理装置5の処理装置は、インターネットなどを経由して、気象庁などの外部機関から、波情報および風情報を含む海気象データを取得する。そして、処理装置は、海気象データに基づいて、洋上発電船3から電池電気推進船2への給電が可能か否かを決定する。 Further, the processing device of the management device 5 acquires sea weather data including wave information and wind information from an external organization such as the Japan Meteorological Agency via the Internet or the like. Then, the processing device determines whether or not power can be supplied from the offshore power generation vessel 3 to the battery electric propulsion vessel 2 based on the sea weather data.

以上説明した構成の給電システム1では、電池電気推進船2を岸壁に係留することなく、洋上で電池電気推進船2の充電池を充電することができる。 In the power supply system 1 having the configuration described above, the rechargeable battery of the battery electric propulsion vessel 2 can be charged at sea without mooring the battery electric propulsion vessel 2 to the quay.

また、本実施形態では、管理装置5が全ての電池電気推進船2への給電に最適な待機位置を決定するので、洋上発電船3をその待機位置に移動することができる。これにより、各電池電気推進船2が充電のために航行する距離を少なくすることができる。 Further, in the present embodiment, since the management device 5 determines the optimum standby position for supplying power to all the battery electric propulsion vessels 2, the offshore power generation vessel 3 can be moved to the standby position. As a result, the distance traveled by each battery-electric propulsion vessel 2 for charging can be reduced.

また、本実施形態では、管理装置5が各電池電気推進船2の充電スケジュールを決定するので、各電池電気推進船2が充電スケジュールに従って充電を受けることができる。従って、各電池電気推進船2が効率的にオペレーションを実施することができる。 Further, in the present embodiment, since the management device 5 determines the charging schedule of each battery electric propulsion vessel 2, each battery electric propulsion vessel 2 can be charged according to the charging schedule. Therefore, each battery-electric propulsion vessel 2 can efficiently carry out the operation.

(変形例)
本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変形が可能である。
(Modification example)
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.

例えば、本発明の洋上発電設備は、必ずしも液化ガスを用いて発電する洋上発電船3である必要はなく、洋上風力により発電する、一定位置に固定される浮体式の発電設備であってもよい。ただし、前記実施形態のように洋上発電設備が洋上発電船3であれば、状況に応じて洋上発電設備の位置を変更することができる。また、液化ガスを用いて発電する洋上発電船3であれば、重油などの油を燃料とする場合と異なり、昨今の厳しい環境規制にも対応することができる。 For example, the offshore power generation facility of the present invention does not necessarily have to be an offshore power generator 3 that uses liquefied gas to generate electricity, and may be a floating power generation facility that generates electricity by offshore wind power and is fixed at a fixed position. .. However, if the offshore power generation facility is the offshore power generation ship 3 as in the above embodiment, the position of the offshore power generation facility can be changed depending on the situation. Further, the offshore power generation vessel 3 that generates electricity using liquefied gas can comply with the recent strict environmental regulations, unlike the case where oil such as heavy oil is used as fuel.

また、洋上発電船3へは、必ずしも陸上の液化ガス供給装置4から液化ガスが供給される必要はなく、洋上の液化ガス供給装置から液化ガスが供給されてもよい。このような洋上の液化ガス供給装置としては、例えば、浮体式の液化ガス基地、液化ガス輸送船などが挙げられる。ただし、前記実施形態のように陸上の液化ガス供給装置4から洋上発電船3へ液化ガスが供給されれば、陸上の液化ガス供給装置4には一般的に液化ガス貯留用の大容量のタンクが複数装備されるので、洋上発電船3へ液化ガスを必要なときに安定的に供給することができる。 Further, the offshore power generation ship 3 does not necessarily have to be supplied with the liquefied gas from the liquefied gas supply device 4 on land, and the liquefied gas may be supplied from the liquefied gas supply device at sea. Examples of such an offshore liquefied gas supply device include a floating liquefied gas base and a liquefied gas transport ship. However, if the liquefied gas is supplied from the onshore liquefied gas supply device 4 to the offshore power generation ship 3 as in the above embodiment, the onshore liquefied gas supply device 4 generally has a large capacity tank for storing the liquefied gas. Is equipped with a plurality of liquefied gas, so that the liquefied gas can be stably supplied to the offshore power generation ship 3 when necessary.

また、管理装置5は、日々、全ての電池電気推進船2の運航データに基づいて、全ての電池電気推進船2に対する配船計画を行って各電池電気推進船2に対するオペレーションを含む航行スケジュールを決定し、決定した航行スケジュールを対応する電池電気推進船2へ送信してもよい。この構成によれば、配船計画を自動化することができる。 Further, the management device 5 makes a ship allocation plan for all the battery electric propulsion vessels 2 based on the operation data of all the battery electric propulsion vessels 2 every day, and sets a navigation schedule including the operation for each battery electric propulsion vessel 2. The determined and determined navigation schedule may be transmitted to the corresponding battery-powered propulsion vessel 2. According to this configuration, the ship allocation plan can be automated.

また、管理装置5は、各洋上発電船3の待機位置、各電池電気推進船2の充電スケジュール、および/または各電池電気推進船2の航行スケジュールを、全ての電池電気推進船2の運航データならびに、蓄電池、プロペラ駆動モータおよびプロペラの作動状態データに対する機械学習結果に基づいて決定してもよい。この構成によれば、各電池電気推進船2の充電時間が最小になるように、および/または各電池電気推進船2の運用効率が最大になるように、および/または各電池電気推進船2の蓄電池の寿命が最大になるようにすることができる。 Further, the management device 5 sets the standby position of each offshore power generation vessel 3, the charging schedule of each battery electric propulsion vessel 2, and / or the navigation schedule of each battery electric propulsion vessel 2 as the operation data of all the battery electric propulsion vessels 2. In addition, the determination may be made based on the machine learning results for the operating state data of the storage battery, the propeller drive motor, and the propeller. According to this configuration, the charging time of each battery electric propulsion vessel 2 is minimized and / or the operational efficiency of each battery electric propulsion vessel 2 is maximized, and / or each battery electric propulsion vessel 2 is used. The life of the storage battery can be maximized.

また、前記実施形態では、各電池電気推進船2に操船者が搭乗することを前提としているが、各電池電気推進船2は無人船であってもよい。この場合、管理装置5から送信される充電スケジュールおよび航行スケジュールなどに基づいて、電池電気推進船2が自動操縦される。同様に、各洋上発電船3も無人船であってもよい。 Further, in the above-described embodiment, it is assumed that the operator is on board each battery-electric propulsion vessel 2, but each battery-electric propulsion vessel 2 may be an unmanned vessel. In this case, the battery-electric propulsion vessel 2 is autopiloted based on the charging schedule, the navigation schedule, and the like transmitted from the management device 5. Similarly, each offshore power generation vessel 3 may also be an unmanned vessel.

(第2実施形態)
本発明者等は、給電システム1の運用コストの効率化を図るべく鋭意検討した。近年では、原子力エネルギーの利用が大きく制限される一方、太陽光発電などの再生可能エネルギーが積極的に利用され始めている。そこで、本発明者等は、そのような陸上の給電設備に着目し、その適用性について検討した。
(Second Embodiment)
The present inventors have diligently studied in order to improve the efficiency of the operating cost of the power supply system 1. In recent years, while the use of nuclear energy has been severely restricted, renewable energy such as solar power generation has begun to be actively used. Therefore, the present inventors have focused on such onshore power supply equipment and examined its applicability.

図2は、陸上給電設備における電力需給状況の一例を示すグラフである。ここでは夏季のある一日の電力需給状況を示している。この陸上給電設備では、火力発電、太陽光発電、風力発電、水力発電が実施されており、原子力発電は実施されていない。図2に示すように、この陸上給電設備は、火力発電と太陽光発電に依存しているため、昼間(6:00〜18:00)では、陸上で電力が余り、陸上給電設備における電力価格が低くなる。一方、夜間(18:00〜6:00)では、陸上で電力が足りなくなり、陸上給電設備における電力価格が高くなる。そこで、発明者等は、時刻や気象条件等によって変動する陸上給電設備の電力価格と、洋上発電船の発電単価から算出される電力価格とを比較検討した。その結果、電池電気推進船から受信する運航データ、及び、洋上給電設備における給電価格と陸上給電設備における電力価格に応じて、電池電気推進船がいずれの給電設備で給電を受けることを優先すべきかを決定することにより、給電システム全体の運用コストを改善することができることを見出した。 FIG. 2 is a graph showing an example of the power supply and demand situation in the land power supply facility. Here, the power supply and demand situation of one day in summer is shown. In this land power supply facility, thermal power generation, solar power generation, wind power generation, and hydroelectric power generation are carried out, but nuclear power generation is not carried out. As shown in FIG. 2, since this land power supply facility depends on thermal power generation and solar power generation, there is excess power on land during the daytime (6:00 to 18:00), and the power price of the land power supply facility. Will be low. On the other hand, at night (18:00 to 6:00), the power becomes insufficient on land, and the power price in the land power supply facility becomes high. Therefore, the inventors compared and examined the electric power price of the land power supply facility, which fluctuates depending on the time and weather conditions, and the electric power price calculated from the power generation unit price of the offshore power generation ship. As a result, which power supply facility should be prioritized to receive power from the battery-powered propulsion vessel according to the operation data received from the battery-electric propulsion vessel and the power supply price at the offshore power supply facility and the power price at the land power supply facility? It was found that the operating cost of the entire power supply system can be improved by deciding.

また、図2の陸上給電設備において発電した電力を安定的に供給するためには発電効率が最も高い状態で運転を持続させるという観点が必要になる。一方で、火力発電が停止したことを想定した場合、太陽光発電がなされない夜間の場合、又は、昼間でも日照条件により期待される太陽光発電量が得られない場合には、必要な電力量を確保できないという問題が発生する。そこで、発明者等は、システム運用時における洋上給電船及び電池電気推進船の余剰電力を想定し、これらの余剰電力を陸上給電設備に売電した場合の費用対効果について検討した。その結果、洋上給電船及び電池電気推進船のそれぞれが余剰電力を有する場合には、洋上給電設備における給電価格と陸上給電設備における電力価格とに応じて、それらを陸上給電設備に売電することにより、給電システム全体の運用コストを更に改善することができることを見出した。 Further, in order to stably supply the electric power generated by the onshore power supply facility of FIG. 2, it is necessary to have a viewpoint of sustaining the operation in the state where the power generation efficiency is the highest. On the other hand, assuming that thermal power generation has stopped, the amount of power required is required at night when solar power is not generated, or when the expected amount of solar power cannot be obtained due to sunshine conditions even in the daytime. There is a problem that it cannot be secured. Therefore, the inventors assumed surplus power of the offshore power supply ship and the battery electric propulsion ship at the time of system operation, and examined the cost-effectiveness when selling these surplus power to the land power supply facility. As a result, if each of the offshore power supply ship and the battery electric propulsion ship has surplus power, sell them to the land power supply facility according to the power supply price in the offshore power supply facility and the power price in the land power supply facility. As a result, it was found that the operating cost of the entire power supply system can be further improved.

本発明者等は、以上の知見に基づいて本発明を想到した。以下、本発明を具体化した実施形態を、添付図面を参照しつつ説明する。 The present inventors have conceived the present invention based on the above findings. Hereinafter, embodiments embodying the present invention will be described with reference to the accompanying drawings.

図3に、本発明の第2実施形態に係る電池電気推進船給電システム1Aを示す。図3に示すように、本実施形態の給電システム1Aは、陸上に設置された陸上給電設備20を備える点が第1実施形態(図1)と異なる。図3では、電池電気推進船2の蓄電池を充電可能な1つの陸上給電設備20が港13に設けられている。ただし、陸上給電設備20の数が複数であってもよい。 FIG. 3 shows the battery electric propulsion ship power supply system 1A according to the second embodiment of the present invention. As shown in FIG. 3, the power supply system 1A of the present embodiment is different from the first embodiment (FIG. 1) in that it includes a land power supply facility 20 installed on land. In FIG. 3, one land power supply facility 20 capable of charging the storage battery of the battery electric propulsion vessel 2 is provided at the port 13. However, the number of land power supply facilities 20 may be plural.

陸上給電設備20は、例えば商用系統である。陸上給電設備20は、電力供給ステーション21と、火力発電システム22と、太陽光発電システム23と、風力発電システム24と、水力発電システム25とを備える。ただし、陸上給電設備20は、その他の自然エネルギーを利用した発電システムを備えてもよい。電力供給ステーション21は、各発電システム22〜25で発電した電力を電池電気推進船2へ給電して、当該電池電気推進船2の蓄電池を充電可能な構成を備える。ただし、電池電気推進船2の蓄電池の充電は必ずしも電力供給ステーション21で行われる必要はない。例えば、電池電気推進船2が航行している間に、交換用の蓄電池が電力供給ステーション21で充電され、電池電気推進船2が港13に係留されたときに、電池電気推進船2の蓄電池が充電済みの蓄電池と交換されてもよい。尚、図示は省略するが、電力供給ステーション21は、上述した構成に加え、通信装置および処理装置を含む。 The land power supply facility 20 is, for example, a commercial system. The land power supply facility 20 includes a power supply station 21, a thermal power generation system 22, a solar power generation system 23, a wind power generation system 24, and a hydroelectric power generation system 25. However, the land power supply facility 20 may include a power generation system using other natural energy. The power supply station 21 has a configuration capable of supplying the electric power generated by each of the power generation systems 22 to 25 to the battery electric propulsion vessel 2 to charge the storage battery of the battery electric propulsion vessel 2. However, the storage battery of the battery electric propulsion vessel 2 does not necessarily have to be charged at the power supply station 21. For example, when the battery electric propulsion ship 2 is navigating, the replacement storage battery is charged at the power supply station 21, and the battery electric propulsion ship 2 is moored at the port 13, the storage battery of the battery electric propulsion ship 2 May be replaced with a charged storage battery. Although not shown, the power supply station 21 includes a communication device and a processing device in addition to the above-described configuration.

また、陸上給電設備20において、電池電気推進船2及び洋上発電船3は、蓄電池に充電された余剰電力を売電することができる。つまり、各電池電気推進船2は、余剰電力を陸上給電設備20(電力供給ステーション21)に対して給電可能に構成されている。同様に、洋上発電船3もまた、余剰電力を陸上給電設備20に対しても給電可能に構成されている。 Further, in the land power supply facility 20, the battery electric propulsion ship 2 and the offshore power generation ship 3 can sell the surplus electric power charged in the storage battery. That is, each battery electric propulsion vessel 2 is configured to be able to supply surplus electric power to the land power supply facility 20 (power supply station 21). Similarly, the offshore power generation vessel 3 is also configured to be able to supply surplus electric power to the onshore power supply facility 20.

管理装置5は、陸上給電設備20と通信可能に構成され、陸上給電設備20における所定時間ごとの電力価格データを陸上給電設備20から取得可能に構成されている。管理装置5は、陸上給電設備20から電力価格データを直接受信してもよいし、その他の設備からネットワークを介して間接的に受信してもよい。 The management device 5 is configured to be communicable with the land power supply facility 20, and is configured to be able to acquire power price data for each predetermined time in the land power supply facility 20 from the land power supply facility 20. The management device 5 may directly receive the electric power price data from the land power supply equipment 20, or may indirectly receive the electric power price data from other equipment via the network.

本実施形態では、管理装置5は、陸上給電設備20における所定時間ごとの電力価格データを取得し、陸上給電設備20における電力価格と洋上発電船3における給電価格とを比較する。尚、洋上発電船3の給電価格は、洋上発電船3の発電単価から算出される電力価格をいう。管理装置5は、陸上給電設備20における電力価格が洋上発電船3における給電価格よりも低い場合には、全ての電池電気推進船2から受信する運航データに基づいて、洋上発電船3および陸上給電設備20のうちの陸上給電設備20で給電を受けることを優先するような給電指令を生成し、生成した給電指令を各電池電気推進船2に送信する。管理装置5から送信される給電指令は、各電池電気推進船2の通信装置により受信され、処理装置によりモニタなどに出力される。各電池電気推進船2の操船者は、その給電指令に従って、オペレーションの間に、陸上給電設備20から充電を受けるように電池電気推進船2を操船する。 In the present embodiment, the management device 5 acquires the power price data for each predetermined time in the land power supply equipment 20 and compares the power price in the land power supply equipment 20 with the power supply price in the offshore power generation ship 3. The power supply price of the offshore power generation vessel 3 refers to the electric power price calculated from the power generation unit price of the offshore power generation vessel 3. When the power price of the land power supply facility 20 is lower than the power supply price of the offshore power generation vessel 3, the management device 5 supplies the offshore power generation vessel 3 and the land power supply based on the operation data received from all the battery electric propulsion vessels 2. A power supply command that gives priority to receiving power from the land power supply facility 20 of the equipment 20 is generated, and the generated power supply command is transmitted to each battery electric propulsion vessel 2. The power supply command transmitted from the management device 5 is received by the communication device of each battery electric propulsion vessel 2 and output to a monitor or the like by the processing device. The operator of each battery-powered propulsion vessel 2 operates the battery-powered propulsion vessel 2 so as to receive a charge from the land power supply facility 20 during the operation in accordance with the power supply command.

一方、管理装置5は、陸上給電設備20における電力価格が洋上発電船3の給電価格よりも高い場合には、全ての電池電気推進船2から受信する運航データに基づいて、洋上発電船3および陸上給電設備20のうちの洋上発電船3で給電を受けることを優先するような給電指令を生成し、生成した給電指令を各電池電気推進船2に送信する。管理装置5から送信される給電指令は、各電池電気推進船2の通信装置により受信され、処理装置によりモニタなどに出力される。各電池電気推進船2の操船者は、その給電指令に従って、オペレーションの間に、特定された洋上発電船3から充電を受けるように電池電気推進船2を操船する。尚、管理装置5は、余剰電力が有る電池電気推進船2に対しては、オペレーションの合間に、余剰電力を陸上給電設備20に売電するような売電指令を送信してもよい。 On the other hand, when the electric power price in the land power supply facility 20 is higher than the power supply price of the offshore power generation vessel 3, the management device 5 is based on the operation data received from all the battery-electric propulsion vessels 2 and the offshore power generation vessel 3 and A power supply command is generated so as to give priority to receiving power from the offshore power generation vessel 3 of the land power supply equipment 20, and the generated power supply command is transmitted to each battery electric propulsion vessel 2. The power supply command transmitted from the management device 5 is received by the communication device of each battery electric propulsion vessel 2 and output to a monitor or the like by the processing device. The operator of each battery-powered propulsion vessel 2 operates the battery-powered propulsion vessel 2 so as to receive a charge from the specified offshore power generation vessel 3 during the operation in accordance with the power supply command. The management device 5 may send a power selling command to the battery electric propulsion vessel 2 having surplus power to sell the surplus power to the land power supply facility 20 between operations.

このとき、管理装置5は、全ての電池電気推進船2から受信する運航データに基づいて、全ての電池電気推進船2への給電に最適な洋上発電船3の待機位置を決定し、決定した待機位置を洋上発電船3に送信する。管理装置5から送信される待機位置は、各洋上発電船3の通信装置により受信され、処理装置によりモニタなどに出力される。各洋上発電船3の操船者は、その待機位置へ当該洋上発電船3を移動する。さらに、管理装置5は、洋上発電船3から全ての電池電気推進船2への給電後、洋上発電船3が余剰電力を有する場合には、当該余剰電力を陸上給電設備20に売電するような売電指令を洋上発電船3に送信する。 At this time, the management device 5 determines and determines the optimum standby position of the offshore power generation vessel 3 for supplying power to all the battery electric propulsion vessels 2 based on the operation data received from all the battery electric propulsion vessels 2. The standby position is transmitted to the offshore power generation vessel 3. The standby position transmitted from the management device 5 is received by the communication device of each offshore power generation vessel 3 and output to a monitor or the like by the processing device. The operator of each offshore power generation vessel 3 moves the offshore power generation vessel 3 to the standby position. Further, after the power is supplied from the offshore power generation ship 3 to all the battery electric propulsion ships 2, the management device 5 sells the surplus power to the land power supply facility 20 when the offshore power generation ship 3 has surplus power. Power sale command is transmitted to the offshore power generation ship 3.

以上説明した構成の給電システム1Aでは、電池電気推進船2が、陸上給電設備20の電力価格が洋上発電船3の給電価格よりも低い場合は、陸上給電設備20から給電をうけ、陸上給電設備20の電力価格が洋上発電船3の給電価格よりも高い場合には、洋上発電船3から給電をうけることができるので、運用コストを改善することができる。 In the power supply system 1A having the configuration described above, when the power price of the land power supply facility 20 is lower than the power supply price of the offshore power generation ship 3, the battery electric propulsion ship 2 receives power from the land power supply facility 20 and receives power from the land power supply facility 20. When the electric power price of 20 is higher than the power supply price of the offshore power generation ship 3, the power can be received from the offshore power generation ship 3, so that the operating cost can be improved.

また、本実施形態では、陸上給電設備20の電力価格が洋上発電船3の給電価格よりも高い場合には、洋上発電船3が各電池電気推進船2への給電に最適な位置に移動するので、各電池電気推進船2が充電のために航行する距離を少なくすることができる。さらに、洋上発電船3は、各電池電気推進船2への給電後、余剰電力を陸上給電設備20に売電することができるので、運用コストを改善することができる。 Further, in the present embodiment, when the power price of the land power supply facility 20 is higher than the power supply price of the offshore power generation ship 3, the offshore power generation ship 3 moves to the optimum position for power supply to each battery electric propulsion ship 2. Therefore, the distance traveled by each battery-electric propulsion vessel 2 for charging can be reduced. Further, since the offshore power generation ship 3 can sell the surplus power to the land power supply facility 20 after supplying power to each battery electric propulsion ship 2, the operating cost can be improved.

また、本実施形態では、各電池電気推進船2は、陸上給電設備20における電力価格が洋上発電船3における給電価格よりも高い場合には、複数の電池電気推進船2のうちの余剰電力が有る電池電気推進船2に対して、当該余剰電力を陸上給電設備20に給電することにより、陸上給電設備20において、夜間や日照条件により期待される太陽光発電量が得られない場合でも、必要な電力量を確保することができる。運用コストを改善することができる。 Further, in the present embodiment, when the electric power price in the land power supply facility 20 is higher than the power supply price in the offshore power generation ship 3, the surplus power of the plurality of battery electric propulsion ships 2 is generated in each battery electric propulsion ship 2. It is necessary even if the land power supply facility 20 cannot obtain the expected amount of solar power generation at night or due to sunshine conditions by supplying the surplus electricity to the existing battery electric propulsion ship 2 to the land power supply facility 20. It is possible to secure a large amount of electric power. Operating costs can be improved.

(変形例)
本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変形が可能である。
(Modification example)
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.

例えば管理装置5は、陸上給電設備20における所定時間ごとの電力価格データを取得し、全ての電池電気推進船2から受信する運航データおよび電力価格データに基づいて、各電池電気推進船2に対する充電スケジュールを決定してもよい。ただし、充電スケジュールは、充電タイミングおよび充電を受けるべき洋上発電船3又は陸上給電設備20の特定を含むものである。管理装置5の通信装置は、処置装置が決定した各電池電気推進船2の充電スケジュールを、対応する電池電気推進船2へ送信する。 For example, the management device 5 acquires the electric power price data for each predetermined time in the land power supply facility 20, and charges each battery electric propulsion vessel 2 based on the operation data and the electric power price data received from all the battery electric propulsion vessels 2. You may decide the schedule. However, the charging schedule includes the charging timing and the identification of the offshore power generation vessel 3 or the land power supply facility 20 to be charged. The communication device of the management device 5 transmits the charging schedule of each battery electric propulsion vessel 2 determined by the treatment device to the corresponding battery electric propulsion vessel 2.

図4では、充電スケジュールに従って、給電設備が特定される様子を示している。ここでは説明の都合上、洋上には、充電が必要な1つの電池電気推進船2と、1つの洋上発電船3のみ示している。図4では、移動経路30は電池電気推進船2から洋上発電船3までの経路を示し、経路31は電池電気推進船2から陸上給電設備20までの経路を示している。経路30及び経路31の移動量は等しい。充電スケジュールは電力価格データを反映しているので、ここでは電池電気推進船2が給電を受けるべき給電設備として、電力価格の低い給電設備(例えば洋上発電船3)が特定される。この構成によれば、各電池電気推進船2が、運航データ及び電力価格データに基づいて決定された充電スケジュールに従って、洋上発電船3又は陸上給電設備20のいずれかの設備において最適なタイミングで充電することができ、各電池電気推進船2が経済的且つ効率的にオペレーションを実施することができる。 FIG. 4 shows how the power supply equipment is specified according to the charging schedule. Here, for convenience of explanation, only one battery-powered propulsion vessel 2 and one offshore power generation vessel 3 that need to be charged are shown at sea. In FIG. 4, the movement route 30 shows the route from the battery electric propulsion vessel 2 to the offshore power generation vessel 3, and the route 31 shows the route from the battery electric propulsion vessel 2 to the land power supply facility 20. The amount of movement of the route 30 and the route 31 is the same. Since the charging schedule reflects the electric power price data, the electric power supply equipment having a low electric power price (for example, the offshore power generation vessel 3) is specified here as the electric power supply equipment to which the battery electric propulsion vessel 2 should receive the electric power. According to this configuration, each battery electric propulsion vessel 2 is charged at the optimum timing in either the offshore power generation vessel 3 or the land power supply equipment 20 according to the charging schedule determined based on the operation data and the electric power price data. This allows each battery-powered propulsion vessel 2 to carry out operations economically and efficiently.

また、管理装置5は、日々、全ての電池電気推進船2から受信する運航データおよび電力価格データに基づいて、全ての電池電気推進船2に対する配船計画を行って各電池電気推進船2に対するオペレーションを含む航行スケジュールを決定し、決定した航行スケジュールを対応する電池電気推進船2へ送信してもよい。 Further, the management device 5 makes a ship allocation plan for all the battery electric propulsion vessels 2 based on the operation data and the electric power price data received from all the battery electric propulsion vessels 2 on a daily basis, and for each battery electric propulsion vessel 2. The navigation schedule including the operation may be determined, and the determined navigation schedule may be transmitted to the corresponding battery-electric propulsion vessel 2.

図5は、電池電気推進船2の一日の航行スケジュールの一例を示すグラフである。図5の縦軸は、電池電気推進船2の各オペレーションに必要な電力を示している。図6は、航行スケジュールに従った航路32の一例を示す図である。ここでも説明の都合上、電池電気推進船2および洋上発電船3は1つずつ示し、航路32は午前中のスケジュールを示している。まず、図6に示すように、電池電気推進船2は、航行スケジュールに従って、朝方、一方の港12から出航する(トランジット)。そして、電池電気推進船2は、湾11の入り口付近の沖合で待機する。次に、電池電気推進船2は、沖合に到着した大型船6を他方の港13までエスコートする。最後に、電池電気推進船2は、港13の岸壁に設置して大型船6を繋留する(ボラード)。以上で、午前中の作業は終了する。電池電気推進船2は、港13において一定期間の休止後、再び、午後の作業が開始される。ここで電池電気推進船2は、蓄電池の容量の制約により、一日に数回の充電が必要になるが、航行スケジュールに従って、出航前後の港12、13や、洋上での待機中等のオペレーションの合間の時間帯において、洋上発電船3における給電価格と陸上給電設備20における電力価格に応じて、いずれかの給電設備で給電を受けることができる。 FIG. 5 is a graph showing an example of the daily navigation schedule of the battery-powered propulsion vessel 2. The vertical axis of FIG. 5 shows the electric power required for each operation of the battery-powered propulsion vessel 2. FIG. 6 is a diagram showing an example of the route 32 according to the navigation schedule. Here, for convenience of explanation, the battery-powered propulsion vessel 2 and the offshore power generation vessel 3 are shown one by one, and the route 32 shows the schedule in the morning. First, as shown in FIG. 6, the battery-powered propulsion vessel 2 departs from one port 12 in the morning according to the navigation schedule (transit). Then, the battery-powered propulsion vessel 2 stands by offshore near the entrance of the bay 11. Next, the battery-powered propulsion vessel 2 escorts the large vessel 6 arriving offshore to the other port 13. Finally, the battery-electric propulsion vessel 2 is installed on the quay of the port 13 to moor the large vessel 6 (bollard). This is the end of the morning work. The battery-powered propulsion vessel 2 will start work in the afternoon again after being suspended for a certain period of time at the port 13. Here, the battery-electric propulsion vessel 2 needs to be charged several times a day due to the limitation of the capacity of the storage battery. In the interim time zone, power can be received by either power supply facility according to the power supply price of the offshore power generation vessel 3 and the power supply price of the land power supply facility 20.

この構成によれば、配船計画を自動化することができるとともに、電池電気推進船2は、運航データ及び電力価格データに基づいて決定された航行スケジュールに従って、航行することにより、運用コストを改善することができる。 According to this configuration, the ship allocation plan can be automated, and the battery-electric propulsion ship 2 improves the operating cost by navigating according to the navigation schedule determined based on the operation data and the electric power price data. be able to.

尚、上記実施形態では、洋上発電船3は、専ら、発電機で生成した電力を電池電気推進船2や陸上給電設備20に供給したが、洋上発電船3は、陸上給電設備20から給電を受けることが可能な構成を備えてもよい。例えば陸上給電設備20の各発電システム22〜25で発電された電力が洋上発電船3へ給電され、当該洋上発電船3の蓄電池が充電されてもよい(図3参照)。 In the above embodiment, the offshore power generation ship 3 exclusively supplies the electric power generated by the generator to the battery electric propulsion ship 2 and the land power supply facility 20, but the offshore power generation ship 3 supplies power from the land power supply facility 20. It may have a configuration that can be received. For example, the electric power generated by the power generation systems 22 to 25 of the land power supply facility 20 may be supplied to the offshore power generation vessel 3 to charge the storage battery of the offshore power generation vessel 3 (see FIG. 3).

管理装置5は、洋上発電船3と通信可能に構成され、洋上発電船3のオペレーション情報、当該洋上発電船3の蓄電池の容量および電池残量等を含んだ運航データを受信する。 The management device 5 is configured to be communicable with the offshore power generation vessel 3, and receives operation data including the operation information of the offshore power generation vessel 3, the capacity of the storage battery of the offshore power generation vessel 3, the remaining battery level, and the like.

管理装置5は、陸上給電設備20における所定時間ごとの電力価格データを取得し、洋上発電船3から受信する運航データ及び電力価格データに基づいて、洋上発電船3の発電電力が不足している場合には、洋上発電船3で発電をするか、あるいは、陸上給電設備20から給電を受けるかのいずれかを決定する。具体的には、管理装置5は、陸上給電設備20における電力価格が洋上発電船3における給電価格よりも低い場合には、陸上給電設備20で給電を受けることを優先するような指令を生成し、生成した給電指令を洋上発電船3に送信する。一方、陸上給電設備20における電力価格が洋上発電船3の給電価格よりも高い場合には、洋上発電船3で発電することを優先するような指令を生成し、生成した指令を洋上発電船3に送信する。このように、電力価格に応じて、洋上発電船3で発電される電力を電池電気推進船2に供給するか、陸上給電設備20から給電される電力を電池電気推進船2に供給するかが決定されるので、運用コストを改善することができる。 The management device 5 acquires the electric power price data for each predetermined time in the land power supply facility 20, and based on the operation data and the electric power price data received from the offshore power generation ship 3, the power generated by the offshore power generation ship 3 is insufficient. In that case, it is determined whether the offshore power generation ship 3 generates power or the land power supply facility 20 receives power. Specifically, the management device 5 generates a command to give priority to receiving power from the land power supply facility 20 when the power price at the land power supply facility 20 is lower than the power supply price from the offshore power generation ship 3. , The generated power supply command is transmitted to the offshore power generation ship 3. On the other hand, when the electric power price in the land power supply facility 20 is higher than the power supply price of the offshore power generation vessel 3, a command is generated so as to give priority to power generation by the offshore power generation vessel 3, and the generated command is issued to the offshore power generation vessel 3. Send to. In this way, depending on the power price, whether the power generated by the offshore power generation ship 3 is supplied to the battery electric propulsion ship 2 or the power supplied from the land power supply facility 20 is supplied to the battery electric propulsion ship 2. Since it is decided, the operating cost can be improved.

また、上記実施形態では、洋上発電船3は、液化ガスを用いて発電したが、LPG(Liquefied Petroleum Gas)、バイオ燃料や水素を用いて発電してもよい。その他、本発明の「洋上給電設備」は、必ずしも発電設備を備えていなくてもよい。例えば洋上船に予め充電された交換用の蓄電池を積み込んでおき、電池電気推進船2が当該洋上船に係留されたときに、充電済みの蓄電池が電池電気推進船2の蓄電池と交換されてもよい。また、洋上船の蓄電池に充電された電力が電池電気推進船2の蓄電池にケーブルを介して給電されてもよい。 Further, in the above embodiment, the offshore power generation ship 3 uses liquefied gas to generate power, but LPG (Liquefied Petroleum Gas), biofuel, or hydrogen may be used to generate power. In addition, the "offshore power supply equipment" of the present invention does not necessarily have to be equipped with a power generation equipment. For example, even if a pre-charged replacement storage battery is loaded on an offshore vessel and the charged storage battery is replaced with the storage battery of the battery electric propulsion vessel 2 when the battery electric propulsion vessel 2 is moored on the offshore vessel. good. Further, the electric power charged in the storage battery of the offshore ship may be supplied to the storage battery of the battery electric propulsion ship 2 via a cable.

1,1A 電池電気推進船給電システム
2 電池電気推進船
3 洋上発電船(洋上給電設備)
4 液化ガス供給装置
5 管理装置
6 大型船
20 陸上給電設備
21 電力供給ステーション
22 火力発電システム
23 太陽光発電システム
24 風力発電システム
25 水力発電システム
30,31 経路
32 航路
1,1A Battery Electric Propulsion Vessel Power Supply System 2 Battery Electric Propulsion Vessel 3 Offshore Power Generation Vessel (Offshore Power Supply Equipment)
4 Liquefied gas supply device 5 Management device 6 Large ship 20 Land power supply equipment 21 Power supply station 22 Thermal power generation system 23 Solar power generation system 24 Wind power generation system 25 Hydroelectric power generation system 30, 31 Route 32 Route

前記少なくとも1つの電池電気推進船は、複数の電池電気推進船を含み、前記少なくとも1つの洋上給電設備は、複数の洋上給電設備を含み、上記の電池電気推進船給電システムは、前記複数の電池電気推進船と通信可能な管理装置を備え、前記管理装置は、前記複数の電池電気推進船のそれぞれに対し、前記複数の電池電気推進船から受信する運航データに基づいて、充電タイミングおよび充電を受けるべき洋上給電設備の特定を含む充電スケジュールを決定し、決定した充電スケジュールを対応する電池電気推進船へ送信してもよい。この構成によれば、各電池電気推進船が充電スケジュールに従って充電を受けることができ、各電池電気推進船が効率的にオペレーションを実施することができる。 The at least one battery electric propulsion ship includes a plurality of battery electric propulsion ships, the at least one offshore power supply facility includes a plurality of offshore power supply facilities , and the battery electric propulsion ship power supply system includes the plurality of batteries. A management device capable of communicating with the electric propulsion vessel is provided, and the management device charges each of the plurality of battery electric propulsion vessels with charging timing and charging based on operation data received from the plurality of battery electric propulsion vessels. A charging schedule, including the identification of offshore power supply equipment to be received, may be determined and the determined charging schedule may be transmitted to the corresponding battery-powered propulsion vessel. According to this configuration, each battery electric propulsion vessel can be charged according to the charging schedule, and each battery electric propulsion vessel can efficiently carry out the operation.

前記少なくとも1つの電池電気推進船は、複数の電池電気推進船を含み、前記少なくとも1つの洋上給電設備は、複数の洋上給電設備を含み、上記の電池電気推進船給電システムは、前記複数の電池電気推進船と通信可能な管理装置を備え、前記管理装置は、前記陸上給電設備における所定時間ごとの電力価格データを取得し、前記複数の電池電気推進船のそれぞれに対し、前記複数の電池電気推進船から受信する運航データおよび前記電力価格データに基づいて、充電タイミングおよび充電を受けるべき洋上給電設備又は前記陸上給電設備の特定を含む充電スケジュールを決定し、決定した充電スケジュールを対応する電池電気推進船へ送信してもよい。この構成によれば、各電池電気推進船が、運航データ及び電力価格データに基づいて決定された充電スケジュールに従って、洋上給電設備又は陸上給電設備のいずれかの設備において最適なタイミングで充電することができ、各電池電気推進船が経済的且つ効率的にオペレーションを実施することができる。 The at least one battery electric propulsion ship includes a plurality of battery electric propulsion ships, the at least one offshore power supply facility includes a plurality of offshore power supply facilities, and the battery electric propulsion ship power supply system includes the plurality of batteries. A management device capable of communicating with an electric propulsion ship is provided, and the management device acquires power price data for each predetermined time in the land power supply facility, and for each of the plurality of battery electric propulsion ships, the plurality of battery electricity. Based on the operation data received from the propulsion ship and the electric power price data, the charging schedule including the identification of the offshore power supply equipment or the land power supply equipment to be charged is determined, and the determined charging schedule corresponds to the battery electricity. It may be sent to the propulsion vessel. According to this configuration, each battery-electric propulsion vessel can be charged at the optimum timing in either the offshore power supply facility or the land power supply facility according to the charging schedule determined based on the operation data and the power price data. This allows each battery-powered propulsion vessel to operate economically and efficiently.

前記少なくとも1つの洋上給電設備は、前記陸上給電設備から給電を受けることが可能な構成を備えてもよい。具体的には、前記洋上給電設備は、発電機を備えた洋上発電船であって、上記の電池電気推進船給電システムは、前記少なくとも1つの陸上給電設備および前記洋上発電船と通信可能な管理装置を備え、前記管理装置は、前記陸上給電設備における所定時間ごとの電力価格データを取得し、前記電力価格データに基づいて、前記洋上発電船の発電電力が不足している場合には前記洋上発電船で発電をするか、あるいは、前記陸上給電設備から給電を受けるかのいずれかを決定してもよい。この構成によれば、電力価格に応じて、洋上発電船で発電される電力を電池電気推進船に供給するか、陸上給電設備から給電される電力を電池電気推進船に供給するかが決定されるので、運用コストを改善することができる。 The at least one offshore power supply facility may have a configuration capable of receiving power from the land power supply facility. Specifically, the offshore power supply facility is an offshore power generation ship equipped with a generator, and the battery-electric propulsion ship power supply system is managed so as to be able to communicate with the at least one onshore power supply facility and the offshore power generation ship. A device is provided, and the management device acquires power price data for each predetermined time in the land power supply facility, and if the power generated by the offshore power generator is insufficient based on the power price data, the above-mentioned It may be decided whether to generate electricity on an offshore power generator or to receive power from the onshore power supply facility. According to this configuration, it is decided whether to supply the power generated by the offshore power generation ship to the battery electric propulsion ship or the power supplied from the land power supply facility to the battery electric propulsion ship according to the power price. Therefore, the operating cost can be improved.

また、本発明の洋上給電設備は、電池電気推進船の蓄電池を充電する洋上給電設備であって、発電機と、前記発電機で生成された電力を蓄電する蓄電池と、前記蓄電池に接続された給電装置と、を備える、ことを特徴とする。このような洋上給電設備であれば、上記の電池電気推進船給電システムに好適に用いることができる。 Moreover, offshore supply facility of the present invention is a sea power supply facility for charging the battery of the battery electric propulsion boats, and battery for power storage and electric generator, the power generated by the generator, which is connected to the battery It is characterized by including a power feeding device. Such an offshore power supply facility can be suitably used for the above-mentioned battery electric propulsion ship power supply system.

例えば、上記の洋上給電設備は、液化ガスを貯留するタンクと、前記液化ガスまたはその気化ガスを燃焼させる、前記発電機と連結された内燃機関と、をさらに備えてもよい。 For example, the offshore power supply equipment may further include a tank for storing the liquefied gas and an internal combustion engine connected to the generator for burning the liquefied gas or the vaporized gas thereof.

例えば、本発明の洋上給電設備は、必ずしも液化ガスを用いて発電する洋上発電船3である必要はなく、洋上風力により発電する、一定位置に固定される浮体式の発電設備であってもよい。ただし、前記実施形態のように洋上給電設備が洋上発電船3であれば、状況に応じて洋上給電設備の位置を変更することができる。また、液化ガスを用いて発電する洋上発電船3であれば、重油などの油を燃料とする場合と異なり、昨今の厳しい環境規制にも対応することができる。 For example, the offshore power supply facility of the present invention does not necessarily have to be an offshore power generator 3 that generates electricity using liquefied gas, and may be a floating power generation facility that generates electricity by offshore wind power and is fixed at a fixed position. .. However, if the offshore power supply facility is the offshore power generation vessel 3 as in the above embodiment, the position of the offshore power supply facility can be changed depending on the situation. Further, the offshore power generation vessel 3 that generates electricity using liquefied gas can comply with the recent strict environmental regulations, unlike the case where oil such as heavy oil is used as fuel.

Claims (19)

少なくとも1つの電池電気推進船と、
前記電池電気推進船の蓄電池を充電可能な少なくとも1つの洋上給電設備と、
を備える、電池電気推進船給電システム。
With at least one battery electric propulsion vessel,
At least one offshore power supply facility capable of charging the storage battery of the battery electric propulsion vessel, and
Equipped with a battery electric propulsion ship power supply system.
前記洋上給電設備は、液化ガスを用いて発電する洋上発電船である、請求項1に記載の電池電気推進船給電システム。 The battery-electric propulsion ship power supply system according to claim 1, wherein the offshore power supply facility is an offshore power generation ship that generates electricity using liquefied gas. 前記洋上発電船へは、陸上の液化ガス供給装置から液化ガスが供給される、請求項2に記載の電池電気推進船給電システム。 The battery-electric propulsion ship power supply system according to claim 2, wherein the liquefied gas is supplied to the offshore power generation ship from a liquefied gas supply device on land. 前記少なくとも1つの電池電気推進船は、複数の電池電気推進船を含み、
前記複数の電池電気推進船および前記洋上発電船と通信可能な管理装置を備え、
前記管理装置は、前記複数の電池電気推進船から受信する運航データに基づいて、前記複数の電池電気推進船への給電に最適な前記洋上発電船の待機位置を決定し、決定した待機位置を前記洋上発電船に送信する、請求項2または3に記載の電池電気推進船給電システム。
The at least one battery electric propulsion vessel includes a plurality of battery electric propulsion vessels.
It is equipped with a management device capable of communicating with the plurality of battery-powered propulsion vessels and the offshore power generation vessel.
The management device determines the optimum standby position of the offshore power generation vessel for supplying power to the plurality of battery-electric propulsion vessels based on the operation data received from the plurality of battery-electric propulsion vessels, and determines the determined standby position. The battery-electric propulsion ship power supply system according to claim 2 or 3, which is transmitted to the offshore power generation ship.
前記少なくとも1つの電池電気推進船は、複数の電池電気推進船を含み、
前記少なくとも1つの洋上給電設備は、複数の洋上給電設備を含み、
前記複数の電池電気推進船と通信可能な管理装置を備え、
前記管理装置は、前記複数の電池電気推進船のそれぞれに対し、前記複数の電池電気推進船から受信する運航データに基づいて、充電タイミングおよび充電を受けるべき洋上発電設備の特定を含む充電スケジュールを決定し、決定した充電スケジュールを対応する電池電気推進船へ送信する、請求項1〜4の何れか一項に記載の電池電気推進船給電システム。
The at least one battery electric propulsion vessel includes a plurality of battery electric propulsion vessels.
The at least one offshore power supply facility includes a plurality of offshore power supply facilities.
It is equipped with a management device capable of communicating with the plurality of battery-powered propulsion vessels.
The management device sets a charging schedule for each of the plurality of battery-electric propulsion vessels, including charging timing and identification of offshore power generation equipment to be charged, based on operation data received from the plurality of battery-electric propulsion vessels. The battery-electric propulsion ship power supply system according to any one of claims 1 to 4, which determines and transmits the determined charging schedule to the corresponding battery-electric propulsion ship.
前記少なくとも1つの電池電気推進船は、複数の電池電気推進船を含み、
前記複数の電池電気推進船と通信可能な管理装置を備え、
前記管理装置は、前記複数の電池電気推進船から受信する運航データに基づいて、前記複数の電池電気推進船に対する配船計画を行って前記複数の電池電気推進船のそれぞれに対するオペレーションを含む航行スケジュールを決定し、決定した航行スケジュールを対応する電池電気推進船へ送信する、請求項1〜5の何れか一項に記載の電池電気推進船給電システム。
The at least one battery electric propulsion vessel includes a plurality of battery electric propulsion vessels.
It is equipped with a management device capable of communicating with the plurality of battery-powered propulsion vessels.
Based on the operation data received from the plurality of battery-electric propulsion vessels, the management device makes a ship allocation plan for the plurality of battery-electric propulsion vessels and includes an operation for each of the plurality of battery-electric propulsion vessels. The battery-electric propulsion ship power supply system according to any one of claims 1 to 5, wherein the determined navigation schedule is transmitted to the corresponding battery-electric propulsion ship.
前記管理装置は、前記洋上発電船の待機位置、前記複数の電池電気推進船のそれぞれの充電スケジュール、および/または前記複数の電池電気推進船のそれぞれの航行スケジュールを、前記複数の電池電気推進船の運航データならびに、蓄電池、プロペラ駆動モータおよびプロペラの作動状態データに対する機械学習結果に基づいて決定する、請求項4〜6の何れか一項に記載の電池電気推進船給電システム。 The management device sets the standby position of the offshore power generation vessel, the charging schedule of each of the plurality of battery electric propulsion vessels, and / or the navigation schedule of each of the plurality of battery electric propulsion vessels, and the plurality of battery electric propulsion vessels. The battery electric propulsion ship power supply system according to any one of claims 4 to 6, which is determined based on the operation data of the above and the machine learning result for the storage battery, the propeller drive motor, and the operating state data of the propeller. 前記少なくとも1つの電池電気推進船の蓄電池を充電可能な少なくとも1つの陸上給電設備を備える、請求項1〜3の何れか一項に記載の電池電気推進船給電システム。 The battery electric propulsion ship power supply system according to any one of claims 1 to 3, further comprising at least one land power supply facility capable of charging the storage battery of the at least one battery electric propulsion ship. 前記少なくとも1つの陸上給電設備および前記洋上給電設備と通信可能な管理装置を備え、
前記管理装置は、前記陸上給電設備における所定時間ごとの電力価格データを取得し、前記少なくとも1つの電池電気推進船から受信する運航データ及び前記電力価格データに基づいて、前記少なくとも1つの電池電気推進船が前記洋上給電設備および前記陸上給電設備のうちのいずれの給電設備で給電を受けることを優先するべきかを決定する、請求項8に記載の電池電気推進船給電システム。
A management device capable of communicating with the at least one onshore power supply facility and the offshore power supply facility.
The management device acquires the electric power price data for each predetermined time in the land power supply facility, and based on the operation data and the electric power price data received from the at least one battery electric propulsion ship, the at least one battery electric propulsion. The battery-powered propulsion ship power supply system according to claim 8, wherein the battery power supply system according to claim 8 determines which of the offshore power supply equipment and the land power supply equipment should be prioritized to receive power.
前記管理装置は、前記陸上給電設備における電力価格が前記洋上給電設備における給電価格よりも低い場合には、前記洋上給電設備および前記陸上給電設備のうちの前記陸上給電設備で給電を受けることを優先するような給電指令を生成し、生成した給電指令を前記少なくとも1つの電池電気推進船に送信し、
前記陸上給電設備における電力価格が前記洋上給電設備の給電価格よりも高い場合には、前記洋上給電設備および前記陸上給電設備のうちの前記洋上給電設備で給電を受けることを優先するような給電指令を生成し、生成した給電指令を前記少なくとも1つの電池電気推進船に送信する、請求項9に記載の電池電気推進船給電システム。
When the power price in the land power supply facility is lower than the power supply price in the offshore power supply facility, the management device gives priority to receiving power from the land power supply facility among the offshore power supply facility and the land power supply facility. A power supply command is generated, and the generated power supply command is transmitted to the at least one battery electric propulsion vessel.
When the power price in the land power supply facility is higher than the power supply price of the offshore power supply facility, a power supply command that gives priority to receiving power from the offshore power supply facility and the offshore power supply facility among the land power supply facilities. The battery electric propulsion ship power supply system according to claim 9, wherein the generated power supply command is transmitted to at least one battery electric propulsion ship.
前記洋上給電設備は、余剰電力を前記陸上給電設備に給電可能に構成された洋上発電船であって、
前記管理装置は、前記陸上給電設備における電力価格が前記洋上給電設備における給電価格よりも高い場合には、前記少なくとも1つの電池電気推進船から受信する運航データに基づいて、前記少なくとも1つの電池電気推進船への給電に最適な前記洋上発電船の待機位置を決定し、決定した待機位置を前記洋上発電船に送信し、
前記管理装置は、前記洋上発電船が前記少なくとも1つの電池電気推進船への給電後、余剰電力を有する場合には、当該余剰電力を前記陸上給電設備に売電するような売電指令を前記洋上発電船に送信する、請求項9又は10に記載の電池電気推進船給電システム。
The offshore power supply facility is an offshore power generation vessel configured to be able to supply surplus electric power to the land power supply facility.
When the electric power price in the onshore power supply facility is higher than the power supply price in the offshore power supply facility, the management device has the at least one battery electricity based on the operation data received from the at least one battery electric propulsion ship. The standby position of the offshore power generation ship, which is optimal for supplying power to the propulsion ship, is determined, and the determined standby position is transmitted to the offshore power generation ship.
When the offshore power generation ship has surplus power after supplying power to the at least one battery electric propulsion ship, the management device issues a power selling command to sell the surplus power to the land power feeding facility. The battery-electric propulsion ship power supply system according to claim 9 or 10, which is transmitted to an offshore power generation ship.
前記少なくとも1つの電池電気推進船は、複数の電池電気推進船を含み、
前記複数の電池電気推進船は、余剰電力を前記陸上給電設備に給電可能に構成され、
前記管理装置は、前記陸上給電設備における電力価格が前記洋上給電設備における給電価格よりも高い場合には、前記複数の電池電気推進船のうちの余剰電力を有する電池電気推進船に対し、当該余剰電力を前記陸上給電設備に売電するような売電指令を送信する、請求項10に記載の電池電気推進船給電システム。
The at least one battery electric propulsion vessel includes a plurality of battery electric propulsion vessels.
The plurality of battery-powered propulsion vessels are configured to be able to supply surplus electric power to the onshore power supply facility.
When the electric power price in the onshore power supply facility is higher than the power supply price in the offshore power supply facility, the management device has a surplus for the battery electric propulsion ship having surplus power among the plurality of battery electric propulsion ships. The battery-electric propulsion ship power supply system according to claim 10, wherein a power sale command for selling power to the land power supply facility is transmitted.
前記少なくとも1つの電池電気推進船は、複数の電池電気推進船を含み、
前記少なくとも1つの洋上給電設備は、複数の洋上給電設備を含み、
前記複数の電池電気推進船と通信可能な管理装置を備え、
前記管理装置は、前記陸上給電設備における所定時間ごとの電力価格データを取得し、前記複数の電池電気推進船のそれぞれに対し、前記複数の電池電気推進船から受信する運航データおよび前記電力価格データに基づいて、充電タイミングおよび充電を受けるべき洋上給電設備又は前記陸上給電設備の特定を含む充電スケジュールを決定し、決定した充電スケジュールを対応する電池電気推進船へ送信する、請求項8乃至12の何れか一項に記載の電池電気推進船給電システム。
The at least one battery electric propulsion vessel includes a plurality of battery electric propulsion vessels.
The at least one offshore power supply facility includes a plurality of offshore power supply facilities.
It is equipped with a management device capable of communicating with the plurality of battery-powered propulsion vessels.
The management device acquires electric power price data for each predetermined time in the land power supply facility, and receives operational data and electric power price data from the plurality of battery electric propulsion vessels for each of the plurality of battery electric propulsion vessels. 8 to 12 of claims 8 to 12, which determine the charging timing and the charging schedule including the identification of the offshore power supply equipment or the land power supply equipment to be charged, and transmit the determined charging schedule to the corresponding battery electric propulsion vessel. The battery-electric propulsion ship power supply system according to any one item.
前記少なくとも1つの電池電気推進船は、複数の電池電気推進船を含み、
前記複数の電池電気推進船と通信可能な管理装置を備え、
前記管理装置は、前記陸上給電設備における所定時間ごとの電力価格データを取得し、前記複数の電池電気推進船から受信する運航データおよび前記電力価格データに基づいて、前記複数の電池電気推進船に対する配船計画を行って前記複数の電池電気推進船のそれぞれに対するオペレーションを含む航行スケジュールを決定し、決定した航行スケジュールを対応する電池電気推進船へ送信する、請求項8乃至13の何れか一項に記載の電池電気推進船給電システム。
The at least one battery electric propulsion vessel includes a plurality of battery electric propulsion vessels.
It is equipped with a management device capable of communicating with the plurality of battery-powered propulsion vessels.
The management device acquires electric power price data for each predetermined time in the onshore power supply facility, and based on the operation data and the electric power price data received from the plurality of battery electric propulsion vessels, the management device with respect to the plurality of battery electric propulsion vessels. Any one of claims 8 to 13 that makes a ship allocation plan, determines a navigation schedule including operations for each of the plurality of battery-electric propulsion vessels, and transmits the determined navigation schedule to the corresponding battery-electric propulsion vessels. Battery electric propulsion ship power supply system described in.
前記少なくとも1つの洋上給電設備は、前記陸上給電設備から給電を受けることが可能な構成を備える、請求項8乃至14の何れか一項に記載の電池電気推進船給電システム。 The battery-electric propulsion ship power supply system according to any one of claims 8 to 14, wherein the at least one offshore power supply facility has a configuration capable of receiving power supply from the land power supply facility. 前記洋上給電設備は、発電機を備えた洋上発電船であって、
前記少なくとも1つの陸上給電設備および前記洋上発電船と通信可能な管理装置を備え、
前記管理装置は、前記陸上給電設備における所定時間ごとの電力価格データを取得し、前記洋上発電船から受信する運航データ及び前記電力価格データに基づいて、前記洋上発電船の発電電力が不足している場合には、前記洋上発電船で発電をするか、あるいは、前記陸上給電設備から給電を受けるかのいずれかを決定する、請求項15に記載の電池電気推進船給電システム。
The offshore power supply facility is an offshore power generator equipped with a generator.
Equipped with at least one onshore power supply facility and a management device capable of communicating with the offshore power generation vessel.
The management device acquires electric power price data for each predetermined time in the onshore power supply facility, and based on the operation data and the electric power price data received from the offshore power generation ship, the electric power generated by the offshore power generation ship is insufficient. The battery-electric propulsion ship power supply system according to claim 15, which determines whether to generate power from the offshore power generation ship or to receive power from the land power supply facility, if any.
電池電気推進船の蓄電池を充電する洋上給電設備であって、
発電機と、
前記発電機で生成された電力を蓄電する蓄電池と、
前記蓄電池に接続された給電装置と、
を備える、洋上給電設備。
Battery An offshore power supply facility that charges the storage batteries of electric propulsion vessels.
With a generator
A storage battery that stores the electric power generated by the generator,
The power supply device connected to the storage battery and
Offshore power supply equipment equipped with.
液化ガスを貯留するタンクと、
前記液化ガスまたはその気化ガスを燃焼させる、前記発電機と連結された内燃機関と、をさらに備える、請求項17に記載の洋上給電設備。
A tank for storing liquefied gas and
The offshore power supply facility according to claim 17, further comprising an internal combustion engine connected to the generator, which burns the liquefied gas or the vaporized gas thereof.
電池電気推進船であって、
当該電池電気推進船の運航データを送信する通信装置を備える、電池電気推進船。
It ’s a battery-powered propulsion ship.
A battery-powered propulsion vessel equipped with a communication device for transmitting operation data of the battery-electric propulsion vessel.
JP2020540026A 2018-08-31 2019-02-15 Battery electric propulsion ship power supply system Active JP7177159B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018163970 2018-08-31
JP2018163970 2018-08-31
PCT/JP2019/005685 WO2020044601A1 (en) 2018-08-31 2019-02-15 Battery-electric propulsion ship power feeding system, offshore power feeding facility, and battery-electric propulsion ship

Publications (2)

Publication Number Publication Date
JPWO2020044601A1 true JPWO2020044601A1 (en) 2021-08-10
JP7177159B2 JP7177159B2 (en) 2022-11-22

Family

ID=69645069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020540026A Active JP7177159B2 (en) 2018-08-31 2019-02-15 Battery electric propulsion ship power supply system

Country Status (4)

Country Link
JP (1) JP7177159B2 (en)
CN (1) CN112533822B (en)
SG (1) SG11202101557RA (en)
WO (1) WO2020044601A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006148257A (en) * 2004-11-16 2006-06-08 Mitsubishi Heavy Ind Ltd Vessel mounted communication apparatus and its method
JP2013005593A (en) * 2011-06-16 2013-01-07 Ihi Corp Power supply apparatus and power supply system
CN204239131U (en) * 2014-11-04 2015-04-01 于海 Waterborne movable power station
CN204587243U (en) * 2015-02-06 2015-08-26 北车船舶与海洋工程发展有限公司 Bank electricity power supply boat
CN204587242U (en) * 2015-02-06 2015-08-26 北车船舶与海洋工程发展有限公司 Portable Independent Power Generation ship
JP2016006400A (en) * 2014-06-20 2016-01-14 住友電工システムソリューション株式会社 Route search device, route search system, and computer program
JP2016100970A (en) * 2014-11-20 2016-05-30 有限会社板厚計測Bスコープ Power generation facility in ocean area for generating power using tidal flow or ocean flow
WO2016121089A1 (en) * 2015-01-30 2016-08-04 中国電力株式会社 Power supply system and power supply method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100119701A (en) * 2009-05-01 2010-11-10 이강선 Motor ship propelled by a battery chargeable by wind, light and electricity
CN201842250U (en) * 2010-10-28 2011-05-25 上海海事大学 Electric propulsion system for ship
CN102941918A (en) * 2012-11-08 2013-02-27 江苏现代造船技术有限公司 Electric propulsion device for passenger ferry
JP6496496B2 (en) * 2014-06-11 2019-04-03 川崎重工業株式会社 Power storage system and control method thereof
CN207758977U (en) * 2017-07-13 2018-08-24 肖凤伟 Marine intelligent battery management system and hybrid power sailing boat

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006148257A (en) * 2004-11-16 2006-06-08 Mitsubishi Heavy Ind Ltd Vessel mounted communication apparatus and its method
JP2013005593A (en) * 2011-06-16 2013-01-07 Ihi Corp Power supply apparatus and power supply system
JP2016006400A (en) * 2014-06-20 2016-01-14 住友電工システムソリューション株式会社 Route search device, route search system, and computer program
CN204239131U (en) * 2014-11-04 2015-04-01 于海 Waterborne movable power station
JP2016100970A (en) * 2014-11-20 2016-05-30 有限会社板厚計測Bスコープ Power generation facility in ocean area for generating power using tidal flow or ocean flow
WO2016121089A1 (en) * 2015-01-30 2016-08-04 中国電力株式会社 Power supply system and power supply method
CN204587243U (en) * 2015-02-06 2015-08-26 北车船舶与海洋工程发展有限公司 Bank electricity power supply boat
CN204587242U (en) * 2015-02-06 2015-08-26 北车船舶与海洋工程发展有限公司 Portable Independent Power Generation ship

Also Published As

Publication number Publication date
CN112533822A (en) 2021-03-19
SG11202101557RA (en) 2021-03-30
WO2020044601A1 (en) 2020-03-05
CN112533822B (en) 2023-10-10
JP7177159B2 (en) 2022-11-22

Similar Documents

Publication Publication Date Title
Hoang et al. Energy-related approach for reduction of CO2 emissions: A critical strategy on the port-to-ship pathway
US11273719B2 (en) System and method for reduction of power consumption and emissions of marine vessels
US20120038210A1 (en) Apparatus and method for electric floating storage and offloading
CA3177506A1 (en) Global renewable energy transportation system
WO2019180323A1 (en) A barge for supplementing an energy storage of a moving vessel, and an offshore energy station
Hoang Aalyzing and selecting the typical propulsion systems for ocean supply vessels
Kolodziejski et al. Battery energy storage systems in ships’ hybrid/electric propulsion systems
JP2013209018A5 (en)
Damian et al. Review on the challenges of hybrid propulsion system in marine transport system
JP5414045B2 (en) Tidal current / ocean current power generation system and power transportation method
JP7177159B2 (en) Battery electric propulsion ship power supply system
Cherchi et al. Electrification of commercial vessels: Pilot projects and open issues
WO2022239733A1 (en) System and method for transporting energy by ship
JP5127974B1 (en) Ship
Gabrielii et al. Alternative fuels and propulsion systems for fishing vessels
Jeon et al. Energy management system in naval submarines
US20230161308A1 (en) Watercraft servicing system
Hurley et al. Engineering and Cost Study of an Offshore Wind Farm Compressed Air Energy Storage System
Newell et al. Beyond electric ship
Øverleir Hybridization of general cargo ships to meet the required energy efficiency design index
Young et al. Beyond electric ship
US20240034443A1 (en) Offshore charging station
FI129679B (en) A barge for supplementing an energy storage of a moving vessel
WO2023022103A1 (en) System and method for transporting energy by ship
Ben Ahmed et al. Challenges and Opportunities for Adopting Green Technologies in Maritime Transportation Planning

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221110

R150 Certificate of patent or registration of utility model

Ref document number: 7177159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150