JPWO2020026499A1 - Storage battery unit and fire detection method for storage battery unit - Google Patents

Storage battery unit and fire detection method for storage battery unit Download PDF

Info

Publication number
JPWO2020026499A1
JPWO2020026499A1 JP2020534047A JP2020534047A JPWO2020026499A1 JP WO2020026499 A1 JPWO2020026499 A1 JP WO2020026499A1 JP 2020534047 A JP2020534047 A JP 2020534047A JP 2020534047 A JP2020534047 A JP 2020534047A JP WO2020026499 A1 JPWO2020026499 A1 JP WO2020026499A1
Authority
JP
Japan
Prior art keywords
storage battery
battery unit
cell
temperature
threshold value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020534047A
Other languages
Japanese (ja)
Other versions
JP7003269B2 (en
Inventor
登 栗原
登 栗原
智晃 高橋
智晃 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2020026499A1 publication Critical patent/JPWO2020026499A1/en
Application granted granted Critical
Publication of JP7003269B2 publication Critical patent/JP7003269B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C3/00Electric locomotives or railcars
    • B61C3/02Electric locomotives or railcars with electric accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C7/00Other locomotives or motor railcars characterised by the type of motive power plant used; Locomotives or motor railcars with two or more different kinds or types of motive power
    • B61C7/04Locomotives or motor railcars with two or more different kinds or types of engines, e.g. steam and IC engines
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/06Electric actuation of the alarm, e.g. using a thermally-operated switch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Abstract

機器を追加することなく既に使用されている機器の中から、蓄電池ユニットの火災を迅速かつ正確に検知する方式を確立するために、複数の蓄電池セルから成る蓄電池ユニットの状態を監視し充放電を制御する制御部は、複数の蓄電池セル各々の温度状態を監視し、当該各蓄電池セル間の温度差を判定する機能を有し、第1の閾値以上の検出温度となった蓄電池セルに関して、当該セルに直列に接続されている断流器を開放し、当該セルの検出温度と当該セル以外の蓄電池セルの検出温度とを比較し、両方の温度差が第2の閾値以上であるか、または、当該セルの検出温度の上昇スピードが第3の閾値以上であるか、または、当該セルの検出温度の最高値が第4の閾値以上であるかの少なくともいずれか1つを満足すれば、蓄電池ユニットの火災発生を検知したと判定する。In order to establish a method for quickly and accurately detecting a fire in a storage battery unit from among the devices already in use without adding equipment, the state of the storage battery unit consisting of multiple storage battery cells is monitored and charged / discharged. The control unit that controls has a function of monitoring the temperature state of each of the plurality of storage battery cells and determining the temperature difference between the storage battery cells, and the storage battery cell having a detection temperature equal to or higher than the first threshold value is said to be concerned. The breaker connected in series with the cell is opened, the detected temperature of the cell is compared with the detected temperature of the storage battery cell other than the cell, and the temperature difference between the two is equal to or greater than the second threshold value. , If at least one of the rate at which the detection temperature of the cell rises is equal to or higher than the third threshold value or the maximum value of the detection temperature of the cell is equal to or higher than the fourth threshold value is satisfied, the storage battery It is determined that a fire has been detected in the unit.

Description

本発明は、蓄電池ユニットおよび蓄電池ユニットの火災検知方法に関し、特に、鉄道車両に搭載する蓄電池ユニットに好適である。 The present invention relates to a storage battery unit and a fire detection method for the storage battery unit, and is particularly suitable for a storage battery unit mounted on a railway vehicle.

鉄道車両は、自動車など他の交通機関に比べてエネルギー消費の少ない交通機関である。一方、地球温暖化など環境問題への関心が高まっており、鉄道車両においても更なる省エネルギー化が求められている。 Railroad vehicles are transportation systems that consume less energy than other transportation systems such as automobiles. On the other hand, there is increasing interest in environmental issues such as global warming, and further energy conservation is required for railway vehicles.

鉄道車両の分野におけるこうした省エネルギー化の一環として、バッテリー技術を応用した省エネルギー化の取り組みが行われている。 As part of such energy conservation in the field of railway vehicles, energy conservation efforts are being made by applying battery technology.

例えば、気動車に蓄電池ユニットと主変換装置を搭載して、ブレーキ運転時にモータを発電機として使用することにより、車両の運動エネルギーを電気エネルギーとして回収する回生ブレーキを行い、回生ブレーキで得られた電力を蓄電池ユニットに充電して力行運転時に使用するハイブリッド気動車が提案されている。 For example, by mounting a storage battery unit and a main converter on a pneumatic vehicle and using the motor as a generator during brake operation, regenerative braking is performed to recover the kinetic energy of the vehicle as electrical energy, and the power obtained by the regenerative braking is performed. A hybrid pneumatic vehicle has been proposed in which the storage battery unit is charged and used during power driving.

また、鉄道車両を駆動する主変換装置に電力を充放電できる蓄電池ユニットを搭載して、回生ブレーキ中に架空電車線に戻せない電力を蓄電池ユニットで吸収し、その電力を力行運転時に使用する回生吸収装置などが検討・実用化されている。 In addition, the main converter that drives the railway vehicle is equipped with a storage battery unit that can charge and discharge electric power, and the storage battery unit absorbs the electric power that cannot be returned to the overhead line during regenerative braking, and the electric power is used during regenerative operation. Absorbents and the like have been studied and put into practical use.

鉄道車両用の蓄電池ユニットの一例として、リチウムイオン電池を代表例とする蓄電池セル(以下、「セル」という)を搭載した複数のバッテリーモジュール(以下、「モジュール」という)と、モジュールの状態を監視しかつ充放電を制御する制御部とを有したユニットがある。各蓄電池セルには、サーミスタを代表例とする温度検出素子を取付け、温度状態を常に監視している。 As an example of a storage battery unit for a railroad vehicle, a plurality of battery modules (hereinafter referred to as "modules") equipped with a storage battery cell (hereinafter referred to as "cell") represented by a lithium ion battery and the state of the module are monitored. However, there is a unit having a control unit that controls charging and discharging. A temperature detection element represented by a thermistor is attached to each storage battery cell to constantly monitor the temperature state.

バッテリー(蓄電池)を搭載した鉄道車両では、強い衝撃を受けた場合などにセルが発火し火災が起こる危険性がある。特許文献1には、車両火災を検知した後の動作として、火災を検知する火災センサや電池ユニット内部の発煙を検知するガス検知センサを用いて、これらセンサが火災又は電池ユニット内の発煙を検知した場合には、緊急運転指令の有無などを考慮して、電池ユニットについては電池箱筐体の給排気口の開閉、又は充放電動作の要否を判断し、主変換装置については停止・動作を判断する技術が、示されている。 In a railway vehicle equipped with a battery (storage battery), there is a risk that the cell will ignite and a fire will occur if it receives a strong impact. In Patent Document 1, as an operation after detecting a vehicle fire, a fire sensor for detecting a fire and a gas detection sensor for detecting smoke inside the battery unit are used, and these sensors detect a fire or smoke inside the battery unit. If this happens, the necessity of opening / closing the air supply / exhaust port of the battery box housing or charging / discharging operation is determined for the battery unit in consideration of the presence or absence of an emergency operation command, and the main conversion device is stopped / operated. The technique to judge is shown.

特開2012−129136号公報Japanese Unexamined Patent Publication No. 2012-129136

バッテリー(蓄電池)を搭載した鉄道車両では、強い衝撃を受けた場合などにセルが発火し火災が起こる危険性がある。鉄道運行における安全上の観点から、火災が発生した場合には、速やかに乗務員に認知させ、車両を停止させる等の対応が必要になる。そのためには、火災を迅速かつ正確に検知する方式が必要となる。 In a railway vehicle equipped with a battery (storage battery), there is a risk that the cell will ignite and a fire will occur if it receives a strong impact. From the viewpoint of safety in railway operation, in the event of a fire, it is necessary to promptly notify the crew and stop the vehicle. For that purpose, a method for detecting a fire quickly and accurately is required.

一方で、バッテリー(蓄電池)を搭載した鉄道車両は、搭載している機器やシステムが通常の車両に比べて非常に多い。よって、新たに機器を追加することなく、既に使用されている機器の中から火災を検知する方式を確立するのが望ましい。 On the other hand, railroad vehicles equipped with batteries (storage batteries) have a much larger number of equipment and systems than ordinary vehicles. Therefore, it is desirable to establish a method for detecting a fire from among the devices already in use without adding new devices.

上記課題を解決するために、本発明に係る蓄電池ユニットは、複数の蓄電池セルから成る蓄電池ユニットの状態を監視し充放電を制御する制御部を備え、制御部は、複数の蓄電池セル各々の温度状態を監視し、当該各蓄電池セル間の温度差を判定する機能を有し、第1の閾値以上の検出温度となった蓄電池セルに関して、当該セルに直列に接続されている断流器を開放し、当該セルの検出温度と当該セル以外の蓄電池セルの検出温度とを比較し、両方の温度差が第2の閾値以上であるか、または、当該セルの検出温度の上昇スピードが第3の閾値以上であるか、または、当該セルの検出温度の最高値が第4の閾値以上であるかの少なくともいずれか1つを満足すれば、蓄電池ユニットの火災発生を検知したと判定することを特徴とする。 In order to solve the above problems, the storage battery unit according to the present invention includes a control unit that monitors the state of the storage battery unit composed of a plurality of storage battery cells and controls charging / discharging, and the control unit is the temperature of each of the plurality of storage battery cells. It has a function of monitoring the state and determining the temperature difference between the storage battery cells, and opens the breaker connected in series with the storage battery cells whose detection temperature is equal to or higher than the first threshold value. Then, the detection temperature of the cell is compared with the detection temperature of the storage battery cell other than the cell, and the temperature difference between the two is equal to or larger than the second threshold value, or the detection temperature of the cell rises at a third speed. It is characterized in that it is determined that a fire outbreak of the storage battery unit has been detected if at least one of the threshold value or higher or the maximum value of the detection temperature of the cell is equal to or higher than the fourth threshold value is satisfied. And.

本発明によれば、セルに取付けている温度検出器からの温度検出値を用いて、蓄電池ユニットの火災を速やかかつ正確に検知することを可能にする。また、セルの温度監視をするためにセルに取付けている温度検出器を、火災検知にも併用しているため、新たな機器を追加することなく火災検知をすることができる。 According to the present invention, it is possible to quickly and accurately detect a fire in a storage battery unit by using a temperature detection value from a temperature detector attached to a cell. In addition, since the temperature detector attached to the cell for monitoring the temperature of the cell is also used for fire detection, fire detection can be performed without adding new equipment.

本発明に係る蓄電池ユニットを搭載した鉄道車両の主回路構成を示す図である。It is a figure which shows the main circuit configuration of the railroad vehicle which carries the storage battery unit which concerns on this invention. 直流電力供給源の一例を示す図である。It is a figure which shows an example of a DC power supply source. 蓄電池ユニットの内部構成を示す図である。It is a figure which shows the internal structure of a storage battery unit. 実施例1において、サーミスタの温度検出値から蓄電池ユニットの火災検知までのフローチャートを示す図である。It is a figure which shows the flowchart from the temperature detection value of the thermistor to the fire detection of a storage battery unit in Example 1. FIG. 実施例2において、サーミスタの温度検出値から蓄電池ユニットの火災検知までのフローチャートを示す図である。It is a figure which shows the flowchart from the temperature detection value of the thermistor to the fire detection of a storage battery unit in Example 2. FIG. 実施例1および2に係る火災検知から列車運転の判断を行うまでのフローチャートを示す図である。It is a figure which shows the flowchart from the fire detection which concerns on Examples 1 and 2 to the judgment of a train operation.

以下、本発明の実施の形態として、実施例1および2について、図を用いて詳細に説明する。 Hereinafter, Examples 1 and 2 will be described in detail with reference to FIGS. 1 and 2 as embodiments of the present invention.

実施例1については、図1〜4および6を参照しながら説明する。
図1は、本発明に係る蓄電池ユニットを搭載した鉄道車両の主回路構成を示す図である。
車両を力行させるときは、蓄電池ユニット(104)に充電された電力をインバータ(102)で三相交流に変換して、主電動機(103)を力行動作させる。蓄電池ユニット(104)に蓄えられた電力が不足する場合は、直流電力供給源(101)からインバータ(102)へ電力を追加供給すると共に蓄電池ユニット(104)を充電する。車両にブレーキをかけるときは、主電動機(103)を発電動作させ、インバータ(102)で変換した後に蓄電池ユニット(104)に充電する。
The first embodiment will be described with reference to FIGS. 1 to 4 and 6.
FIG. 1 is a diagram showing a main circuit configuration of a railway vehicle equipped with a storage battery unit according to the present invention.
When powering the vehicle, the electric power charged in the storage battery unit (104) is converted into three-phase alternating current by the inverter (102) to power the traction motor (103). When the electric power stored in the storage battery unit (104) is insufficient, the electric power is additionally supplied from the DC power supply source (101) to the inverter (102) and the storage battery unit (104) is charged. When braking the vehicle, the traction motor (103) is operated to generate electricity, converted by the inverter (102), and then charged to the storage battery unit (104).

また、インバータ(102)と直流電力供給源(101)との間に、補助電源装置(105)を蓄電池ユニット(104)とは別に付属し、車内照明や空調用の電力を生成している。 Further, an auxiliary power supply device (105) is attached between the inverter (102) and the DC power supply source (101) separately from the storage battery unit (104) to generate electric power for interior lighting and air conditioning.

蓄電池ユニット(104)は、蓄電池ユニット制御部(106)を備え、インバータ(102)と運転台モニタ装置(107)とも相互に情報のやり取りができる。また、蓄電池としては、リチウムイオン電池が代表例として挙げられるが、これに限定されるものではない。 The storage battery unit (104) includes a storage battery unit control unit (106), and can exchange information with each other with the inverter (102) and the cab monitoring device (107). A typical example of the storage battery is a lithium ion battery, but the storage battery is not limited to this.

図2は、直流電力供給源(101)の一例を示す図である。
エンジン(201)を動作させて直結した発電機(202)で交流電力を発生させ、この交流電力をコンバータ(203)で直流電力に変換して供給する。
FIG. 2 is a diagram showing an example of a DC power supply source (101).
The engine (201) is operated to generate AC power by a directly connected generator (202), and this AC power is converted into DC power by a converter (203) and supplied.

図3は、図1に示す蓄電池ユニット(104)の内部構造を示す図である。
鉄道車両は、自動車に比べて直流の電圧値および電流値が共に大きいため、複数のセル(311〜318)を並列および直列に接続して、高電圧、大電流に対応する構成としている。実施例1では、蓄電池ユニット(104)は、まず2つの並列回路に分岐し、それぞれの並列回路は、4つのセル(311〜314および315〜318)を直列に接続した直列回路から構成される。
FIG. 3 is a diagram showing the internal structure of the storage battery unit (104) shown in FIG.
Since railroad vehicles have larger DC voltage and current values than automobiles, a plurality of cells (311 to 318) are connected in parallel and in series to support high voltage and large current. In the first embodiment, the storage battery unit (104) is first branched into two parallel circuits, and each parallel circuit is composed of a series circuit in which four cells (311 to 314 and 315 to 318) are connected in series. ..

また、それぞれの並列回路には、断流器1および2(331および332)が直列に接続されている。実施例1では、断流器1および2(331および332)は蓄電池ユニット(104)内に収められている。ただし、断流器としては、主変換装置から各セルまでの間の回路上に接続されていればよく、機器が収められている物理的な場所は問わない。 Further, the breakers 1 and 2 (331 and 332) are connected in series to each of the parallel circuits. In the first embodiment, the breakers 1 and 2 (331 and 332) are housed in the storage battery unit (104). However, the breaker may be connected on the circuit between the main converter and each cell, and the physical location where the device is housed does not matter.

さらに、各セル(311〜318)には、温度検出素子としてサーミスタ(321〜328)が1つずつ取付けられている。したがって、温度検出機能を有する素子であれば、サーミスタに限定されないが、実施例としては、サーミスタを採用した場合をする。このサーミスタ(321〜328)は、セル表面の温度を常に検出し、温度検出信号を図1に示す蓄電池ユニット制御部(106)に送信している。また、サーミスタ(321〜328)の先端から蓄電池ユニット制御部(106)までの配線は、高温および炎への耐久を高めるために、アルミシート等でカバーされていることが望ましい。 Further, one thermistor (321 to 328) is attached to each cell (311 to 318) as a temperature detecting element. Therefore, the element is not limited to the thermistor as long as it has a temperature detection function, but as an example, a case where a thermistor is adopted is used. The thermistor (321-328) constantly detects the temperature of the cell surface and transmits the temperature detection signal to the storage battery unit control unit (106) shown in FIG. Further, it is desirable that the wiring from the tip of the thermistor (321 to 328) to the storage battery unit control unit (106) is covered with an aluminum sheet or the like in order to improve durability against high temperature and flame.

図4は、実施例1において、各セルに取付けているサーミスタの温度検出値から、蓄電池ユニットの火災を検知するまでのフローチャートを示す図である。各セルにおける火災検知のフローチャートは共通しているので、図4では、セル1〜3(311〜313)に対する火災検知について示している。 FIG. 4 is a diagram showing a flowchart from the temperature detection value of the thermistor attached to each cell to the detection of a fire in the storage battery unit in the first embodiment. Since the flowchart of fire detection in each cell is common, FIG. 4 shows fire detection for cells 1 to 3 (311 to 313).

以下では、セル1(311)における火災検知を例に採って、フローチャートに従って順に説明する。また、処理の主体は、蓄電池ユニット制御部(106)で共通するので、以下では主体の表記を省略する。 In the following, the fire detection in the cell 1 (311) will be taken as an example and will be described in order according to the flowchart. Further, since the main body of the processing is common to the storage battery unit control unit (106), the notation of the main body will be omitted below.

ステップ11(S11)で、サーミスタ1(321)の温度検出値が、第1の判定閾値t1℃以上かどうかを判別する。NOの場合、すなわち、サーミスタ1(321)の温度検出値が、第1の判定閾値t1℃未満であれば、セル1(311)は正常と判断され、処理を終了する。ただし、このステップ11(S11)の処理は無限ループであるため、制御周期毎に、再びサーミスタ1(321)の温度検出値を更新し、処理を開始する。 In step 11 (S11), it is determined whether or not the temperature detection value of the thermistor 1 (321) is equal to or higher than the first determination threshold value t1 ° C. If NO, that is, if the temperature detection value of the thermistor 1 (321) is less than the first determination threshold value t1 ° C., the cell 1 (311) is determined to be normal, and the process ends. However, since the process of this step 11 (S11) is an infinite loop, the temperature detection value of the thermistor 1 (321) is updated again every control cycle, and the process is started.

YESの場合、すなわち、サーミスタ1(321)の温度検出値が、第1の判定閾値t1℃以上であれば、ステップ12(S12)で、セル1(311)を含む直列回路の断流器(図3では断流器1(331))を開放し、セル1(311)を含む直列回路を蓄電池ユニット(104)本体から切り離して電流を遮断する。 If YES, that is, if the temperature detection value of the thermistor 1 (321) is equal to or higher than the first determination threshold value t1 ° C., in step 12 (S12), the breaker of the series circuit including the cell 1 (311) ( In FIG. 3, the breaker 1 (331)) is opened, and the series circuit including the cell 1 (311) is separated from the main body of the storage battery unit (104) to cut off the current.

その後、ステップ13(S13)で、以下のi)〜iii)の3つの条件の少なくともいずれか1つを満足するか否か判別する。
i)セル1(311)の検出温度と、当該セル1(311)とは物理的に最も離れた位置にあるセル8(318)の検出温度との温度差が、第2の判定閾値t2℃以上であるか否か(要するに、ここで選択するセルは、検知対象セルに対して物理的に最も離れた位置に設置されているセルとなる。)
ii)サーミスタ1(321)の温度検出値(すなわち、セル1(311)の検出温度)の単位時間当たりの温度上昇のスピードが、第3の判定閾値t3℃/s以上であるか否か
iii)サーミスタ1(321)の温度検出値(すなわち、セル1(311)の検出温度)の最高値が、第4の判定閾値t4℃以上であるか否か
Then, in step 13 (S13), it is determined whether or not at least one of the following three conditions i) to iii) is satisfied.
i) The temperature difference between the detected temperature of cell 1 (311) and the detected temperature of cell 8 (318), which is physically farthest from the cell 1 (311), is the second determination threshold value t2 ° C. Whether or not it is the above (in short, the cell selected here is the cell installed at the position physically farthest from the cell to be detected).
ii) Whether or not the speed of temperature rise per unit time of the temperature detection value of thermistor 1 (321) (that is, the detection temperature of cell 1 (311)) is equal to or higher than the third determination threshold value t3 ° C./s.
iii) Whether or not the maximum value of the temperature detection value of the thermistor 1 (321) (that is, the detection temperature of cell 1 (311)) is equal to or higher than the fourth determination threshold value t4 ° C.

YES(上記3つの条件の少なくともいずれか1つを満足する)の場合、ステップ14(S14)で、セル1(311)に火災が発生していると検知する。NOの場合には、処理を終了し、蓄電池ユニット制御部(106)によりリセットされるまで、断流器1(331)は開放されたまま待機状態となる。 If YES (satisfying at least one of the above three conditions), it is detected in step 14 (S14) that a fire has occurred in cell 1 (311). If NO, the breaker 1 (331) remains open and is in a standby state until the process is completed and the storage battery unit control unit (106) resets it.

断流器1(331)を開放した後は、セル1(311)には電流が流れないため、温度上昇の原因が過電流であった場合、温度上昇は止まり、他のセル2〜8(312〜318)との温度差もほとんどなくなるはずである。しかし、セル1(311)が火災を起こしていた場合、電流を遮断しても他のセル2〜8(312〜318)との温度差は開いていくことが予想される。 After the breaker 1 (331) is opened, no current flows through the cell 1 (311). Therefore, if the cause of the temperature rise is an overcurrent, the temperature rise stops and the other cells 2 to 8 (311) ( The temperature difference from 312-318) should be almost eliminated. However, if cell 1 (311) has a fire, it is expected that the temperature difference from other cells 2 to 8 (312 to 318) will widen even if the current is cut off.

鉄道車両は、蓄電池ユニット内に複数のセルを備えていることから、最も離れた位置にある(すなわち、最も遠い)セルとの物理的距離は大きくなる。よって、最も離れた位置にあるセル(セル1に対しては、セル8が該当)の温度が、火災を起こしたセルが原因で温度が上昇するとは考え難く、両セルの温度差が第2の判定閾値t2℃以上であるかを判別することによって対象セルの火災検知を行うことができる。 Since the railroad vehicle has a plurality of cells in the storage battery unit, the physical distance from the farthest (that is, the farthest) cell is large. Therefore, it is unlikely that the temperature of the cell at the farthest position (cell 8 corresponds to cell 1) rises due to the cell that caused the fire, and the temperature difference between the two cells is the second. The fire detection of the target cell can be performed by determining whether or not the determination threshold value is t2 ° C. or higher.

ただし、最も離れた位置にあるセルも同時に火災が発生している可能性も否定できない。そこで、このような事態にも対応し、火災検知の信頼性向上のために、上記ii)およびiii)として、対象セルの温度上昇のスピードが第3の判定閾値t3℃/s以上であること、または、対象セルの検出温度の最高値が第4の判定閾値t4℃以上であることも、火災検知の条件に組み入れ、上記3つの条件の少なくとも1つを満足すれば、火災発生として検知することで対応を図る。 However, it cannot be denied that the cell at the farthest position may also have a fire at the same time. Therefore, in order to cope with such a situation and improve the reliability of fire detection, the speed of temperature rise of the target cell should be equal to or higher than the third determination threshold value t3 ° C./s as described in ii) and iii) above. Alternatively, the fact that the maximum detection temperature of the target cell is equal to or higher than the fourth determination threshold value t4 ° C. is also incorporated into the conditions for fire detection, and if at least one of the above three conditions is satisfied, it is detected as a fire. I will try to deal with it.

図4には、サーミスタの温度検出値からセルの火災検知を判別するまでの処理を、セル1(311)〜セル3(313)について示したが、残りセル4(314)〜セル8(318)についても同様に行う。その結果、ステップ15(S15)で、最終的にセル1(311)〜セル8(318)の少なくとも一つ以上がセル火災検知と判定された場合、蓄電池ユニット(104)の火災検知と判定される。 FIG. 4 shows the process from the temperature detection value of the thermistor to the determination of the fire detection of the cell for cells 1 (311) to 3 (313), but the remaining cells 4 (314) to 8 (318). ) Is the same. As a result, when at least one or more of cells 1 (311) to 8 (318) are finally determined to be cell fire detection in step 15 (S15), it is determined to be fire detection of the storage battery unit (104). To.

図6は、蓄電池ユニットの火災検知から列車運転の判断を行うまでのフローチャートを示す図である。このフローチャートは、実施例1および後述する実施例2において共通する。
ステップ16(S16)で、蓄電池ユニット制御部(106)は、蓄電池ユニット(104)の火災検知の有無を判定し、蓄電池ユニット(104)の火災検知が判定された場合(YES)、ステップ17(S17)で、運転台モニタ装置(107)へ火災検知情報を送信する。一方、判定されなかった場合(NO)には、このステップ17(S17)の処理は無限ループであるため、制御周期毎に、火災検知判定を繰り返す。
FIG. 6 is a diagram showing a flowchart from fire detection of the storage battery unit to determination of train operation. This flowchart is common to the first embodiment and the second embodiment described later.
In step 16 (S16), the storage battery unit control unit (106) determines the presence or absence of fire detection in the storage battery unit (104), and if the fire detection in the storage battery unit (104) is determined (YES), step 17 (YES). In S17), the fire detection information is transmitted to the cab monitoring device (107). On the other hand, if the determination is not made (NO), since the process of this step 17 (S17) is an infinite loop, the fire detection determination is repeated every control cycle.

次に、ステップ18(S18)で、車両情報制御装置(図示せず)の情報から、列車の現在位置が、地下区間、トンネル区間または橋梁区間といった列車停止危険区間や人家密集地域または乗降客がいる駅といった停車回避区間など、火災を起こした列車を停車させるには不適切な停車区間に該当するか否かを判定する。この判定は、運転台モニタ装置(107)および車両情報制御装置(図示せず)からの車両位置情報を受信する車両運転制御装置(図示せず)が行ってもよいし、火災検知情報および車両情報制御装置(図示せず)からの車両位置情報を受信しモニタ(表示)する運転台モニタ装置(107)を見て運転士等の乗務員が行ってもよい。 Next, in step 18 (S18), from the information of the vehicle information control device (not shown), the current position of the train is a train stop danger section such as an underground section, a tunnel section or a bridge section, a densely populated area or passengers. It is determined whether or not the train falls under an inappropriate stop section for stopping a train that has caused a fire, such as a stop avoidance section such as a station where the train is located. This determination may be made by the vehicle driving control device (not shown) that receives the vehicle position information from the cab monitor device (107) and the vehicle information control device (not shown), or the fire detection information and the vehicle. A crew member such as a driver may perform the operation by looking at the cab monitoring device (107) that receives (displays) vehicle position information from the information control device (not shown).

YESの場合には、ステップ19(S19)で、蓄電池ユニット(104)を主回路から開放し、火災を起こした列車を停止させるには不適切な停止区間の外に到るまで、直流電力供給源(101)を用いて、列車の走行を続け、ステップ18(S18)へ戻る。このステップ19(S19)の処理も、上記車両運転制御装置(図示せず)が行ってもよいし、運転士等の乗務員が手動で行ってもよい。 If YES, in step 19 (S19), the storage battery unit (104) is released from the main circuit, and DC power is supplied until it reaches the outside of the stop section that is inappropriate for stopping the train that caused the fire. Using the source (101), the train continues to run and returns to step 18 (S18). The process of step 19 (S19) may also be performed by the vehicle driving control device (not shown), or may be manually performed by a crew member such as a driver.

NOの場合には、ステップ20(S20)で、蓄電池ユニット(104)を主回路から開放し、速やかにインバータ(102)を停止させて列車の停止指令を出す。この処理も、上記車両運転制御装置(図示せず)が行ってもよいし、運転士等の乗務員が手動で行ってもよい。 If NO, in step 20 (S20), the storage battery unit (104) is released from the main circuit, the inverter (102) is promptly stopped, and a train stop command is issued. This process may also be performed by the vehicle driving control device (not shown), or may be manually performed by a crew member such as a driver.

実施例2については、図5を用いて説明する。実施例2では、セルの火災を検知する条件が、実施例1とは異なるが、それ以外の動作態様は同じであるため省略する。なお、装置構成としては、図1〜3で示した実施例1の場合と同様である。 The second embodiment will be described with reference to FIG. In the second embodiment, the conditions for detecting the fire in the cell are different from those in the first embodiment, but the other operation modes are the same and are omitted. The apparatus configuration is the same as that of the first embodiment shown in FIGS. 1 to 3.

図5は、実施例2において、各セルに取付けているサーミスタの温度検出値から、蓄電池ユニットの火災を検知するまでのフローチャートを示す図である。実施例1と同様、セル1(311)を例に採って説明する。また、処理の主体は、蓄電池ユニット制御部(106)で共通するので、以下では主体の表記を省略する。 FIG. 5 is a diagram showing a flowchart from the temperature detection value of the thermistor attached to each cell to the detection of a fire in the storage battery unit in the second embodiment. As in the first embodiment, cell 1 (311) will be taken as an example for description. Further, since the main body of the processing is common to the storage battery unit control unit (106), the notation of the main body will be omitted below.

ステップ11(S11)およびステップ12(S12)は、実施例2も実施例1と同様の処理態様であって、簡略すると、サーミスタ1(321)の温度検出値が第1の判定閾値t1℃以上かどうかを判別し(S11)、YESの場合、セル1(311)を含む蓄電池ユニット(104)の直列回路の断流器1(331)を開放し、セル1(311)を含む直列回路を主回路から切り離して電流を遮断する(S12)。 In step 11 (S11) and step 12 (S12), the second embodiment has the same processing mode as that of the first embodiment. Simply, the temperature detection value of the thermistor 1 (321) is equal to or higher than the first determination threshold value t1 ° C. Whether or not (S11) is determined, and if YES, the breaker 1 (331) of the series circuit of the storage battery unit (104) including the cell 1 (311) is opened, and the series circuit including the cell 1 (311) is opened. The current is cut off by disconnecting from the main circuit (S12).

その後、ステップ23(S23)で、以下のiv)、ii)およびiii)の3つの条件の少なくともいずれか1つを満足するか否か判別する。
iv)セル1(311)の検出温度と、セル1(311)以外のセル2〜8(312〜318)の各検出温度の平均値との温度差が、第5の判定閾値t5℃以上であるか否か
ii)サーミスタ1(321)の温度検出値(すなわち、セル1(311)の検出温度)の単位時間当たりの温度上昇のスピードが、第3の判定閾値t3℃/s以上であるか否か
iii)サーミスタ1(321)の温度検出値(すなわち、セル1(311)の検出温度)の最高値が、第4の判定閾値t4℃以上であるか否か
Then, in step 23 (S23), it is determined whether or not at least one of the following three conditions iv), ii) and iii) is satisfied.
iv) When the temperature difference between the detected temperature of cell 1 (311) and the average value of the detected temperatures of cells 2 to 8 (312 to 318) other than cell 1 (311) is the fifth determination threshold value t5 ° C. or higher. Whether or not there is
ii) Whether or not the speed of temperature rise per unit time of the temperature detection value of thermistor 1 (321) (that is, the detection temperature of cell 1 (311)) is equal to or higher than the third determination threshold value t3 ° C./s.
iii) Whether or not the maximum value of the temperature detection value of the thermistor 1 (321) (that is, the detection temperature of cell 1 (311)) is equal to or higher than the fourth determination threshold value t4 ° C.

YESの場合、実施例1と同様に、ステップ14(S14)で、セル1(311)に火災が発生していると検知する。 If YES, it is detected in step 14 (S14) that a fire has occurred in cell 1 (311), as in the first embodiment.

以上のように、実施例1では、セル1(311)の検出温度と、セル1(311)と物理的に最も離れた位置にあるセル(セル1(311)に対してはセル8(318))の検出温度との温度差が、第2の判定閾値t2℃以上であるか否かを判別したが、実施例2では、セル1(311)の検出温度と、セル1(311)以外のセル2〜8(312〜318)の各検出温度の平均値との温度差が、第5の判定閾値t5℃以上であるか否かを判別している点が異なる。 As described above, in the first embodiment, the detection temperature of the cell 1 (311) and the cell 8 (318 with respect to the cell 1 (311)) which is physically farthest from the cell 1 (311). )) Was determined whether or not the temperature difference from the detected temperature was equal to or higher than the second determination threshold value t2 ° C., but in Example 2, the detected temperature of cell 1 (311) and other than cell 1 (311) were determined. The difference is that it is determined whether or not the temperature difference from the average value of each detected temperature in cells 2 to 8 (312 to 318) is equal to or higher than the fifth determination threshold value t5 ° C.

実施例2では、セル1(311)に火災が発生していたときに、偶然に、物理的に最も離れた位置にあるセル(セル1(311)に対してはセル8(318))にも火災が発生していた場合でも、セル1(311)の検出温度とセル1(311)以外の残るセル全体の各検出温度の平均値とを比較することで、火災を検知することができる。 In the second embodiment, when a fire broke out in cell 1 (311), it happened to be in the cell at the physically farthest position (cell 8 (318) with respect to cell 1 (311)). Even if a fire has occurred, the fire can be detected by comparing the detected temperature of cell 1 (311) with the average value of each detected temperature of all the remaining cells other than cell 1 (311). ..

ただし、セル1(311)に火災が発生していた場合、セル1(311)の周りのセルの温度も上昇すると考えられるため、実施例2で採用する第5の判定閾値t5℃は、第2の判定閾値t2℃よりも大きい値に設定する。いずれにしても、実施例1と同様、対象セル自身の温度上昇のスピードが第3の判定閾値t3℃/s以上であること、または、対象セルの検出温度の最高値が第4の判定閾値t4℃以上であることも、火災検知の条件に組み入れることにより、火災検知の信頼性向上を図るものである。 However, if a fire breaks out in cell 1 (311), the temperature of the cells around cell 1 (311) is also considered to rise. Therefore, the fifth determination threshold value t5 ° C. adopted in Example 2 is the fifth. Set to a value larger than the determination threshold value t2 ° C. of 2. In any case, as in the first embodiment, the speed of temperature rise of the target cell itself is equal to or higher than the third determination threshold value t3 ° C./s, or the maximum value of the detected temperature of the target cell is the fourth determination threshold value. The fact that the temperature is t4 ° C. or higher is also intended to improve the reliability of fire detection by incorporating it into the conditions for fire detection.

101:直流電力供給源、102:インバータ、103:主電動機、
104:蓄電池ユニット、105:補助電源装置、106:蓄電池ユニット制御部、
107:運転台モニタ装置、201:エンジン、202:発電機、203:コンバータ、
311:蓄電池セル1、312:蓄電池セル2、313:蓄電池セル3、
314:蓄電池セル4、315:蓄電池セル5、316:蓄電池セル6、
317:蓄電池セル7、318:蓄電池セル8、321:サーミスタ1、
322:サーミスタ2、323:サーミスタ3、324:サーミスタ4、
325:サーミスタ5、326:サーミスタ6、327:サーミスタ7、
328:サーミスタ8、331:断流器1、332:断流器2
101: DC power supply source, 102: Inverter, 103: Traction motor,
104: Storage battery unit, 105: Auxiliary power supply, 106: Storage battery unit control unit,
107: Driver's cab monitoring device, 201: Engine, 202: Generator, 203: Converter,
311: Battery cell 1, 312: Battery cell 2, 313: Battery cell 3,
314: Storage battery cell 4, 315: Storage battery cell 5, 316: Storage battery cell 6,
317: Battery cell 7, 318: Battery cell 8, 321: Thermistor 1,
322: Thermistor 2, 323: Thermistor 3, 324: Thermistor 4,
325: Thermistor 5, 326: Thermistor 6, 327: Thermistor 7,
328: Thermistor 8, 331: Breaker 1, 332: Breaker 2

Claims (9)

複数の蓄電池セルを搭載した蓄電池ユニットであって、
当該蓄電池ユニットの状態を監視し充放電を制御する制御部を備え、
前記制御部は、前記複数の蓄電池セル各々の温度状態を監視し、当該各蓄電池セル間の温度差を判定する機能を有する
ことを特徴とする蓄電池ユニット。
A storage battery unit equipped with multiple storage battery cells.
It is equipped with a control unit that monitors the status of the storage battery unit and controls charging and discharging.
The control unit is a storage battery unit having a function of monitoring the temperature state of each of the plurality of storage battery cells and determining the temperature difference between the storage battery cells.
請求項1に記載の蓄電池ユニットであって、
前記制御部は、前記複数の蓄電池セル各々に取り付けた温度検出素子各々からの温度検出信号の少なくとも1つが第1の閾値以上の検出温度になると、該第1の閾値以上の検出温度となった前記蓄電池セルに直列に接続されている断流器を開放する
ことを特徴とする蓄電池ユニット。
The storage battery unit according to claim 1.
When at least one of the temperature detection signals from each of the temperature detection elements attached to each of the plurality of storage battery cells reaches a detection temperature equal to or higher than the first threshold value, the control unit reaches the detection temperature equal to or higher than the first threshold value. A storage battery unit characterized by opening a breaker connected in series with the storage battery cell.
請求項2に記載の蓄電池ユニットであって、
前記制御部は、前記第1の閾値以上の検出温度となった前記蓄電池セルを対象セルとして、
(1)前記対象セルの検出温度と前記対象セル以外の前記蓄電池セルの検出温度とを比較し、両方の温度差が第2の閾値以上である
(2)前記対象セルの検出温度の上昇スピードが第3の閾値以上である
(3)前記対象セルの検出温度の最高値が第4の閾値以上である
前記(1)〜(3)の3つの少なくともいずれか1つを満足すれば、当該蓄電池ユニットの火災発生を検知したと判定する
ことを特徴とする蓄電池ユニット。
The storage battery unit according to claim 2.
The control unit uses the storage battery cell whose detection temperature is equal to or higher than the first threshold value as a target cell.
(1) The detection temperature of the target cell is compared with the detection temperature of the storage battery cell other than the target cell, and the temperature difference between the two is equal to or greater than the second threshold value. (2) The rate of increase of the detection temperature of the target cell. Is equal to or greater than the third threshold value. (3) The maximum value of the detection temperature of the target cell is equal to or greater than the fourth threshold value. A storage battery unit characterized in that it is determined that a fire has been detected in the storage battery unit.
請求項3に記載の蓄電池ユニットであって、
前記(1)の、前記対象セル以外の前記蓄電池セルは、当該蓄電池ユニットの中で前記対象セルから物理的に最も離れた位置にある前記蓄電池セルである
ことを特徴とする蓄電池ユニット。
The storage battery unit according to claim 3.
The storage battery unit according to (1), other than the target cell, is the storage battery cell at a position physically farthest from the target cell in the storage battery unit.
請求項2に記載の蓄電池ユニットであって、
前記制御部は、前記第1の閾値以上の検出温度となった前記蓄電池セルを対象セルとして、
(1)前記対象セルの検出温度と、前記対象セル以外の前記蓄電池セル全ての検出温度から求めた平均値とを比較し、両方の温度差が第5の閾値以上である
(2)前記対象セルの検出温度の上昇スピードが第3の閾値以上である
(3)前記対象セルの検出温度の最高値が第4の閾値以上である
前記(1)〜(3)の3つの少なくともいずれか1つを満足すれば、当該蓄電池ユニットの火災発生を検知したと判定する
ことを特徴とする蓄電池ユニット。
The storage battery unit according to claim 2.
The control unit uses the storage battery cell whose detection temperature is equal to or higher than the first threshold value as a target cell.
(1) The detection temperature of the target cell is compared with the average value obtained from the detection temperatures of all the storage battery cells other than the target cell, and the temperature difference between the two is equal to or greater than the fifth threshold value. (2) The target The rate of increase in the detection temperature of the cell is equal to or higher than the third threshold value (3) The maximum value of the detection temperature of the target cell is equal to or higher than the fourth threshold value. A storage battery unit characterized in that it is determined that a fire has been detected in the storage battery unit if one of the above conditions is satisfied.
請求項3〜5のいずれか1項に記載の蓄電池ユニットであって、
前記制御部は、当該蓄電池ユニットの火災発生を検知したと判定すると、モニタ装置に前記火災発生に関する情報を送信する
ことを特徴とする蓄電池ユニット。
The storage battery unit according to any one of claims 3 to 5.
When the control unit determines that a fire has occurred in the storage battery unit, the control unit transmits information regarding the fire to the monitoring device.
鉄道車両に搭載する請求項3〜6のいずれか1項に記載の蓄電池ユニットであって、
前記制御部は、当該蓄電池ユニットの火災発生を検知したと判定すると、当該鉄道車両の現在位置が停車に不適切な区間であるか否かを判定し、前記不適切な区間であれば、当該蓄電池ユニットを主回路から開放し、他の電力供給源を用いて当該鉄道車両を前記不適切な区間を抜けるまで走行させて停車させる指令を出し、前記不適切な区間でなければ、当該蓄電池ユニットを主回路から開放し当該鉄道車両を停車させる指令を出す
ことを特徴とする鉄道車両用蓄電池ユニット。
The storage battery unit according to any one of claims 3 to 6, which is mounted on a railroad vehicle.
When the control unit determines that a fire has occurred in the storage battery unit, it determines whether or not the current position of the railcar is an inappropriate section for stopping, and if it is an inappropriate section, the relevant section. The storage battery unit is released from the main circuit, a command is issued to run the railroad vehicle until it passes through the inappropriate section and stop using another power supply source, and if it is not the inappropriate section, the storage battery unit is not used. A storage battery unit for rolling stock, which is characterized by issuing a command to stop the rolling stock by releasing the main circuit.
請求項1〜7のいずれか1項に記載の蓄電池ユニットを搭載した鉄道車両。 A railway vehicle equipped with the storage battery unit according to any one of claims 1 to 7. 複数の蓄電池セルを搭載した蓄電池ユニットの火災検知方法であって、
前記複数の蓄電池セルの内で第1の閾値以上の検出温度となった少なくとも1つの蓄電池セルを対象セルとして当該対象セルの検出温度と当該対象セル以外の前記蓄電池セルの検出温度とを比較し、両方の温度差が第2の閾値以上であるか否かを判断する第1のステップと、
前記対象セルの検出温度と、前記対象セル以外の前記蓄電池セル全ての検出温度から求めた平均値とを比較し、両方の温度差が第5の閾値以上であるか否かを判断する第2のステップと、
前記対象セルの検出温度の上昇スピードが第3の閾値以上であるか否かを判断する第3のステップと、
前記対象セルの検出温度の最高値が第4の閾値以上である否かを判断する第4のステップと、
前記第1から前記第4のステップの内で少なくともいずれか1つのステップが満足されれば、当該蓄電池ユニットの火災発生を検知したと判定する第5のステップと
を有する蓄電池ユニットの火災検知方法。
It is a fire detection method for a storage battery unit equipped with multiple storage battery cells.
The detection temperature of the target cell is compared with the detection temperature of the storage battery cell other than the target cell, with at least one storage battery cell having a detection temperature equal to or higher than the first threshold value among the plurality of storage battery cells as the target cell. , The first step of determining whether the temperature difference between the two is greater than or equal to the second threshold.
A second method of comparing the detected temperature of the target cell with the average value obtained from the detected temperatures of all the storage battery cells other than the target cell, and determining whether or not the temperature difference between the two is equal to or greater than the fifth threshold value. Steps and
A third step of determining whether or not the rate of increase in the detection temperature of the target cell is equal to or higher than the third threshold value, and
The fourth step of determining whether or not the maximum value of the detected temperature of the target cell is equal to or higher than the fourth threshold value, and
A fire detection method for a storage battery unit, comprising a fifth step of determining that a fire has been detected in the storage battery unit if at least one of the first to fourth steps is satisfied.
JP2020534047A 2018-08-01 2019-03-07 Storage battery unit and fire detection method for storage battery unit Active JP7003269B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018145117 2018-08-01
JP2018145117 2018-08-01
PCT/JP2019/009043 WO2020026499A1 (en) 2018-08-01 2019-03-07 Storage battery unit and method for detecting fire of storage battery unit

Publications (2)

Publication Number Publication Date
JPWO2020026499A1 true JPWO2020026499A1 (en) 2021-06-03
JP7003269B2 JP7003269B2 (en) 2022-01-20

Family

ID=69232469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020534047A Active JP7003269B2 (en) 2018-08-01 2019-03-07 Storage battery unit and fire detection method for storage battery unit

Country Status (2)

Country Link
JP (1) JP7003269B2 (en)
WO (1) WO2020026499A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022014392A (en) * 2020-07-06 2022-01-19 パナソニックIpマネジメント株式会社 Sensor, disaster prevention system, fire determination method, and program
JP7388318B2 (en) 2020-09-02 2023-11-29 トヨタ自動車株式会社 power supply
CN112863106B (en) * 2021-02-01 2023-04-28 重庆金康赛力斯新能源汽车设计院有限公司 Fireproof alarm method, system and electronic equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008204867A (en) * 2007-02-21 2008-09-04 Sanyo Electric Co Ltd Battery pack
JP2013057542A (en) * 2011-09-07 2013-03-28 Gs Yuasa Corp State determination device and state determination method for battery pack
JP2014036714A (en) * 2012-08-13 2014-02-27 Hochiki Corp Fire-extinguishing system for electric vehicle
WO2017029715A1 (en) * 2015-08-19 2017-02-23 三菱電機株式会社 Storage battery control device, electricity storage system, and solar power generation system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008204867A (en) * 2007-02-21 2008-09-04 Sanyo Electric Co Ltd Battery pack
JP2013057542A (en) * 2011-09-07 2013-03-28 Gs Yuasa Corp State determination device and state determination method for battery pack
JP2014036714A (en) * 2012-08-13 2014-02-27 Hochiki Corp Fire-extinguishing system for electric vehicle
WO2017029715A1 (en) * 2015-08-19 2017-02-23 三菱電機株式会社 Storage battery control device, electricity storage system, and solar power generation system

Also Published As

Publication number Publication date
JP7003269B2 (en) 2022-01-20
WO2020026499A1 (en) 2020-02-06

Similar Documents

Publication Publication Date Title
CN107662499B (en) Pure electric vehicle complete vehicle fault power-off control method and system
JP7003269B2 (en) Storage battery unit and fire detection method for storage battery unit
JP5677261B2 (en) Power storage system
JP6603335B2 (en) Railway transportation system with built-in power supply
CN110143204B (en) Urban rail vehicle battery emergency traction control method and control system thereof
CN203611768U (en) High-voltage safety monitor device for blade electric vehicle
JP4747204B2 (en) Railway system with power supply equipment on the railway line between stations
WO2012073351A1 (en) Control device for electric vehicle
WO2018054007A1 (en) Train brake recovery system and method and train
JPWO2017208740A1 (en) Management device and power supply system
JP6972027B2 (en) Management device and power storage system
CN110504721A (en) Moving charging power station
US20160375778A1 (en) Power net system of fuel cell vehicle and method for controlling the same
CN212400923U (en) Netless self-walking energy storage and bidirectional AC/DC converter system for rail transit
CN110920397A (en) MCU voltage discharge method for electric system motor controller of electric automobile
CN110341487B (en) Control method and system for controlling brake resistor of new energy vehicle
US10464424B2 (en) On-vehicle electric power storage apparatus
CN103786583A (en) Battery management system (BMS) controlling high voltage output according to collision signals
CN111591148A (en) Netless self-walking energy storage and bidirectional AC/DC converter system for rail transit
KR101232218B1 (en) Restoration energy storage device of urban rail
KR101182252B1 (en) a charging and discharging system of electric railcar using resuscitation power
CN111532144A (en) Non-net self-walking energy storage and high-frequency auxiliary converter system for rail transit
CN112428888B (en) Emergency traction power supply method for electrified railway
JP7136760B2 (en) Emergency power supply system, emergency power supply method, and program
CN114368289A (en) Power supply system and magnetic-levitation train

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211228

R150 Certificate of patent or registration of utility model

Ref document number: 7003269

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150