JPWO2020025560A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020025560A5
JPWO2020025560A5 JP2021503877A JP2021503877A JPWO2020025560A5 JP WO2020025560 A5 JPWO2020025560 A5 JP WO2020025560A5 JP 2021503877 A JP2021503877 A JP 2021503877A JP 2021503877 A JP2021503877 A JP 2021503877A JP WO2020025560 A5 JPWO2020025560 A5 JP WO2020025560A5
Authority
JP
Japan
Prior art keywords
magnetic resonance
brain
resonance data
geometry
delineated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021503877A
Other languages
Japanese (ja)
Other versions
JP2021531891A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/EP2019/070400 external-priority patent/WO2020025560A1/en
Publication of JP2021531891A publication Critical patent/JP2021531891A/en
Publication of JPWO2020025560A5 publication Critical patent/JPWO2020025560A5/ja
Withdrawn legal-status Critical Current

Links

Claims (9)

患者の脳内の解剖学的構造に特有の活性化データを得る方法であって、
磁気共鳴イメージング装置の使用によって取得される脳の磁気共鳴データを受信するステップであって、前記磁気共鳴データは、前記患者の脳内の解剖学的構造の磁気共鳴データを含む、ステップと、
複数のジオメトリを輪郭描出するように前記脳の磁気共鳴データをセグメント化するステップであって、前記複数のジオメトリの各々が、前記脳内の々の解剖学的構造に対応し、前記セグメント化は、3D脳モデルを前記脳内の解剖学的構造に適応させるステップを含む、形状制限された変形可能な3D脳モデルに基づく、ステップと、
磁気共鳴イメージング装置の使用によって取得される前記脳の機能的磁気共鳴データを受信ステップと、
前記磁気共鳴データと前記機能的磁気共鳴データをアラインするステップと、
前記アラインされた磁気共鳴データ及び機能的磁気共鳴データに基づいて、複数の活性化レベルを決定するステップであって、前記複数の活性化レベルの各々が、々の輪郭描出されたジオメトリに対応する、ステップと、
前記輪郭描出されたジオメトリ及び対応する活性化レベルに基づいて前記解剖学的構造の活性化のシーケンスを決定するステップであって、前記活性化のシーケンスは、前記磁気共鳴データ及び機能的磁気共鳴データの順序又はタイミングに基づいて決定される、ステップと、
前記輪郭描出されたジオメトリ及び対応する活性化レベルに基づいて、ある輪郭描出されたジオメトリから別の輪郭描出されたジオメトリへの活動の伝播を決定し、前記活動の伝播は、前記磁気共鳴データ及び機能的磁気共鳴データの順序又はタイミングに基づいて決定され、
前記解剖学的構造の前記輪郭描出されたジオメトリに対応する前記脳内の動的活動のグラフィック表現を出力するステップであって、前記動的活動のグラフィック表現が更に前記活動のシーケンス及び前記活動の伝播を有する、ステップと、
を有する方法。
A method of obtaining activation data specific to anatomy in a patient's brain, comprising:
receiving magnetic resonance data of the brain acquired by use of a magnetic resonance imaging device , said magnetic resonance data comprising magnetic resonance data of anatomy within the patient's brain ;
segmenting the brain magnetic resonance data to delineate a plurality of geometries, each of the plurality of geometries corresponding to a respective anatomical structure within the brain; is based on a shape-constrained deformable 3D brain model, comprising adapting the 3D brain model to the anatomy in said brain ;
receiving functional magnetic resonance data of the brain obtained by use of a magnetic resonance imaging device;
aligning the magnetic resonance data and the functional magnetic resonance data;
determining a plurality of activation levels based on the aligned magnetic resonance data and the functional magnetic resonance data, each of the plurality of activation levels corresponding to a respective delineated geometry; do, step and
determining a sequence of activations of the anatomical structure based on the contoured geometry and corresponding activation levels, the sequence of activations comprising the magnetic resonance data and functional magnetic resonance data; a step determined based on the order or timing of
determining propagation of activity from one delineated geometry to another delineated geometry based on the delineated geometries and corresponding activation levels, the activity deriving from the magnetic resonance data and determined based on the order or timing of the functional magnetic resonance data;
outputting a graphical representation of dynamic activity in the brain corresponding to the delineated geometry of the anatomy, wherein the graphical representation of dynamic activity further comprises the sequence of activities and the sequence of activities; a step with propagation ;
How to have
前記動的活動のグラフィック表現が、前記ジオメトリのうちの少なくとも1つを含む脳活動マップを含む、請求項1に記載の方法。2. The method of claim 1, wherein the graphical representation of dynamic activity comprises a brain activity map including at least one of said geometries. 少なくとも1つの決定された活性化レベル及び輪郭描出されたジオメトリを患者の診断に関連付けるステップを更に有する、請求項1に記載の方法。 2. The method of claim 1, further comprising associating at least one determined activation level and contoured geometry with a patient diagnosis. 前記活性化レベルのうちの少なくとも1つが、平均活性化レベルを含む、請求項1に記載の方法。 2. The method of claim 1, wherein at least one of said activation levels comprises an average activation level. 前記平均活性化レベルがイベント平均活性化レベルを含む、請求項4に記載の方法。 5. The method of claim 4, wherein the average activation level comprises an event average activation level. 患者の脳内の解剖学的構造に特有の活性化データを得るシステムであって、磁気共鳴イメージング装置と通信するコンピューティング装置を有し、前記コンピューティング装置は、 1. A system for obtaining activation data specific to anatomy within a patient's brain, comprising a computing device in communication with a magnetic resonance imaging device, said computing device comprising:
磁気共鳴イメージング装置の使用により得られる脳の磁気共鳴データを受信するステップであって、前記磁気共鳴データは、前記患者の脳内の解剖学的構造の磁気共鳴データを含む、ステップと、 receiving magnetic resonance data of the brain obtained by use of a magnetic resonance imaging device, said magnetic resonance data comprising magnetic resonance data of anatomical structures within the patient's brain;
複数のジオメトリを輪郭描出するように前記脳の磁気共鳴データをセグメント化するステップであって、前記複数のジオメトリの各々が、前記脳内の各々の解剖学的構造に対応し、前記セグメント化は、3D脳モデルを前記脳内の解剖学的構造に適応させるステップを含む、形状制限された変形可能な3D脳モデルに基づく、ステップと、 segmenting the brain magnetic resonance data to delineate a plurality of geometries, each of the plurality of geometries corresponding to a respective anatomical structure within the brain, the segmenting comprising: , based on a shape-constrained deformable 3D brain model, including adapting the 3D brain model to the anatomy within said brain;
磁気共鳴イメージング装置の使用により得られる前記脳の機能的磁気共鳴データを受信するステップと、 receiving functional magnetic resonance data of the brain obtained by use of a magnetic resonance imaging device;
前記磁気共鳴データと前記機能的磁気共鳴データをアラインするステップと、 aligning the magnetic resonance data and the functional magnetic resonance data;
前記アラインされた磁気共鳴データ及び機能的磁気共鳴データに基づいて、複数の活性化レベルを決定するステップであって、前記複数の活性化レベルの各々が、各々の輪郭描出されたジオメトリに対応する、ステップと、 determining a plurality of activation levels based on the aligned magnetic resonance data and the functional magnetic resonance data, each of the plurality of activation levels corresponding to a respective delineated geometry; , step and
前記輪郭描出されたジオメトリ及び対応する活性化レベルに基づいて前記解剖学的構造の活性化のシーケンスを決定するステップであって、前記活性化のシーケンスは、前記磁気共鳴データ及び機能的磁気共鳴データの順序又はタイミングに基づいて決定される、ステップと、 determining a sequence of activations of the anatomical structure based on the contoured geometry and corresponding activation levels, the sequence of activations comprising the magnetic resonance data and functional magnetic resonance data; a step determined based on the order or timing of
前記輪郭描出されたジオメトリ及び対応する活性化レベルに基づいて、ある輪郭描出されたジオメトリから別の輪郭描出されたジオメトリへの活動の伝播を決定し、前記活動の伝播は、前記磁気共鳴データ及び機能的磁気共鳴データの順序又はタイミングに基づいて決定され、 determining propagation of activity from one delineated geometry to another delineated geometry based on the delineated geometries and corresponding activation levels, the activity deriving from the magnetic resonance data and determined based on the order or timing of the functional magnetic resonance data;
前記解剖学的構造の前記輪郭描出されたジオメトリに対応する前記脳内の動的活動のグラフィック表現を出力するステップと、 outputting a graphical representation of dynamic activity in the brain corresponding to the delineated geometry of the anatomy;
を実行するよう動作可能であるシステム。a system operable to perform
前記磁気共鳴イメージング装置及び前記データベースの少なくとも一方を更に有する、請求項6に記載のシステム。 7. The system of claim 6, further comprising at least one of said magnetic resonance imaging device and said database. 前記コンピューティング装置が更に、解剖学的構造内の活性化レベル及び活性化のシーケンスを、前記脳に関する前記患者の診断と関連付けるよう動作可能である、請求項6に記載のシステム。 7. The system of claim 6, wherein the computing device is further operable to associate activation levels and sequences of activations within an anatomy with the patient's diagnosis of the brain. 前記コンピューティング装置が更に、各々の解剖学的構造の活性化レベルと前記解剖学的構造の活性化のシーケンスを、前記脳に関する前記患者の診断と共に、データベースに記憶するよう動作可能である、請求項8に記載のシステム。 wherein said computing device is further operable to store the activation level of each anatomical structure and the sequence of activation of said anatomical structure in a database along with said patient's diagnosis of said brain. Item 9. The system according to Item 8.
JP2021503877A 2018-07-30 2019-07-30 Functional Magnetic Resonance Imaging Systems and Methods Withdrawn JP2021531891A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862711812P 2018-07-30 2018-07-30
US62/711,812 2018-07-30
PCT/EP2019/070400 WO2020025560A1 (en) 2018-07-30 2019-07-30 Functional magnetic resonance imaging systems and methods

Publications (2)

Publication Number Publication Date
JP2021531891A JP2021531891A (en) 2021-11-25
JPWO2020025560A5 true JPWO2020025560A5 (en) 2022-07-29

Family

ID=67514622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021503877A Withdrawn JP2021531891A (en) 2018-07-30 2019-07-30 Functional Magnetic Resonance Imaging Systems and Methods

Country Status (5)

Country Link
US (1) US11385310B2 (en)
EP (1) EP3830595A1 (en)
JP (1) JP2021531891A (en)
CN (1) CN112534288A (en)
WO (1) WO2020025560A1 (en)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6292683B1 (en) * 1999-05-18 2001-09-18 General Electric Company Method and apparatus for tracking motion in MR images
US20050154290A1 (en) * 2001-06-15 2005-07-14 Daniel Langleben Functional brain imaging for detecting and assessing deception and concealed recognition, and cognitive/emotional response to information
CA2473963A1 (en) * 2003-07-14 2005-01-14 Sunnybrook And Women's College Health Sciences Centre Optical image-based position tracking for magnetic resonance imaging
US20050085705A1 (en) * 2003-10-21 2005-04-21 Rao Stephen M. fMRI system for use in detecting neural abnormalities associated with CNS disorders and assessing the staging of such disorders
US20050107682A1 (en) * 2003-10-21 2005-05-19 Rao Stephen M. fMRI system for use in assessing the efficacy of therapies in treating CNS disorders
US7346382B2 (en) * 2004-07-07 2008-03-18 The Cleveland Clinic Foundation Brain stimulation models, systems, devices, and methods
JP5178521B2 (en) * 2005-09-29 2013-04-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ System and method for acquiring magnetic resonance imaging (MRI) data
US20110217240A1 (en) * 2008-09-03 2011-09-08 Craig Ferris Imaging neuroleptic compounds
WO2011070464A2 (en) 2009-12-10 2011-06-16 Koninklijke Philips Electronics N.V. A system for rapid and accurate quantitative assessment of traumatic brain injury
EP2670299A4 (en) * 2011-02-03 2017-08-09 The Medical Research, Infrastructure, And Health Services Fund Of The Tel Aviv Medical Center Method and system for use in monitoring neural activity in a subject's brain
JP6232054B2 (en) 2012-05-31 2017-11-15 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Method, system, computer program and storage medium for determining quality metrics
US20140275960A1 (en) * 2013-03-13 2014-09-18 David R. Hubbard Functional magnetic resonance imaging biomarker of neural abnormality
US9412076B2 (en) * 2013-07-02 2016-08-09 Surgical Information Sciences, Inc. Methods and systems for a high-resolution brain image pipeline and database program
US11880989B2 (en) * 2014-04-25 2024-01-23 Thornhill Scientific Inc. Imaging abnormalities in vascular response
KR20180107224A (en) * 2016-02-01 2018-10-01 더 보드 오브 트러스티스 오브 더 리랜드 스탠포드 쥬니어 유니버시티 Functional image data analysis method and system
US20190290130A1 (en) * 2018-03-21 2019-09-26 Koninklijke Philips N.V. Neurological examination system

Similar Documents

Publication Publication Date Title
JP7405818B2 (en) Treat the patient with a TT field with optimized electrode positions using a deformable template
CN110364238B (en) Machine learning based contrast management
CN109544510A (en) A kind of three-dimensional Lung neoplasm recognition methods based on convolutional neural networks
US8675940B2 (en) Generation of moving vascular models and blood flow analysis from moving vascular models and phase contrast MRI
CN111127441A (en) Multi-modal brain image depression recognition method and system based on graph node embedding
CN106204562A (en) A kind of method of the arched roof white matter segmentation merged based on fMRI Yu DTI
Doyen et al. Connectivity‐based parcellation of normal and anatomically distorted human cerebral cortex
WO2021109727A1 (en) Method and system for drawing brain functional atlas
KR20190132832A (en) Method and apparatus for predicting amyloid positive or negative based on deep learning
WO2014180972A3 (en) System and method for three-dimensional population analysis of anatomic structures
CN106709920B (en) Blood vessel extraction method and device
CN105184794B (en) A kind of CSM Computer Aided Analysis Systems and method based on tensor image
Reynolds et al. Functional anatomy of the lymphatics draining the skin: a detailed statistical analysis
CN109508787A (en) Neural network model training method and system for ultrasound displacement estimation
CN103445780A (en) Diffusion-weighted magnetic resonance imaging multi-fiber reconstruction method
CN106651874A (en) Brain tumor post-operation spatial domain partitioning method based on multimode MRI data
CN106133789A (en) For splitting image processing apparatus and the method for area-of-interest
CN114065825B (en) Brain magnetic MEG source positioning method based on structural similarity
CN107209794A (en) The finite element modeling of anatomical structure
CN103006215A (en) Brain functional region positioning method based on local smoothing regressions
CN112419340A (en) Generation method, application method and device of cerebrospinal fluid segmentation model
JPWO2020025560A5 (en)
CN109124635B (en) Model generation method, magnetic resonance imaging scanning method and system
Chen et al. Predicting resting-state functional connectivity with efficient structural connectivity
CN113283465B (en) Diffusion tensor imaging data analysis method and device